Popa Superrigidity and Countable Borel Equivalence Relations II

Simon Thomas

Rutgers University

2nd - 6th October 2006
A quick recap

The Fundamental Question

Let G be a countable group and let X be a standard Borel G-space. To what extent does the data (X, E^X_G) “remember” the group G and its action on X?

More accurately, to what extent does the data $(C, E^X_G | C)$ “remember” the group G and its action on X, where C is an arbitrary Borel complete section?

Further Hypotheses

We shall usually also assume that:

- G acts freely on X; i.e. $g \cdot x \neq x$ for all $1 \neq g \in G$ and $x \in X$.
- There exists a G-invariant probability measure μ on X.

Ergodicity

Definition

Let G be a countable group and let X be a standard Borel G-space. Then the G-invariant probability measure μ is said to be **ergodic** iff $\mu(A) = 0, 1$ for every G-invariant Borel subset $A \subseteq X$.

Theorem

If μ is a G-invariant probability measure on the standard Borel G-space X, then the following statements are equivalent.

- The action of G on (X, μ) is ergodic.
- If Y is a standard Borel space and $f : X \to Y$ is a G-invariant Borel function, then there exists a G-invariant Borel subset $M \subseteq X$ with $\mu(M) = 1$ such that $f \upharpoonright M$ is a constant function.
Strong mixing

Definition

The action of G on the standard probability space (X, μ) is **strongly mixing** iff for any Borel subsets $A, B \subseteq X$, we have that

$$\mu(g(A) \cap B) \to \mu(A) \cdot \mu(B) \quad \text{as } g \to \infty.$$

In other words, if $\langle g_n \mid n \in \mathbb{N} \rangle$ is a sequence of distinct elements of G, then

$$\lim_{n \to \infty} \mu(g_n(A) \cap B) = \mu(A) \cdot \mu(B).$$

Observation

If $H \leq G$ is an infinite subgroup of G, then the action of H on (X, μ) is also strongly mixing.
Strong mixing continued

Observation

If the action of G on (X, μ) is strongly mixing, then G acts ergodically on (X, μ).

Proof.

If $A \subseteq X$ is a G-invariant Borel subset, then

$$\mu(A)^2 = \lim_{g \to \infty} \mu(g(A) \cap A) = \lim_{g \to \infty} \mu(A) = \mu(A).$$

Hence $\mu(A) = 0, 1$.

Remark

With more effort, it can be shown that for each $n \geq 2$, the diagonal action of G on (X^n, μ^n) is also ergodic.
Bernoulli actions are strongly mixing

Theorem

The action of G on $((2)^G, \mu)$ is strongly mixing.

- Consider the case when there exist finite subsets $S, T \subset G$ and subsets $\mathcal{F} \subseteq 2^S$, $\mathcal{G} \subseteq 2^T$ such that $A = \{ f \in (2)^G \mid f \upharpoonright S \in \mathcal{F} \}$ and $B = \{ f \in (2)^G \mid f \upharpoonright T \in \mathcal{G} \}$.

- If $\langle g_n \mid n \in \mathbb{N} \rangle$ is a sequence of distinct elements of G, then

 $$g_n(S) \cap T = \emptyset$$

 for all but finitely many n.

- This means that $g_n(A)$, B are independent events and so

 $$\mu(g_n(A) \cap B) = \mu(g_n(A)) \cdot \mu(B) = \mu(A) \cdot \mu(B).$$
Let G be a countable group and let X be a standard Borel G-space with invariant ergodic probability measure μ. Suppose that the countable group H has a free Borel action on Y and that

$$f : X \rightarrow Y$$

is a Borel homomorphism between the corresponding orbit equivalence relations. Then we can define a Borel cocycle

$$\alpha : G \times X \rightarrow H$$

by setting

$$\alpha(g, x) = \text{the unique } h \in H \text{ such that } h \cdot f(x) = f(g \cdot x).$$
The cocycle identity

Note that

\[f(x) \xrightarrow{\alpha(g,x)} f(g \cdot x) \xrightarrow{\alpha(h,g \cdot x)} f(hg \cdot x) \]

and hence we have the identity:

\[\alpha(hg, x) = \alpha(h, g \cdot x)\alpha(g, x) \quad \mu\text{-a.e } x \]

In particular, \(f \) is a permutation group homomorphism iff

\[\alpha(g, x) = \alpha(g) \]

is a group homomorphism.
Cocycle equivalence

\[
\beta(g, x) = b(g \cdot x)\alpha(g, x)b(x)^{-1} \quad \mu\text{-a.e } x
\]
Theorem (Popa)

Let Γ be a countably infinite Kazhdan group and G, \mathbb{G} be countable groups such that $\Gamma \leq G \leq \mathbb{G}$. If H is any countable group, then every Borel cocycle

$$\alpha : G \times (2)^\mathbb{G} \rightarrow H$$

is equivalent to a group homomorphism of G into H.

