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Abstract. We present some applications of Popa’s Superrigidity Theorem to

the theory of countable Borel equivalence relations. In particular, we show

that the universal countable Borel equivalence relation E∞ is not essentially

free.

1. Introduction

Let X be a standard Borel space; i.e. a Polish space equipped with its associated

σ-algebra of Borel subsets. Then a Borel equivalence relation E on X is said to

be countable iff every E-class is countable. For example, suppose that G is a

countable group and that X is a standard Borel G-space; i.e. there exists a Borel

action (g, x) 7→ g ·x of G on X. Then the corresponding G-orbit equivalence relation

EX
G is a countable Borel equivalence relation. Conversely, by a remarkable result

of Feldman-Moore [7], if E is an arbitrary countable Borel equivalence relation on

the standard Borel space X, then there exists a countable group G and a Borel

action of G on X such that E = EX
G . However, it should be pointed out that the

group G cannot be canonically recovered from E; and it is usually very difficult to

determine whether two given Borel actions of a pair G, H of countable groups give

rise to Borel bireducible orbit equivalence relations. Consequently, the fundamental

question in the study of countable Borel equivalence relations concerns the extent

to which the data (X,EX
G ) determines the group G and its action on X. In order

for there to be any chance of recovering G from this data, it is necessary to assume

the following extra hypotheses:

(i) G acts freely on X; i.e. g · x 6= x for all 1 6= g ∈ G and x ∈ X.
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(ii) There exists a G-invariant probability measure µ on X.

For example, by Dougherty-Jackson-Kechris [5], if (i) holds and (ii) fails, then for

any countable group H ⊇ G, there exists a free Borel action of H on X such

that EX
H = EX

G . On the other hand, by Miller [21], if E is an aperiodic countable

Borel equivalence relation on the standard Borel space X, then there exist 2ℵ0

nonisomorphic countable groups G such that E = EX
G for some everywhere faithful

Borel action. Here a countable Borel equivalence relation E is said to be aperiodic

iff every E-class is infinite; and a G-action is said to be everywhere faithful iff G

acts faithfully on every orbit.

Of course, this raises the question of whether an arbitary countable Borel equiv-

alence relation is Borel bireducible with an orbit equivalence EX
G arising from an

action which satisfies conditions (i) and (ii). It is easily seen that if E is any count-

able Borel equivalence relation on an uncountable standard Borel space, then there

exists a countable group G and a standard Borel G-space X such that G preserves

a nonatomic probability measure µ on X and E ∼B EX
G . But it remained unclear

whether every countable Borel equivalence relation was essentially free.

Definition 1.1. Let E be a countable Borel equivalence relation on the standard

Borel space X.

(i) E is said to be free iff there exists a countable group G with a free Borel

action on X such that EX
G = E.

(ii) E is said to be essentially free iff there exists a free countable Borel equiv-

alence relation F such that E ∼B F .

The collection of essentially free countable Borel equivalence relations satisfies

the following closure properties.

Theorem 1.2 (Jackson-Kechris-Louveau [14]). Suppose that E, F , En, n ∈ N, are

countable Borel equivalence relations.

(a) If E ≤B F and F is essentially free, then E is also essentially free.

(b) If E ⊆ F and F is essentially free, then E is also essentially free.

(c) If En, n ∈ N, are essentially free, then
⊔

n∈N En is also essentially free.

In particular, the question of whether every countable Borel equivalence relation

is essentially free is equivalent to the question of whether the universal countable
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Borel equivalence relation E∞ is essentially free. This question is answered by the

following result, which will be proved in Section 3. (As we shall see, Theorem 1.3

is an easy consequence of Popa’s Cocyle Superrigidity Theorem [30].)

Theorem 1.3. E∞ is not essentially free.

This paper is organized as follows. In Section 2, we shall recall some basic

notions from the theory of countable Borel equivalence relations and ergodic theory.

In Section 3, we shall state an easily applicable consequence of Popa’s Cocycle

Superrigidity Theorem which does not explicitly mention Borel cocyles. Using

this result, we shall first prove that E∞ is not essentially free; and then we shall

give straightforward proofs that there exist both uncountably many free and also

uncountably many non-essentially free countable Borel equivalence relations up to

Borel bireducibility. Unfortunately the results of Section 3 do not provide any

examples of “naturally occurring” non-essentially free countable Borel equivalence

relations E such that E �B E∞ and it remains an open problem to find an example

of such an equivalence relation. In Section 4, we shall point out a potential source of

such examples; namely, the weakly universal countable Borel equivalence relations.

