HOMEWORK 7

Question 1. Let E_1 be an equivalence relation on the set A_1 and let E_2 be an equivalence relation on the set A_2 . Let R be the relation on the set $A_1 \times A_2$ defined by

 $(a_1, a_2) R (b_1, b_2)$ iff $a_1 E_1 b_1$ and $a_2 E_2 b_2$.

Prove that R is an equivalence relation on $A_1 \times A_2$.

Question 2. Let *R* be the relation on $\mathbb{N} \times \mathbb{N}$ defined by

(a,b) R(c,d) iff $a \le c$ or $b \le d$.

Determine whether R is a partial ordering of $\mathbb{N} \times \mathbb{N}$.

Question 3. Let | be the partial ordering of \mathbb{N} defined by a | b iff a is a (not necessarily proper) divisor of b. For each of the following statements, either give a proof or give a counterexample.

- (a) In the poset $(\mathbb{N}, |)$, each element has infinitely many immediate successors.
- (b) If $\emptyset \neq K \subseteq \mathbb{N}$, then K is bounded above iff K is a finite subset.