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Abstract. In this paper, we shall consider the complexity of the isomorphism

and quasi-isomorphism problems for the �nite rank Butler groups, as well as

the related question of the complexity of the classi�cation problem for repre-

sentations of �nite posets over various �elds.

1. Introduction

In 1937, Baer [3] introduced the notion of the type of an element in a torsion-free

abelian group and showed that this notion provided a complete invariant for the

classi�cation problem for torsion-free abelian groups of rank 1. Since then, despite

the e�orts of such mathematicians as Kurosh [17] and Malcev [18], no satisfactory

system of complete invariants has been found for the torsion-free abelian groups of

�nite rank n � 2. Consequently, it was natural to ask whether the classi�cation

problem for the higher rank groups was genuinely more diÆcult than that for the

rank 1 groups. In 1998, Hjorth [13] proved that this was indeed the case; and soon

afterwards, making essential use of the work of Adams-Kechris [1], Hjorth [13] and

Zimmer [22], Thomas [21] proved that the complexity of the classi�cation problem

for the torsion-free abelian groups of rank n increases strictly with the rank n.

Of course, abelian group theorists had long before reached the conclusion that the

classi�cation problem for the higher rank groups was hopelessly diÆcult and had

shifted their attention from the study of arbitrary �nite rank groups to various

restricted subclasses, where further progress could be made. In this paper, we shall

consider the complexity of the isomorphism and quasi-isomorphism problems for

the class of �nite rank Butler groups, which has been the main focus of recent

research in torsion-free abelian groups of �nite rank.
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De�nition 1.1. A �nite rank torsion-free abelian group A is said to be a Butler

group iff A can be expressed as the (not necessarily direct) sum

A = A1 + � � �+As

of �nitely many rank 1 subgroups A1; � � � ; As. (Equivalently, A can be expressed

as a sum of �nitely many pure rank 1 subgroups.)

Theorem 1.2. The isomorphism and quasi-isomorphism problems for the �nite

rank Butler groups are both hyper�nite.

This paper is organized as follows. In Section 2, we shall give a brief review

of the basic theory of Borel equivalence relations. In particular, we shall de�ne

the notion of a hyper�nite equivalence relation and present some examples which

arise naturally in the study of �nite rank torsion-free abelian groups. The proof of

Theorem 1.2 will be given in Section 3. Finally, in Section 4, we shall discuss the

problem of classifying the representations rep(S;K) of a �nite poset S over a �eld

K.

Acknowledgements: I would like to thank David Arnold and Alexander Kechris

for very helpful discussions concerning the material in this paper.

2. Hyperfinite equivalence relations

In this section, we shall give a brief review of some of the basic notions of the

theory of Borel equivalence relations, focussing on the class of hyper�nite equiva-

lence relations. (For more detailed accounts, see Hjorth-Kechris [14] and Jackson-

Kechris-Louveau [15].)

Let X be a standard Borel space; i.e. a Polish space equipped with its associated

�-algebra of Borel subsets. Then a Borel equivalence relation onX is an equivalence

relation E � X2 which is a Borel subset of X2. The Borel equivalence relation E

is said to be countable iff every E-equivalence class is countable. If E, F are

Borel equivalence relations on the standard Borel spaces X , Y respectively, then

we say that E is Borel reducible to F and write E �B F if there exists a Borel map

f : X ! Y such that xE y iff f(x)F f(y). Such a map f is called a Borel reduction

from E to F . We say that E and F are Borel bireducible and write E �B F if

both E �B F and F �B E. Finally we write E <B F if both E �B F and

F �B E. All of the Borel equivalence relations that we shall consider in this paper
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arise from group actions as follows. Let G be a locally compact second countable

group. Then a standard Borel G-space is a standard Borel space X equipped with

a Borel action (g; x) 7! g � x of G on X . The corresponding G-orbit equivalence

relation on X , which we shall denote by EX
G , is a Borel equivalence relation. In

fact, by Kechris [16], EX
G is Borel bireducible with a countable Borel equivalence

relation. Conversely, by Feldman-Moore [9], if E is an arbitrary countable Borel

equivalence relation on the standard Borel space X , then there exists a countable

group G and a Borel action of G on X such that E = EX
G .