In Section 5, after a brief discussion of the notion of a Borel cocycle, we shall

state Popa’s Cocycle Superrigidity Theorem and then prove the easily applicable

consequence of Section 3. Section 5 also includes a simple (modulo Popa’s Theorem)

proof of Adams’ Theorem [1] that there exist countable Borel equivalence relations

E ⊆ F such that E, F are incomparable with respect to Borel reducibility. In

Section 6, we shall prove that the isomorphism relation on the space of torsion-free

abelian groups of finite rank is not countable universal. (Recall that in Thomas

[36], it was shown that for each fixed n ≥ 1, the isomorphism relation on the

space of torsion-free abelian groups of rank n is not countable universal. However,

the corresponding problem for the space of groups of finite rank remained open.)

Finally, in Section 7, we shall study the orbit equivalence relations arising from the

(not necessarily free) Borel actions of quasi-finite groups. In particular, we show

that no such countable Borel equivalence relation is universal. The section also

includes the proof of a technical group theoretic result that is needed in Section 3.

We have also taken the opportunity throughout the paper to point out some of the

many fundamental open problems which still remain in this area.
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2. Preliminaries

In this section, we shall recall some basic notions from the theory of countable

Borel equivalence relations and ergodic theory.

2.1. Borel equivalence relations. For any unexplained notions or notation, see

Jackson-Kechris-Louveau [14] or Hjorth-Kechris [12]. Here we shall only mention a

few notions which some readers might be unfamilar with.

Let E, F be countable Borel equivalence relations on the standard Borel spaces

X, Y respectively. Then a Borel map f : X → Y is said to be a homomorphism

from E to F iff for all x, y ∈ X,

x E y implies f(x) F f(y).

If f satisfies the stronger property that for all x, y ∈ X,

x E y iff f(x) F f(y),

then f is said to be a Borel reduction and we write E ≤B F . If both E ≤B F

and F ≤B E, then we write E ∼B F and say that E, F are Borel bireducible. In

this case, there exists a Borel bireduction f : X → Y from E to F ; i.e. a Borel

reduction such that ran f ∩ [y]F 6= ∅ for all y ∈ Y .

Let X, A be standard Borel spaces and suppose that {Ez | z ∈ A} is a family

of countable Borel equivalence relations on X such that the relation R ⊆ X2 × A,

defined by

(x, x′, z) ∈ R iff x Ez x
′,

is Borel. Then the corresponding smooth disjoint union is the countable Borel

equivalence relation EA =
⊔

z∈AEz defined on X ×A =
⊔

z∈AX × {z} by

(x, z) EA (x′, z′) iff z = z′ and x Ez x
′.

If A = {1, 2, · · · , n}, then we often write E1 ⊕ · · · ⊕ En instead of E1 t · · · t En.

In Sections 3 and 7, we shall refer to a Borel family {Sx | x ∈ 2N} of finitely

generated groups. By this, we mean the image of a Borel injection of the Cantor
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space 2N into the standard Borel space G of finitely generated groups. Of course,

this means that {Sx | x ∈ 2N} is a Borel subset of G and hence is also a standard

Borel space.

2.2. Ergodic theory. Let G be a countably infinite group and let X be a standard

Borel G-space. Throughout this paper, a probability measure on X will always

mean a Borel probability measure; i.e. a measure which is defined on the collection

of Borel subsets of X. The probability measure µ on X is G-invariant iff µ(g(A)) =

µ(A) for every g ∈ G and Borel subset A ⊆ X. If µ is G-invariant, then the action

of G on (X,µ) is said to be ergodic iff for every G-invariant Borel subset A ⊆ X,

either µ(A) = 0 or µ(A) = 1. In this case, we shall also say that µ is an ergodic

probability measure. The following characterization of ergodicity is well-known.

Theorem 2.1. If µ is a G-invariant probability measure on the standard Borel

G-space X, then the following statements are equivalent.

(i) The action of G on (X,µ) is ergodic.

(ii) If Y is a standard Borel space and f : X → Y is a G-invariant Borel map,

then there exists a Borel subset M ⊆ X with µ(M) = 1 such that f � M is

a constant map.

In this paper, we shall make use of two strong forms of ergodicity; namely, unique

ergodicity and strong mixing.

The action of G on X is said to be uniquely ergodic iff there exists a unique

G-invariant probability measure µ on X. In this case, it is well-known that µ must

be ergodic. (For example, see Bekka-Mayer [4, Section I.3].)

If G is a countably infinite group and X is a standard Borel G-space with a

G-invariant probability measure µ, then the action of G on (X,µ) is said to be

strongly mixing iff for any two Borel subsets A, B ⊆ X, if 〈gn | n ≥ 0〉 is a sequence

of distinct elements of G, then

lim
n→∞

µ(gn(A) ∩B) = µ(A)µ(B).

