Popa Superrigidity and Countable Borel Equivalence Relations I

Simon Thomas

Rutgers University

2nd - 6th October 2006
Standard Borel Spaces

Definition

A standard Borel space is a Polish space X equipped with its σ-algebra of Borel subsets.

Some Examples

- \mathbb{R}, $[0, 1]$, $2^\mathbb{N}$, \mathbb{Q}_p, ...
- If σ is a sentence of $L_{\omega_1\omega}$, then
 \[\text{Mod}(\sigma) = \{ \mathcal{M} = \langle \mathbb{N}, \cdots \rangle \mid \mathcal{M} \models \sigma \} \]
 is a standard Borel space.

Theorem (Kuratowski)

There exists a unique uncountable standard Borel space up to isomorphism.
Borel maps

Definition

Let X, Y be standard Borel spaces.

- Then the map $\varphi : X \to Y$ is Borel iff $\text{graph}(\varphi)$ is a Borel subset of $X \times Y$.
- Equivalently, $\varphi : X \to Y$ is Borel iff $\varphi^{-1}(B)$ is a Borel set for each Borel set $B \subseteq Y$.

Church’s Thesis for Real Mathematics

$\text{EXPLICIT} = \text{BOREL}$
Borel equivalence relations

Definition

Let X be a standard Borel space. Then a **Borel equivalence relation** on X is an equivalence relation $E \subseteq X^2$ which is a Borel subset of X^2.

Definition

Let G be a Polish group. Then a **standard Borel G-space** is a standard Borel space X equipped with a Borel action $(g, x) \mapsto g \cdot x$. The corresponding G-orbit equivalence relation is denoted by E_X^G.

Observation

If G is a countable (discrete) group and X is a standard Borel G-space, then E_X^G is a Borel equivalence relation.
Definition

Let E, F be Borel equivalence relations on the standard Borel spaces X, Y respectively.

- $E \leq_B F$ iff there exists a Borel map $f : X \to Y$ such that

 $$x E y \iff f(x) F f(y).$$

In this case, f is called a \textbf{Borel reduction} from E to F.

- $E \sim_B F$ iff both $E \leq_B F$ and $F \leq_B E$.

- $E <_B F$ iff both $E \leq_B F$ and $E \not\sim_B F$.

Definition

More generally, $f : X \to Y$ is a \textbf{Borel homomorphism} from E to F iff

$$x E y \implies f(x) F f(y).$$
Milestones

\[E_{K_\sigma} = \text{universal } K_\sigma \]

\[E_1 = \text{hypersmooth} \]

\[E_0 = \text{hyperfinite} \]

\[E_\infty = \text{universal countable} \]

\[\text{id}_\mathbb{R} = \text{smooth} \]

Countable Borel equivalence relations
Countable Borel equivalence relations

Definition

Let E be a Borel equivalence relation.

- E is **countable** iff every E-class is countable.
- E is **essentially countable** iff there exists a countable Borel equivalence relation F such that $E \sim_B F$.

Standard Example

Let G be a countable (discrete) group and let X be a standard Borel G-space. Then the corresponding orbit equivalence relation E^X_G is a countable Borel equivalence relation.

Theorem (Feldman-Moore)

If E is a countable Borel equivalence relation on the standard Borel space X, then there exists a countable group G and a Borel action of G on X such that $E = E^X_G$.
Some Examples

- Turing equivalence on $\mathcal{P}(\mathbb{N})$.
- The isomorphism relations for classes of countable structures which are "finitely generated" in some broad sense.
- An interesting theory due to Dougherty, Harrington, Hjorth, Kechris, Jackson, Louveau, ...
- Most basic questions remain open.
Countable Borel equivalence relations

Definition
The Borel equivalence relation E is smooth iff $E \leq_B \text{id}_{2^\mathbb{N}}$, where $2^\mathbb{N}$ is the space of infinite binary sequences.

Example
The isomorphism relation on the space of connected locally finite graphs with transitive automorphism groups.

$E_\infty = \text{universal}$

E_0

$id_{2^\mathbb{N}} = \text{smooth}$
Definition

E_0 is the equivalence relation of eventual equality on the space $2^\mathbb{N}$ of infinite binary sequences.

Theorem (DJK)

If E is countable Borel, then E can be realized by a Borel \mathbb{Z}-action iff $E \leq_B E_0$.

Theorem (Jackson-Gao)

If G is a countable abelian group and X is a standard Borel G-space, then $E^X_G \leq_B E_0$.

Simon Thomas (Rutgers University)

Luminy 2006

2nd - 6th October 2006
Countable Borel equivalence relations

Definition
A countable Borel equivalence relation E is *universal* iff $F \leq_B E$ for every countable Borel equivalence relation F.

Theorem (JKL)
The orbit equivalence relation E_∞ of the action of the free group \mathbb{F}_2 on its powerset $\mathcal{P}(\mathbb{F}_2)$ is countable universal.
Countable Borel equivalence relations

Theorem (Adams-Kechris 2000)

There exist 2^\aleph_0 many countable Borel equivalence relations up to Borel bireducibility.