Example 2.1. Let n � 1 and let Qn be the canonical n-dimensional vector space

over Q. Then

R(Qn ) = fA 6 Qn j A contains n linearly independent elementsg

is a standard Borel space. Note that the natural action of GLn(Q) on the vector

space Qn induces a Borel action on the space R(Qn ) of rank n groups; and that if

A, B 2 R(Qn ), then A, B are isomorphic iff there exists an element ' 2 GLn(Q)

such that '(A) = B. It follows that the isomorphism relation �=n on R(Qn ) is a

countable Borel equivalence relation. Combining Hjorth [13] and Thomas [21], we

have that

(�=1) <B (�=2) <B � � � <B (�=n) <B � � �

In other words, with respect to Borel reducibility, the complexity of the classi�cation

problem for the torsion-free abelian groups of rank n increases strictly with the rank

n.

The least complex Borel equivalence relations are those which are smooth; i.e.

those Borel equivalence relations E on a standard Borel space X for which there

exists a Borel map f : X ! Y into a standard Borel space Y such that

x E y iff f(x) = f(y):

By Burgess [5], if E = EX
G is the orbit equivalence relation of a Borel action of a

Polish group G, then E is smooth iff there exists a Borel selector for E; i.e. a Borel

map s : X ! X which selects a �xed element from each E-class.
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Next in complexity come those Borel equivalence relations E which are Borel

bireducible with the Vitali equivalence relation E0 de�ned on 2N by

x E0 y iff x(n) = y(n) for all but �nitely many n:

More precisely, by Harrington-Kechris-Louveau [12], if E is a Borel equivalence

relation, then E is nonsmooth iff E0 �B E. Furthermore, by Dougherty-Jackson-

Kechris [8], if E is a countable Borel equivalence relation on a standard Borel space

X , then the following are equivalent:

(1) E �B E0.

(2) E is hyper�nite; i.e. there exists an increasing sequence

F0 � F1 � � � � � Fn � � � �

of �nite Borel equivalence relations on X such that E =
S
n2N Fn. (Here

an equivalence relation F is said to be �nite iff every F -equivalence class

is �nite.)

Example 2.2. Let P be the set of primes. Recall that if A is a torsion-free abelian

group and 0 6= a 2 A, then the characteristic �(a) of a is de�ned to be the sequence

hha(p) j p 2 Pi 2 (N [ f1g)P;

where ha(p) is the p-height of a. Two characteristics �1, �2 2 (N [ f1g)P are

said to belong to the same type, written �1 � �2, iff the following conditions are

satis�ed:

� �1(p) = �2(p) for all but �nitely many primes p; and

� �1(p) =1 iff �2(p) =1 for all primes p.

It is easily checked that � is a countable Borel equivalence relation on the standard

Borel space (N [ f1g)P and that ��B E0. If 0 6= a 2 A, then the type �(a) of

a is de�ned to be the corresponding �-equivalence class [�(a) ]. If A 2 R(Q) is a

rank 1 group, then it is easily checked that �(a) = �(b) for all 0 6= a, b 2 A. Hence,

in this case, we can de�ne the type �(A) of A to be �(a), where a is any nonzero

element of A. By Baer [3], if A, B 2 R(Q), then A �= B iff �(A) = �(B). It follows

that the isomorphism problem for the rank 1 groups is hyper�nite.

Example 2.3. Let n � 1. If A, B 2 R(Qn ), then A and B are said to be quasi-

equal , written A � B, iff A \ B has �nite index in both A and B. It is easily
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checked that � is a countable Borel equivalence relation on R(Qn ). (For example,

see Thomas [21, Lemma 3.2].) By Thomas [21, Theorem 3.8], the quasi-equality

relation � on R(Qn ) is hyper�nite. Once again, this result is proved by �nding a

suitable complete invariant as follows. For each prime p 2 P, let Zp be the ring

of p-adic integers and let Z(p) = Zp \ Q. Regard Qn as an additive subgroup of

the n-dimensional vector space Qnp over the �eld Qp of p-adic numbers. For each

A 2 R(Qn ), let

Ap = Z(p)�A 6 Qn and bAp = Zp
 A 6 Qnp :

By Fuchs [11, Lemma 93.3], there exists a decomposition

bAp = Vp(A)�Mp(A);

where Vp(A) is a Qp -subspace of Qnp and Mp(A) is a free Zp-module. By Thomas

[21, Section 4], A, B 2 R(Qn ), then A and B are quasi-equal iff the following

conditions are satis�ed:

� Ap = Bp for all but �nitely many primes p; and

� Vp(A) = Vp(B) for all primes p.

