HOMEWORK 4

Question 1. Prove by induction that for all $n \in \mathbb{N}$,

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Question 2. Let $x \neq 1$ be a real number. Prove by induction that for all $n \in \mathbb{N}$,

$$
1+x+x^{2}+\cdots+x^{n-1}+x^{n}=\frac{x^{n+1}-1}{x-1}
$$

Question 3. Prove by induction that for all $n \geq 1$,

$$
\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)}=\frac{1}{3}-\frac{1}{n+3}
$$

Question 4. Suppose that A_{1}, \ldots, A_{n} is a list of sets such that for all i, j with $1 \leq i, j \leq n$, we have either $A_{i} \subseteq A_{j}$ or $A_{j} \subseteq A_{i}$. Prove that there exists an integer k with $1 \leq k \leq n$ such that $A_{k} \subseteq A_{i}$ for all i with $1 \leq i \leq n$. (Hint: Argue by induction on $n \geq 1$.)

