Open Colourings
and automorphisms of the Calkin algebra

Ilijas Farah

York University

Rutgers, October 2007
$\mathcal{B}(H)$: The algebra of all bounded operators on a complex Hilbert space H.

Adjoint, a^*:

$$(a^* \xi | \eta) = (\xi | a \eta)$$

$(\mathcal{B}(H), +, \cdot, *, \| \cdot \|)$ is a Banach algebra with involution.
The Calkin algebra

\[K(H) = \{ a \mid \{ a\xi \mid \|\xi\| \leq 1 \} \text{ is compact} \} = \{ a \mid \{ a\xi \mid \|\xi\| \leq 1 \} \text{ is compact} \} \]

\[C(H) = B(H)/K(H) \] is the Calkin algebra.

\[\pi : B(H) \rightarrow C(H) : \text{The quotient map.} \]
Fact

All automorphisms of $\mathcal{B}(H)$ are inner - i.e., represented as a conjugation by a unitary:

$$a \mapsto uau^*.$$
Automorphisms

Fact

All automorphisms of $\mathcal{B}(H)$ are inner - i.e., represented as a conjugation by a unitary:

$$a \mapsto uau^*.$$

An automorphism Φ of $\mathcal{P}(\mathbb{N})/\text{Fin}$ is *trivial* if it is represented by $f : \mathbb{N} \to \mathbb{N}$, so that

$$[X]_{\text{Fin}} \mapsto [f^{-1}[X]]_{\text{Fin}}.$$
An automorphism Φ of $\mathcal{P}(\mathbb{N})/\text{Fin}$ is *trivial* if it is represented by $f: \mathbb{N} \to \mathbb{N}$, so that

$$[X]_{\text{Fin}} \xrightarrow{\Phi} [f^{-1}[X]]_{\text{Fin}}.$$

Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/\text{Fin}$ has $2^{2^{\aleph_0}}$ (mostly nontrivial) automorphisms.
An automorphism Φ of $\mathcal{P}(\mathbb{N})/\text{Fin}$ is trivial if it is represented by $f : \mathbb{N} \to \mathbb{N}$, so that

$$[X]_{\text{Fin}} \mapsto [f^{-1}[X]]_{\text{Fin}}.$$

Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/\text{Fin}$ has $2^{2^\aleph_0}$ (mostly nontrivial) automorphisms.

Theorem (S. Shelah, 1979)

It is relatively consistent with ZFC that all automorphisms of $\mathcal{P}(\mathbb{N})/\text{Fin}$ are trivial.
If Ψ_1 and Ψ_2 are automorphisms of $\mathcal{P}(\mathbb{N})/\text{Fin}$, then so is $\Psi_1 \oplus \Psi_2$
(modulo a benign abuse of notation).
If Ψ_1 and Ψ_2 are automorphisms of $\mathcal{P}(\mathbb{N})/\text{Fin}$, then so is $\Psi_1 \oplus \Psi_2$ (modulo a benign abuse of notation).

An automorphism of $\mathcal{C}(H)$ is inner iff its restriction to $\mathcal{C}(H_0)$ for some (any) infinite-dimensional subspace H_0 of H is inner.
If Ψ_1 and Ψ_2 are automorphisms of $\mathcal{P}(\mathbb{N})/\text{Fin}$, then so is $\Psi_1 \oplus \Psi_2$ (modulo a benign abuse of notation).

An automorphism of $C(H)$ is inner iff its restriction to $C(H_0)$ for some (any) infinite-dimensional subspace H_0 of H is inner.
An automorphism of $C(H)$ is coded by its restriction to $C(H_0)$ to some (any) infinite-dimensional subspace H_0 and a real.
All nontrivial elements of $\mathcal{P}(\mathbb{N})/\text{Fin}$ belong to the same orbit of $\text{Aut}(\mathcal{P}(\mathbb{N})/\text{Fin})$.
All nontrivial elements of $\mathcal{P}(\mathbb{N})/\text{Fin}$ belong to the same orbit of $\text{Aut}(\mathcal{P}(\mathbb{N})/\text{Fin})$.

In $\mathcal{C}(H)$ there are 2^{\aleph_0} many orbits.
Club many countable subalgebras of $\mathcal{P}(\mathbb{N})/\text{Fin}$ are isomorphic to the countable atomless boolean algebra.
Club many countable subalgebras of $\mathcal{P}(\mathbb{N})/\text{Fin}$ are isomorphic to the countable atomless boolean algebra.

On finite-dimensional vector subspaces of $\mathcal{C}(\mathcal{H})$ one can define metric δ_{cb} - an operator space variant of the Banach–Mazur distance. This metric is an automorphism invariant.
Club many countable subalgebras of $\mathcal{P}(\mathbb{N})/\text{Fin}$ are isomorphic to the countable atomless boolean algebra.

On finite-dimensional vector subspaces of $\mathcal{C}(H)$ one can define metric δ_{cb} - an operator space variant of the Banach–Mazur distance. This metric is an automorphism invariant.