At this point, it should be fairly clear that this data can be encoded within the Vitali

equivalence relation E0 and hence that the quasi-equality relation � is hyper�nite.

For more details, see Thomas [21, Section 4].

The collection of hyper�nite countable Borel equivalence relations has (amongst

others) the following basic closure properties, all of which will be needed in the

proof of Theorem 1.2. (We have chosen N+ as the index set because we wish to

reserve the symbol E0 for the Vitali equivalence relation.)

Theorem 2.4 (Jackson-Kechris-Louveau [15]). Let E, F and Ei for i 2 N+ be

countable Borel equivalence relations on the standard Borel spaces X, Y and Xi

respectively.

(a) If X = Y , E � F and F is hyper�nite, then E is also hyper�nite.

(b) If E �B F and F is hyper�nite, then E is also hyper�nite.

(c) If Ei is hyper�nite for each i 2 N+ , then the relation
F
i Ei, de�ned onF

iXi =
S
iXi � fig by

(x; i)
G
i

Ei (y; j) iff i = j and x Ei y;
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is also hyper�nite.

(d) If E1; � � � ; En are hyper�nite, then the relation E1 � � � � � En, de�ned on

X1 � � � � �Xn by

(x1; � � �xn)E1 � � � � �En (y1; � � � yn) iff xi Ei yi for all 1 � i � n;

is also hyper�nite.

(e) If X = Y , E � F , E is hyper�nite and every F -equivalence class contains

only �nitely many E-equivalence classes, then F is also hyper�nite.

3. The proof of Theorem 1.2

In this section, we shall present the proof of Theorem 1.2. By Theorem 2.4(c),

it is enough to show that for each n � 1, the isomorphism and quasi-isomorphism

relations on

B(Qn ) = fA 2 R(Qn ) j A is a Butler group g

are both hyper�nite. Fix some n � 1 and let �= and � denote the isomorphism

and quasi-isomorphism relations on B(Qn ). (Recall that if A, B 2 R(Qn ), then

A, B are quasi-isomorphic iff there exists ' 2 GLn(Q) such that '(A), '(A) are

quasi-equal.) Then �= and � are countable Borel equivalence relations on B(Qn )

and clearly �=�� . Hence, by Theorem 2.4(a), it is enough to �nd a hyper�nite

countable Borel equivalence relation E on B(Qn ) such that �� E.

For each A 2 R(Qn ), let T (A) = f�(a) j 0 6= a 2 Ag be the typeset of A. Clearly

if C, D are rank 1 groups, then

C � D iff C �= D iff �(C) = �(D):

It follows that if A, B 2 R(Qn ) and A � B, then T (A) = T (B). Hence it is enough

to show that the equivalence relation E de�ned on B(Qn ) by

AE B iff T (A) = T (B)

is a hyper�nite countable Borel equivalence relation.

Lemma 3.1 (Butler [6]). For each A 2 B(Qn ), the typeset T (A) is �nite.

Proof. By Butler [6, Proposition 3], if A is a �nite rank Butler group, then A is a

pure subgroup of a completely decomposable torsion-free abelian group B of �nite
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rank. It is easily checked that T (B) is �nite; and since A is a pure subgroup of B,

it follows that T (A) � T (B). �

The next result is implicitly contained in Butler [7]. The following proof is based

upon the account in Arnold [2, Theorem 3.3.2]. (Recall that the set of types forms

a distributive lattice under the partial ordering de�ned by: � � � iff there exist

characteristics  2 �, � 2 � such that  (p) � �(p) for all primes p 2 P.)

Lemma 3.2. If T is a �nite set of types, then there exist at most countably many

groups A 2 B(Qn ) such that T (A) = T .