Remarks

- In applications, we usually have $G = \mathbb{G}$.
- For example, we let $\Gamma = \text{SL}_3(\mathbb{Z})$ or any subgroup of finite index in $\text{SL}_3(\mathbb{Z})$.
- For example, we can let $G = \mathbb{G} = \Gamma \times S$, where S is any countable group.
An easy consequence of Popa Superrigidity

Definition

\[E_G \text{ denotes the orbit equivalence relation of the Bernoulli action of the countable group on } ((2)^G, \mu). \]

Theorem

- Let \(G = SL_3(\mathbb{Z}) \times S \), where \(S \) is any countable group.
- Let \(H \) be any countable group and let \(Y \) be a free standard Borel \(H \)-space.

If there exists a \(\mu \)-nontrivial Borel homomorphism from \(E_G \) to \(E_Y^H \), then there exists a virtual embedding \(\pi : G \rightarrow H \).
Proof of Theorem

Suppose that \(f : (2)^G \rightarrow Y \) is a \(\mu \)-nontrivial Borel homomorphism from \(E_G \) to \(E_H^Y \).

Then we can define a Borel cocycle \(\alpha : G \times (2)^G \rightarrow H \) by

\[
\alpha(g, x) = \text{the unique } h \in H \text{ such that } h \cdot f(x) = f(g \cdot x).
\]

By Popa, after deleting a nullset and slightly adjusting \(f \), we can suppose that \(\alpha : G \rightarrow H \) is a group homomorphism.

Suppose that \(N = \ker \alpha \) is infinite.

Since the action of \(G \) is strongly mixing, it follows that \(N \) acts ergodically on \(((2)^G, \mu) \).

But then the \(N \)-invariant function \(f : (2)^G \rightarrow X \) is \(\mu \)-a.e. constant, which is a contradiction.
A map of the world

Essentially Free

Turing Equivalence

E_∞

E_0
Some open problems

Open Question (Thomas)
Suppose that E is a countable Borel equivalence relation on the standard Borel space X with invariant ergodic probability measure μ. Does there always exist a Borel subset $Y \subseteq X$ with $\mu(Y) = 1$ such that $E \restriction Y$ is essentially free?

Open Question (Hjorth)
Suppose that $E \subseteq F$ are countable Borel equivalence relations on the standard Borel space X. If E is universal, does it follow that F is necessarily also universal?

Theorem (Adams)
There exist countable Borel equivalence relations $E \subseteq F$ such that E, F are incomparable with respect to Borel reducibility.
Unique ergodicity

Definition

The action of G on the standard probability space (X, μ) is uniquely ergodic iff μ is the unique G-invariant probability measure on X.

Observation

If the action of G on (X, μ) is uniquely ergodic, then G acts ergodically on (X, μ).

Proof.

- Suppose that there exists a G-invariant Borel subset $A \subseteq X$ with $0 < \mu(A) < 1$. Let $B = X \setminus A$.
- Then we can define distinct G-invariant probability measures by

 \[\nu_1(Z) = \frac{\mu(Z \cap A)}{\mu(A)} \]
 \[\nu_2(Z) = \frac{\mu(Z \cap B)}{\mu(B)} \]
Examples of unique ergodicity

Theorem (Farrell-Varadarajan)

If G is a countable group and (X, μ) is a standard Borel G-space with invariant ergodic probability measure μ, then there exists a G-invariant Borel subset $X_0 \subseteq X$ with $\mu(X_0) = 1$ such that the action on G on (X_0, μ) is uniquely ergodic.

Remark

In other words, every ergodic action is almost uniquely ergodic.
Corollary (Hjorth-Kechris)

Suppose that G is a countable group and that (X, μ) is a standard Borel G-space with invariant probability measure μ. If the action of G on (X, μ) is strongly mixing, then there exists a G-invariant Borel subset $X_0 \subseteq X$ with $\mu(X_0) = 1$ such that the action of every infinite f.g. subgroup of G on (X_0, μ) is uniquely ergodic.