$E_0 = \text{universal}$

Uncountably many relations

$id_{2^\mathbb{N}} = \text{smooth}$
Comparing orbit equivalence relations

Stating the obvious

If G, H are countable groups and X, Y are a standard Borel G-space, H-space respectively, then the following are equivalent:

- $E^X_G \leq B E^Y_H$.
- There exist a Borel map $f : X \rightarrow Y$ such that for all $a, b \in X$,
 $$G \cdot a = G \cdot b \iff H \cdot f(a) = H \cdot f(b).$$

The Fundamental Question

- Does the complexity of E^X_G reflect the structural complexity of the group G?
- To what extent does the data (X, E^X_G) “remember” G and its action on X?
An easy counterexample ...

- For each countable group G, consider the Borel action of G on $G \times [0, 1]$ defined by $g \cdot (h, r) = (gh, r)$.
- Then the Borel map $(h, r) \mapsto (1_G, r)$ selects a point in each G-orbit, and so the corresponding orbit equivalence relation is smooth.

Observation

If G acts freely on X and preserves a probability measure, then E^X_G isn’t smooth.

Definition

The Borel action of the countable group G on the standard Borel space X is free iff $g \cdot x \neq x$ for all $1 \neq g \in G$ and $x \in X$.

Simon Thomas (Rutgers University)
Luminy 2006
2nd - 6th October 2006
Theorem (Dougherty-Jackson-Kechris)

Let G be a countable group and let X be a standard Borel G-space. If X does not admit a G-invariant probability measure, then for every countable group $H \supseteq G$, there exists a Borel action of H on X such that $E^X_H = E^X_G$.

Theorem

If E is a countable aperiodic Borel equivalence relation, then E can be realised as the orbit equivalence relation of a faithful Borel action of uncountably many countable groups.

Definition

A countable Borel equivalence relation E is aperiodic iff every E-class is infinite.
Question

Let \(E \) be a nonsmooth countable Borel equivalence relation. Does there necessarily exist a countable group \(G \) with a free measure-preserving Borel action on a standard probability space \((X, \mu)\) such that \(E \sim_B E^X_G \)?

Theorem (Dougherty-Jackson-Kechris)

Suppose that \(E \) is a countable Borel equivalence relation on an uncountable standard Borel space. Then there exists a countable group \(G \) and a standard Borel \(G \)-space \(X \) such that:

- \(G \) preserves a nonatomic probability measure \(\mu \) on \(X \).
- \(E \sim_B E^X_G \).
Free actions

Definition

- The Borel action of the countable group G on the standard Borel space X is **free** iff $g \cdot x \neq x$ for all $1 \neq g \in G$ and $x \in X$. In this case, we say that X is a **free standard Borel G-space**.

- The countable Borel equivalence relation E on X is **free** iff there exists a countable group G with a free Borel action on X such that $E^X_G = E$.

- The countable Borel equivalence relation E is **essentially free** iff there exists a free countable Borel equivalence relation F such that $E \sim_B F$.

Question (Jackson-Kechris-Louveau)

Is every countable Borel equivalence relation essentially free?
Some closure properties

Theorem (Jackson-Kechris-Louveau)

Let E, F be countable Borel equivalence relations on the standard Borel spaces X, Y respectively.

- If $E \leq_B F$ and F is essentially free, then so is E.
- If $E \subseteq F$ and F is essentially free, then so is E.

Theorem

Let E be a countable Borel equivalence relation on the standard Borel space X. Then E is essentially free if E can be realised by a Borel action of:

- (Jackson-Kechris-Louveau) a f.g. group of polynomial growth.
- (Gao-Jackson) an arbitrary countable abelian group.
- (Thomas) a Tarski monster.
Bernoulli actions

- Let G be a countably infinite group and consider the shift action on $\mathcal{P}(G) = 2^G$.
- Then the usual product probability measure μ on 2^G is G-invariant and the free part of the action

$$\mathcal{P}^*(G) = (2)^G = \{ x \in 2^G \mid g \cdot x \neq x \text{ for all } 1 \neq g \in G \}$$

has μ-measure 1.
- Let E_G be the corresponding orbit equivalence relation on $(2)^G$.

Observation

If $G \leq H$, *then* $E_G \leq_B E_H$.

Proof.

The inclusion map $\mathcal{P}^*(G) \hookrightarrow \mathcal{P}^*(H)$ is a Borel reduction from E_G to E_H.

Simon Thomas (Rutgers University)
Luminy 2006
2nd - 6th October 2006
Homomorphisms

Definition

Let E be a countable Borel equivalence relation on the standard Borel space X with invariant probability measure μ.

Let F be a countable Borel equivalence relation on the standard Borel space Y.

Then the Borel homomorphism $f : X \rightarrow Y$ from E to F is said to be μ-trivial iff there exists a Borel subset $Z \subseteq X$ with $\mu(Z) = 1$ such that f maps Z into a single F-class.