A mixing action is necessarily ergodic. To see this, suppose that A is a G-invariant

Borel subset of X. Then g(A) ∩ A = A for all g ∈ G. Hence if 〈gn | n ≥ 0〉 is a
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sequence of distinct elements of G, then

µ(A) = lim
n→∞

µ(A) = lim
n→∞

µ(gn(A) ∩A) = µ(A)µ(A)

and so µ(A) = 0, 1. Notice that if the action of G on (X,µ) is strongly mixing and

H is an infinite subgroup of G, then the action of H is also strongly mixing and

hence H acts ergodically on (X,µ).

Finally suppose that E is a countable Borel equivalence relation on the standard

Borel space X and that µ is a probability measure on X. Then µ is said to be

E-invariant iff µ is G-invariant for some (equivalently every) countable group G

with a Borel action on X such that E = EX
G .

3. Non-essentially free countable Borel equivalence relations

In this section, using Popa’s Cocycle Superrigidity Theorem [30], we shall prove

that the universal countable Borel equivalence relation E∞ is not essentially free.

Then we shall give a simple (modulo Popa’s Theorem) proof of the Adams-Kechris

Theorem [2] that there are uncountably many free countable Borel equivalence

relations up to Borel bireducibility. Finally we shall prove that there are also

uncountably many non-essentially free countable Borel equivalence relations up to

Borel bireducibility. The actual statement of Popa’s Cocycle Superrigidity Theorem

will not be given until Section 5. In this section, we shall instead work with an

easily applicable consequence of Popa’s Cocycle Superrigidity Theorem which does

not explicitly mention Borel cocycles. We shall begin by recalling some of the basic

properties of the shift action.

Definition 3.1. Let G be a countably infinite group and consider the shift action

on 2G. Then the usual product probability measure µ on 2G is G-invariant and the

free part of the action

(2)G = {x ∈ 2G | g · x 6= x for all 1 6= g ∈ G}

has µ-measure 1. Let EG be the corresponding orbit equivalence relation on (2)G.

The following result is well-known. (For example, a proof can be found in either

Hjorth-Kechris [12, Proposition A6.1] or Bekka-Mayer [4, Example I.2.8(ii)].)

Lemma 3.2. The shift action of G on ((2)G, µ) is strongly mixing.
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In particular, it follows that G acts ergodically on ((2)G, µ).

Observation 3.3. If G embeds into H, then EG ≤B EH .

Proof. To simplify notation, suppose that G 6 H. For each f ∈ (2)G, define a

corresponding element f∗ ∈ 2H by

f∗(h) =

f(h), if h ∈ G;

0, otherwise.

Then it is easily checked that f∗ ∈ (2)H and that the map f 7→ f∗ is a Borel

reduction from EG to EH . �

Of course, the converse is not true in general. For example, EZ⊕Z ≤B EZ,

but Z ⊕ Z certainly does not embed into Z. However, as we shall soon explain,

Popa’s Cocycle Superrigidity Theorem implies that the converse holds if suitable

hypotheses are imposed upon the group G. But first we need to introduce two more

definitions.

Definition 3.4. Suppose that E, F are countable Borel equivalence relations on

the standard Borel spaces X, Y and that µ is an E-invariant probability measure

on X. Then:

(a) The Borel homomorphism f : X → Y from E to F is said to be µ-trivial

iff there exists a Borel subset Z ⊆ X with µ(Z) = 1 such that f maps Z

into a single F -class. Otherwise, f is said to be µ-nontrivial .

(b) E is said to be F -ergodic iff every Borel homomorphism from E to F is

µ-trivial.

Definition 3.5. If G, H are groups, then the group homomorphism π : G→ H is

a virtual embedding iff the kernel kerπ is finite.

The following result, which we will prove in Section 5, is a simple consequence of

Popa’s Cocycle Superrigidity Theorem. The remainder of this section will consist of

a number of easy applications to the theory of countable Borel equivalence relations.

Theorem 3.6. Let G = SL3(Z) × S, where S is any countable group. Suppose

that H is any countable group and that Y is a free standard Borel H-space. If
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there exists a µ-nontrivial Borel homomorphism from EG to EY
H , then there exists

a virtual embedding π : G→ H.

Remark 3.7. In particular, the conclusion of Theorem 3.6 holds if there exists a

Borel subset Z ⊆ (2)G with µ(Z) = 1 such that EG � Z ≤B EY
H .

