HOMEWORK 1

Question 1. Suppose that $n \geq 5$ and that
\[H = \{ \pi \in \text{Sym}(n) \mid \pi([1, 2]) = \{1, 2\} \}. \]

Prove that H is a maximal subgroup of $\text{Sym}(n)$.

In particular, $\text{Sym}(5)$ has a maximal subgroup of index 10.

Question 2. Suppose that the field F is an algebraic extension of the field K.

Prove that if R is a subring of F such that $K \subseteq R \subseteq F$, then R is a field.

Question 3. Let \mathbb{Q}^{alg} be the algebraic closure of \mathbb{Q}.

(a) Prove that $[\mathbb{Q}^{alg} : \mathbb{Q}] = \aleph_0$.

(b) Prove that $|\text{Aut}(\mathbb{Q}^{alg})| = 2^{\aleph_0}$.