HOMEWORK 5

Question 1. Prove by induction that for all $n \in \mathbb{N}$,

$$
\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}
$$

Question 2. Consider the sequence defined recursively by

$$
\begin{aligned}
a_{1} & =2 \\
a_{n+1} & =7 a_{n}+9^{n}+5^{n}
\end{aligned}
$$

Prove by induction that for all $n \geq 1$,

$$
a_{n}=\frac{9^{n}-5^{n}}{2}
$$

Question 3. Consider the sequence defined recursively by

$$
\begin{aligned}
a_{1} & =1 \\
a_{2} & =3 \\
a_{n+2} & =3 a_{n+1}-2 a_{n}
\end{aligned}
$$

Prove by induction that for all $n \geq 1$,

$$
a_{n}=2^{n}-1
$$

Question 4. Consider the following 4×4 square grid from which one square has been removed:

1

Then it is easily checked that it can be covered without overlaps using L-shaped tiles of the following form:

Prove that for any $n \geq 1$, a $2^{n} \times 2^{n}$ square grid with any one square removed can be covered without overlaps using such L-shaped tiles.