Corollary 3.8. Suppose that S is a countable group with no nontrivial finite normal

subgroups and let G = SL3(Z)× S. If H is any countable group, then EG ≤B EH

iff G embeds into H.

Proof. In this case, G has no nontrivial finite normal subgroups and hence the

result is an immediate consequence of Theorem 3.6. �

It is now easy to show that E∞ is not essentially free.

Theorem 3.9. If E is an essentially free countable Borel equivalence relation, then

there exists a countable group G such that EG �B E.

Proof. Clearly we can suppose that E = EX
H is realised by a free Borel action of the

countable group H on the standard Borel space X. By B.H. Neumann [23], there

exist uncountably many finitely generated groups. Hence there exists a finitely

generated group L which does not embed into H. Let S be the free product L ∗ Z

and let G = SL3(Z) × S. Then S has no nontrivial finite normal subgroups and

clearly G does not embed into H. Hence EG �B EX
H . �

Corollary 3.10. The class of essentially free countable Borel equivalence relations

does not admit a universal element. In particular, E∞ is not essentially free.

�

Next we shall give a simple (modulo Popa’s Theorem) proof of the following

result.

Theorem 3.11 (Adams-Kechris [2]). There exist uncountably many free countable

Borel equivalence relations up to Borel bireducibility.

To see this, let P be the set of primes and for each prime p ∈ P, let Ap =
⊕∞

i=0 Cp

be the direct sum of countably many copies of the cyclic group Cp of order p. For
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each subset C ⊆ P, let

GC = SL3(Z)×
⊕
p∈C

Ap.

Then Theorem 3.11 is an immediate consequence of the following:

Lemma 3.12. If C, D ⊆ P, then EGC
≤B EGD

iff C ⊆ D.

Proof. If C ⊆ D, then GC 6 GD and hence EGC
≤B EGD

. Conversely, applying

Theorem 3.6, if EGC
≤B EGD

, then there exists a virtual embedding π : GC → GD.

It is well-known that SL3(Z) contains a torsion-free subgroup of finite index. (For

example, see Wehrfritz [38, Corollary 4.8].) It follows easily that for each p ∈ C,

the cyclic group Cp embeds into
⊕

q∈D Aq and this implies that p ∈ D. �

In the remainder of this section, we shall present a proof of the following result.

Theorem 3.13. There exist uncountably many non-essentially free countable Borel

equivalence relations up to Borel bireducibility.

We shall make use of the following group-theoretic result, which will be proved

in Section 7.

Definition 3.14. The groups G, H are isomorphic up to finite kernels iff there

exist finite normal subgroups N E G, M E H such that G/N ∼= H/M .

Proposition 3.15. There exists a Borel family {Sx | x ∈ 2N} of finitely generated

groups such that if Gx = SL3(Z)× Sx, then the following conditions hold:

(i) If x 6= y, then Gx and Gy are not isomorphic up to finite kernels.

(ii) If x 6= y, then Gx does not virtually embed into Gy.

Definition 3.16. For each Borel subset A ⊆ 2N, let EA =
⊔

x∈AEGx
be the

corresponding smooth disjoint union of the countable Borel equivalence relations

{EGx | x ∈ A}.

Theorem 3.13 is an immediate consequence of the following two lemmas.

Lemma 3.17. If the Borel subset A ⊆ 2N is uncountable, then EA is not essentially

free.
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Proof. Suppose that EA ≤B EY
H , where H is a countable group and Y is a free

standard Borel H-space. Then for each x ∈ A, we have that EGx
≤B EY

H and so

there exists a virtual embedding πx : Gx → H. Since A is uncountable, there exist

x 6= y ∈ A such that πx[Gx] = πy[Gy]. But then Gx, Gy are isomorphic up to finite

kernels, which is a contradiction. �

Lemma 3.18. EA ≤B EB iff A ⊆ B.

Proof. Clearly if A ⊆ B, then EA ≤B EB . Conversely, suppose that EA ≤B EB .

For the sake of contradiction, suppose that A * B and let x ∈ ArB. Then there

exists a Borel reduction

f : (2)Gx →
⊔

y∈B

(2)Gy

from EGx
to EB . Since Gx acts ergodically on ((2)Gx , µx), there exists a Borel

subset Z ⊆ (2)Gx with µx(Z) = 1 such that f maps Z to a fixed (2)Gy . This yields

a µx-nontrivial Borel homomorphism from EGx to EGy and hence Gx virtually

embeds into Gy, which is a contradiction. �

Of course, it is a little disappointing that the equivalence relations in the above

proof of Theorem 3.13 are all smooth disjoint unions of free relations. However, it

may not be possible to avoid this, since it remains conceivable that every countable

Borel equivalence relation is Borel bireducible with a smooth disjoint union of free

countable Borel equivalence relations. Arguing as in Jackson-Kechris-Louveau [14],

this question is easily seen to be equivalent to the following special case.