Proof.

- If L is an infinite f.g. subgroup of G, then L acts ergodically on (X, μ).
- Hence there exists an L-invariant Borel subset $Y_L \subseteq X$ with $\mu(Y_L) = 0$ such that the action on L on $(X \setminus Y_L, \mu)$ is uniquely ergodic.
- Let $X_L = X \setminus G \cdot Y_L$. Then $X_0 = \bigcap_L X_L$ satisfies our requirements.
Adams’ theorem

Theorem (Adams)

There exist countable Borel equivalence relations $E \subseteq F$ such that E, F are incomparable with respect to Borel reducibility.

- From now on, let $S = SL_3(\mathbb{Z})$ and let T be a proper subgroup of finite index. For example, we could let T be the kernel of the homomorphism $\varphi : SL_3(\mathbb{Z}) \to SL_3(\mathbb{F}_7)$.
- Then T is also a Kazhdan group and so we can apply Popa’s Cocycle Superrigidity Theorem to the actions of both S and T on $((2)^S, \mu)$.
- Let $X \subseteq (2)^S$ be an S-invariant Borel subset with $\mu(X) = 1$ such that the action of every infinite f.g. subgroup of S on (X, μ) is uniquely ergodic.
- Let $E \subseteq F$ be the orbit equivalence relations corresponding to the free actions of $T \leq S$ on (X, μ).
To see that $F \not\leq_B E$

Applying Popa superrigidity, if $F \leq_B E$, then there exists a virtual embedding $\pi : S = SL_3(\mathbb{Z}) \to T$.

Hence the result follows from:

Lemma

Suppose that G is a (not necessarily proper) subgroup of finite index in $SL_3(\mathbb{Z})$. Then:

- G has no nontrivial finite normal subgroups.
- G doesn’t embed into any of its proper subgroups of finite index.
To see that $E \not\preceq_B F$

- Suppose that $f : X \to X$ is a Borel reduction from E to F.
- Then we can define a corresponding Borel cocycle
 $\alpha : T \times X \to S$ by

 $$\alpha(t, x) = \text{the unique } s \in S \text{ such that } s \cdot f(x) = f(t \cdot x).$$

- By Popa, after deleting a nullset and slightly adjusting f, we can suppose that $\alpha : T \to S$ is a group homomorphism.
- Since T has no finite normal subgroups, it follows that α is an embedding. Since $S \not\cong T$, it follows that $\alpha(T)$ is a proper subgroup of S.
- Since the actions of S, T on (X, μ) are free and
 $$\alpha(t) \cdot f(x) = f(t \cdot x) \quad \text{for } t \in T, x \in X,$$

 it follows that f is also an injection.
Adams’ trick

Thus we have an embedding \((T, X) \xrightarrow{\alpha, f} (S, X)\) of permutation groups and so we can define an \(\alpha(T)\)-invariant probability measure \(\nu = f_* \mu\) on \(X\) by \(\nu(A) = \mu(f^{-1}(A))\).

By unique ergodicity, we must have that \(\nu = \mu\) and hence \(\mu(f(X)) = 1\).

Let \(s \in S \setminus \alpha(T)\). We claim that \(f(X) \cap s \cdot f(X) = \emptyset\), which is a contradiction.

Suppose that \(f(x) = s \cdot f(y) \in f(X) \cap s \cdot f(X)\). Then \(f(x) \not\sim f(y)\) and so there exists \(t \in T\) such that \(x = t \cdot y\). Hence

\[
\alpha(t) \cdot f(y) = f(t \cdot y) = f(x) = s \cdot f(y)
\]

and so \(s^{-1} \alpha(t) \cdot f(y) = f(y)\), which contradicts the fact that \(S\) acts freely on \(X\).
A final application

Definition
An additive subgroup $G \leq \mathbb{Q}^n$ has rank n iff G contains n linearly independent elements.

Theorem
For each $n \geq 1$, the isomorphism relation on the space of torsion-free abelian groups of rank n is not countable universal.

A slightly embarrassing question
Is the isomorphism relation on the space of torsion-free abelian groups of finite rank countable universal?

Answer
Of course not! But why? By Popa Superrigidity.