Proof. For each A 2 B(Qn ) and type � 2 T (A), the �-socle of A is the pure

subgroup de�ned by

A(�) = fa 2 A j �(a) � �g [ f0g:

Let QA(�) be the Q-vector subspace of Qn generated by A(�). Clearly there are

only countably many possibilities for QA(�). Hence the lemma is an immediate

consequence of the following claim, together with the fact that the quasi-equality

relation � is a countable Borel equivalence relation on B(Qn ).

Claim 3.3. Suppose that A, B 2 B(Qn ) satisfy the following conditions:

(i) T (A) = T (B) = T ; and

(ii) QA(�) = QB(�) for all � 2 T .

Then A and B are quasi-equal.

To see this, express A = A1 + � � � + As as a sum of �nitely many pure rank 1

subgroups. For each 1 � i � s, let �i = �(Ai) 2 T . Since Ai 6 QA(�i ) = QB(�i ),

there exists an integer mi � 1 such that miAi 6 B(�i). Hence if m = m1 � � �ms,

then mA 6 B. Similarly, there exists an integer m0 � 1 such that m0B 6 A and so

A, B are quasi-equal. �

Combining Lemmas 3.1 and 3.2, it follows that E is a countable Borel equivalence

relation on B(Qn ).

Lemma 3.4. E is hyper�nite.

Proof. By Theorem 2.4(c), it is enough to show that E � Bk(Qn ) is hyper�nite for

each k � 1, where Bk(Qn ) = fA 2 B(Qn ) j jT (A)j = kg. From now on, �x some
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k � 1. Let X = (N [ f1g)P be the space of characteristics and for each � 2 X , let

[�] be the corresponding type. Then there exists a Borel map f : Bk(Qn )! Xk,

A 7! (�1(A); � � � ; �k(A) );

such that T (A) = f [�1(A)]; � � � ; [�k(A)] g for each A 2 Bk(Qn ). Clearly f is a Borel

reduction from E to the countable Borel equivalence relation F on Xk de�ned by

(�1; � � � ; �k ) F ( �1; � � � ; �k ) iff f [�1]; � � � ; [�k] g = f [�1]; � � � ; [�k] g:

Hence, by Theorem 2.4(b), it is enough to show that F is hyper�nite. To see this,

note that Theorem 2.4(d) implies that the countable Borel equivalence relation F0,

de�ned on Xk by

(�1; � � � ; �k ) F0 ( �1; � � � ; �k ) iff ( [�1]; � � � ; [�k] ) = ( [�1]; � � � ; [�k] );

is hyper�nite. Hence, by Theorem 2.4(e), since each F -equivalence class is the union

of �nitely many F0-equivalence classes, it follows that F is also hyper�nite. �

This completes the proof of Theorem 1.2.

4. Representations of posets over fields

Unfortunately, the proof of Theorem 1.2 provides absolutely no new insights

into the isomorphism and quasi-isomorphism problems for the �nite rank Butler

groups. To understand why this is the case, notice that the key step in the proof is

Lemma 3.2, which allows us to shift our focus from the quasi-isomorphism relation

to the much simpler relation of equality of typesets. As the experts in the �eld will

immediately recognize, the gap between these two equivalence relations is precisely

the classi�cation problem for Q-representations of �nite posets. (For example, see

Arnold [2, Section 3.3].) And since each �nite poset has only countably many Q-

representations, the theory of Borel equivalence relations has nothing to say on this

classi�cation problem. This is particularly disappointing since, by Nazarova [19],

most �nite posets have wild representation type; and a number of mathematicians

have asked whether the theory of Borel equivalence relations yields a nontrivial

hierarchy within the class of wild representation types. In the remainder of this

section, in order to partially address this question, we shall consider the complexity

of the classi�cation problems for representations of �nite posets over local �elds
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of characteristic 0; i.e. over the real numbers R , the complex numbers C and the

�nite extensions of the �elds Qp of p-adic numbers.

We shall begin by recalling some basic de�nitions. Let F be a �eld and let S be

a �nite poset. Then rep(S; F ) is the category with objects

U = (U0; Us j s 2 S );

where U0 is a �nite dimensional F -vector space and (Us j s 2 S ) is a collection of

subspaces of U0 such that

if s � t, then Us � Ut,

together with the obvious morphisms. In particular, two representations U =

(U0; Us j s 2 S ) and U 0 = (U 0

0; U
0

s j s 2 S ) are isomorphic iff there exists a

vector space isomorphism ' : U0 ! U 0

0 such that '(Us) = U 0

0 for all s 2 S.