Definition

If G, H are countable groups, then the group homomorphism $\pi : G \rightarrow H$ is a virtual embedding iff $|\ker \pi| < \infty$.
An easy consequence of Popa superrigidity

Theorem

- Let $G = SL_3(\mathbb{Z}) \times S$, where S is any countable group.
- Let H be any countable group and let Y be a free standard Borel H-space.

If there exists a μ-nontrivial Borel homomorphism from E_G to E_Y^H, then there exists a virtual embedding $\pi : G \to H$.

Remark

In particular, the conclusion holds if there exists a Borel subset $Z \subseteq (2)^G$ with $\mu(Z) = 1$ such that $E_G \upharpoonright Z \leq_B E_Y^H$.

Simon Thomas (Rutgers University) Luminy 2006 2nd - 6th October 2006
Theorem

If E is an essentially free countable Borel equivalence relation, then there exists a countable group G such that $E_G \not\preceq_B E$.

Corollary

The class of essentially free countable Borel equivalence relations does not admit a universal element. In particular, E_∞ is not essentially free.
We can suppose that $E = E^X_H$ is realised by a free Borel action on X of the countable group H.

Let L be a finitely generated group which does not embed into H.

Let $S = L \ast \mathbb{Z}$ and let $G = SL_3(\mathbb{Z}) \times S$.

Then G has no finite normal subgroups and so there does not exist a virtual embedding $\pi : G \to H$.

Hence $E_G \not\preceq_B E^X_H$.

Simon Thomas (Rutgers University)
Luminy 2006
2nd - 6th October 2006
A map of the world

Essentially Free

Turing Equivalence

E_0

E_∞
Uncountably many free countable Borel equivalence relations

Definition

- For each prime $p \in \mathbb{P}$, let $A_p = \bigoplus_{i=0}^{\infty} C_p$.
- For each subset $C \subseteq \mathbb{P}$, let
 $$G_C = SL_3(\mathbb{Z}) \times \bigoplus_{p \in C} A_p.$$

Theorem

If $C, D \subseteq \mathbb{P}$, then $E_{G_C} \leq_B E_{G_D}$ iff $C \subseteq D$.

Simon Thomas (Rutgers University)
Luminy 2006
2nd - 6th October 2006
Ergodicity

Definition

Let G be a countable group and let X be a standard Borel G-space. Then the G-invariant probability measure μ is said to be **ergodic** iff $\mu(A) = 0, 1$ for every G-invariant Borel subset $A \subseteq X$.

Example

Every countable group G acts ergodically on $((2)^G, \mu)$.

Theorem

If μ is a G-invariant probability measure on the standard Borel G-space X, then the following statements are equivalent.

- The action of G on (X, μ) is ergodic.
- If Y is a standard Borel space and $f : X \rightarrow Y$ is a G-invariant Borel function, then there exists a G-invariant Borel subset $M \subseteq X$ with $\mu(M) = 1$ such that $f \upharpoonright M$ is a constant function.
Towards uncountably many non-essentially free countable Borel equivalence relations

Definition

The countable groups G, H are **virtually isomorphic** iff there exist finite normal subgroups $N \trianglelefteq G$, $M \trianglelefteq H$ such that $G/N \cong H/M$.

Lemma

There exists a Borel family $\{S_x \mid x \in 2^\mathbb{N}\}$ of f.g. groups such that if $G_x = SL_3(\mathbb{Z}) \times S_x$, then the following conditions hold:

- If $x \neq y$, then G_x and G_y are not virtually isomorphic.
- If $x \neq y$, then G_x doesn’t virtually embed in G_y.

Definition

For each Borel subset $A \subseteq 2^\mathbb{N}$, let $E_A = \bigcup_{x \in A} E_{G_x}$.

Simon Thomas (Rutgers University)
Luminy 2006
2nd - 6th October 2006
Lemma

If the Borel subset $A \subseteq 2^\mathbb{N}$ is uncountable, then E_A is not essentially free.

Proof.

- Suppose that $E_A \leq_B E_H^Y$, where H is a countable group and Y is a free standard Borel H-space.
- Then for each $x \in A$, we have that $E_{G_x} \leq_B E_H^Y$ and so there exists a virtual embedding $\pi_x : G_x \to H$.
- Since A is uncountable, there exist $x \neq y \in A$ such that $\pi_x[G_x] = \pi_y[G_y]$.
- But then G_x, G_y are virtually isomorphic, which is a contradiction.
Uncountably many non-essentially free relations

Lemma

\[E_A \leq_B E_B \iff A \subseteq B. \]

Proof.

- Suppose that \(E_A \leq_B E_B \).
- Suppose also that \(A \nsubseteq B \) and that \(x \in A \setminus B \).
- Then there exists a Borel reduction from \(E_{G_x} \) to \(E_A \)

\[
f : (2)^{G_x} \to \bigsqcup_{y \in B} (2)^{G_y}.
\]

- By ergodicity, there exists \(\mu_x \)-measure 1 subset of \((2)^{G_x} \) which maps to a fixed \((2)^{G_y} \).
- This yields a \(\mu_x \)-nontrivial Borel homomorphism from \(E_{G_x} \) to \(E_{G_y} \) and so \(G_x \) virtually embeds into \(G_y \), which is a contradiction.