Theorem (Junge–Pisier, 1995)

1. δ_{cb} is separable on subspaces of any separable algebra.
2. δ_{cb} is nonseparable on three-dimensional subspaces of $\mathcal{C}(H)$.
Club many countable subalgebras of $\mathcal{P}(\mathbb{N})/\text{Fin}$ are isomorphic to the countable atomless boolean algebra.

On finite-dimensional vector subspaces of $\mathcal{C}(H)$ one can define metric δ_{cb} - an operator space variant of the Banach–Mazur distance. This metric is an automorphism invariant.

Theorem (Junge–Pisier, 1995)

1. δ_{cb} is separable on subspaces of any separable algebra.
2. δ_{cb} is nonseparable on three-dimensional subspaces of $\mathcal{C}(H)$.

Corollary (Phillips, 2000)

No separable subalgebra of $\mathcal{C}(H)$ realizes all 3-types.
Theorem (Phillips–Weaver, 2006)

CH implies there is an outer automorphism of the Calkin algebra.
Todorcevic’s OCA:
If $G = (V, E)$ is a graph such that $E = \bigcup_{n=0}^{\infty} U_n \times V_n$, then G is either countably chromatic or it has an uncountable clique.
Todorcevic’s OCA:
If $G = (V, E)$ is a graph such that $E = \bigcup_{n=0}^{\infty} U_n \times V_n$, then G is either countably chromatic or it has an uncountable clique.

Theorem (Farah, 2007)

Todorcevic’s OCA implies all automorphisms of $\mathcal{C}(H)$ are inner.
\((E_n)_{n \in \mathbb{N}}\): an orthogonal decomposition of \(H\) into finite-dimensional subspaces.

\[
\mathcal{D}[\tilde{E}] = \{ a \in \mathcal{B}(H) \mid a[E_n] \subseteq E_n \text{ for all } n \}
\]

\[
\mathcal{C}[\tilde{E}] = \mathcal{D}[\tilde{E}] / \mathcal{K}[\tilde{E}].
\]
Fix an automorphism Φ of $\mathcal{C}(H)$.

Lemma

*OCA implies that Φ is inner on each $\mathcal{C}[\vec{E}]$.***
Fix an automorphism Φ of $C(H)$.

Lemma

OCA implies that Φ is inner on each $C[\vec{E}]$.

Lemma

OCA implies that if Φ is inner on each $C[\vec{E}]$ then it is inner.
Fix an automorphism Φ of $\mathcal{C}(H)$.

Lemma

OCA implies that Φ is inner on each $\mathcal{C}[\vec{E}]$.

Lemma

OCA implies that if Φ is inner on each $\mathcal{C}[\vec{E}]$ then it is inner.

Proposition (Farah, Geschke)

$Assume b = \aleph_1$ and $2^{\aleph_1} > 2^{\aleph_0}$. Then there is an outer automorphism of $\mathcal{C}(H)$ that is inner on each $\mathcal{C}[\vec{E}]$.
Conjecture

PFA implies that all automorphisms of $C(H)$ for any complex Hilbert space H are inner.
Conjecture

PFA implies that all automorphisms of $C(H)$ for any complex Hilbert space H are inner.

Theorem (Veličković)

PFA implies all automorphisms of $P(\kappa)/\text{Fin}$ are trivial.
Open problems

Conjecture

PFA implies that all automorphisms of $\mathcal{C}(H)$ for any complex Hilbert space H are inner.

Theorem (Veličković)

PFA implies all automorphisms of $\mathcal{P}(\kappa)/\text{Fin}$ are trivial.

Question

Is it consistent with ZFC that there is an automorphism Φ of $\mathcal{C}(H)$ and $a \in \mathcal{C}(H)$ such that $\Phi(a) \neq uau^$ for all u?
Open problems

Conjecture

PFA implies that all automorphisms of $\mathcal{C}(H)$ for any complex Hilbert space H are inner.

Theorem (Veličković)

PFA implies all automorphisms of $\mathcal{P}(\kappa)/\text{Fin}$ are trivial.

Question

Is it consistent with ZFC that there is an automorphism Φ of $\mathcal{C}(H)$ and $a \in \mathcal{C}(H)$ such that $\Phi(a) \neq uau^*$ for all u?

Theorem (Brown–Douglas–Fillmore)

Not if $a = \pi(b)$ for a normal b. (b is normal if $bb^* = b^*b$.)
Conjecture

PFA implies that all automorphisms of $C(H)$ *for any complex Hilbert space* H *are inner.*

Theorem (Veličković)

PFA implies all automorphisms of $\mathcal{P}(\kappa)/\text{Fin}$ *are trivial.*

Question

Is it consistent with ZFC that there is an automorphism Φ *of* $C(H)$ *and* $a \in C(H)$ *such that* $\Phi(a) \neq uau^*$ *for all* u?

Theorem (Brown–Douglas–Fillmore)

Not if $a = \pi(b)$ *for a normal* b. (*b *is normal if* $bb^* = b^*b$.*)

Not known for a normal a.