Suppose now that K is a local �eld of characteristic 0. Then, by restricting our

attention to those representations U = (U0; Us j s 2 S ) such that U0 = Kn for

some n � 1, we can regard rep(S;K) as a standard Borel space.

Theorem 4.1. Let K be a local �eld of characteristic 0 and let S be a �nite poset.

Then the classi�cation problem for rep(S;K) is smooth.

Proof. Let S be a �nite poset and let K be a local �eld. In [4, Section 3], Beliskii-

Sergeichuk present an explicit reduction of the classi�cation problem for rep(S;K)

to the problem of classifying pairs of square matrices up to simultaneous similarity

over K (for arbitrary �elds K, not just for local �elds). It is easily checked that

the Beliskii-Sergeichuk reduction de�nes a Borel map between the corresponding

standard Borel spaces. Thus it is enough to show that for each n � 1, the problem

of classifying pairs of n�n matrices up to simultaneous similarity overK is smooth.

To see this, �x some n � 1 and let Pn be the standard Borel space of ordered

pairs (M;N) of n�n matrices. Regard Pn as aK-variety and consider the algebraic

action of GLn(K) on Pn de�ned by

g � (M;N) = (gMg�1; gNg�1):

Then clearly (M;N), (M 0; N 0) 2 Pn are simultaneously similar over K iff these

pairs of matrices lie in the same GLn(K)-orbit. By Zimmer [22, Theorem 3.1.3],

every GLn(K)-orbit on Pn is locally closed in the Hausdor� topology. Hence, by
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Zimmer [22, Proposition 2.1.12], the orbit equivalence relation of GLn(K) on Pn is

smooth. �

Theorem 4.1 implies that if K is a local �eld of characteristic 0 and S is a �nite

poset , then the classi�cation problem for rep(S;K) admits complete invariants in

a suitably chosen standard Borel space. However, the proof gives no indication

of how to actually compute such invariants. This problem has been solved in the

case when K = C by Sergeichuk [20], who presented an algorithm for reducing

the matrix associated with a C -representation of a �nite poset S to a canonical

form. (A full system of invariants for pairs of complex matrices up to simultaneous

similarity was obtained earlier by Friedland [11], making use of the basic notions

of algebraic geometry.)

5. Concluding remarks

If E, F are Borel equivalence relations on the standard Borel spaces X , Y and

E �B F , then this relationship is often interpreted informally as meaning that the

E-classi�cation problem is less complicated than the F -classi�cation problem (or

that these problems are equally complicated if E �B F .) But while this interpre-

tation is intuitively convincing in many cases, such as the classi�cation problems

for the torsion-free abelian groups of di�erent �nite ranks, it clearly breaks down

for the classi�cation problems considered in this paper. For example, let S be any

�nite poset such that the isomorphism relation �=S on rep(S; C ) is wild and let �=1

be the isomorphism relation on the space R(Q) of torsion-free abelian groups of

rank 1. Then, combining Example 2.2 and Theorem 4.1, it follows that �=S <B
�=1.

However, every abelian group theorist would agree that:

� Baer's classi�cation of the rank 1 groups is the prototypical example of a

satisfactory classi�cation by invariants; while

� wild classi�cation problems are much too complicated to admit a satisfac-

tory classi�cation by invariants.

Of course, the root of this apparent paradox lies in our use of vague terms such

as \complicated" and \satisfactory". In rigorous mathematical terms, the theory

of Borel equivalence relations is best understood as a study of the structure of

the possible invariants for various classi�cation problems (X;E) ; or, equivalently,



FINITE RANK BUTLER GROUPS 11

a study of the structure of the corresponding quotient spaces X=E. And this

interpretation of the relationship �=S <B
�=1 is entirely unproblematic:

� The quotient space rep(S; C )= �=S is a standard Borel space; and there exists

an algorithm for reducing the matrix associated with each C -representation

of S to a canonical form.

� The quotient space R(Q)= �=1 is not a standard Borel space; and it is

impossible to de�ne canonical forms within R(Q).
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