Question 3.19. Is E∞ Borel bireducible with a smooth disjoint union of free

countable Borel equivalence relations?

Question 3.19 is very closely related to the following well-known open problem.

Question 3.20. Suppose that E =
⊔

z∈AEz is a smooth disjoint union of the

countable Borel equivalence relations {Ez | z ∈ A}. If E is countable universal,

does there necessarily exist an element z ∈ A such that Ez is countable universal?

(It should be pointed out that Question 3.20 remains open even in the special

case when A = {1, 2}. See Jackson-Kechris-Louveau [14].) To see the connection

between Questions 3.19 and 3.20, suppose that E =
⊔

z∈AEz is the smooth disjoint
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union of the free countable Borel equivalence relations {Ez | z ∈ A} and that E is

countable universal. Then by Corollary 3.10, none of the relations Ez is countable

universal and hence E is a counterexample to Question 3.20. On the other hand,

a positive answer to Question 3.20 would follow easily from the existence of a

“strongly universal” countable Borel equivalence relation.

Definition 3.21. Suppose that E is a countable Borel equivalence relation on the

standard Borel space X with invariant ergodic probability measure µ. Then E

is strongly universal iff E � Y is universal for every Borel subset Y ⊆ X with

µ(Y ) = 1.

Question 3.22. Does there exist a strongly universal countable Borel equivalence

relation? Or does the complexity of a universal countable Borel equivalence relation

always concentrate on a measure 0 subset?

Of course, a positive answer to the following question would rule out the existence

of a strongly universal countable Borel equivalence relation.

Question 3.23. Suppose that E is a countable Borel equivalence relation on the

standard Borel space X with invariant ergodic probability measure µ. Does there

always exist a Borel subset Y ⊆ X with µ(Y ) = 1 such that E � Y is essentially

free?

4. Weak Borel Reducibility

Unfortunately the results of the previous section do not provide any examples

of “naturally occurring” non-essentially free countable Borel equivalence relations

E such that E �B E∞ and it remains an open problem to find an example of such

an equivalence relation. In this section, we shall point out a potential source of

such examples; namely, the weakly universal countable Borel equivalence relations.

The material in this section is due to Alexander Kechris, with the exception of the

crucial Proposition 4.10 which is due to Ben Miller.

Definition 4.1. Suppose that E, F are countable Borel equivalence relations on

the standard Borel spaces X, Y respectively. Then E is weakly Borel reducible

to F , written E ≤w
B F , iff there exists a countable-to-one Borel homomorphism
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f : X → Y from E to F . In this case, we say that f is a weak Borel reduction from

E to F .

Remark 4.2. If E ⊆ F are countable Borel equivalence relations on the standard

Borel space X, then the identity map id : X → X is a weak Borel reduction from

E to F . By Adams [1], there exists a pair E ⊆ F of countable Borel equivalence

relations such that E, F are incomparable with respect to Borel reducibility. In

particular, these provide examples of countable Borel equivalence relations E, F

such that E ≤w
B F but E �B F . We shall present a simple (modulo Popa’s

Theorem) proof of Adams’ Theorem in Section 5.

Remark 4.3. Suppose that µ is a nonatomic E-invariant probability measure on X.

Clearly if E is F -ergodic, then E �w
B F . It is easily seen that the converse does not

hold. For example, suppose that ν is an F -invariant probability measure on Y and

regard ν as an (EtF )-invariant probability measure on XtY . With this measure,

E t F is certainly not F -ergodic. However, if E is F -ergodic, then (E t F ) �w
B F .

Of course, this example is a little unsatisfactory since the obstruction to weak

reducibility is once again an instance of the stronger notion of F -ergodicity. In

Appendix A, we shall present an more satisfactory example consisting of a pair E,

F of countable Borel equivalence relations such that:

• there exists a unique E-invariant probability measure on X,

• E �w
B F but E is not F -ergodic.

The following elegant characterization of weak Borel reducibility will be proved

in the second half of this section.

Theorem 4.4. If E, F are countable Borel equivalence relations on the uncountable

standard Borel spaces X, Y respectively, then the following are equivalent:

(a) E ≤w
B F .

(b) There exists a countable Borel equivalence relation R ⊇ E on X such that

R ≤B F .

(c) There exists a countable Borel equivalence relation S ⊆ F on Y such that

E ≤B S.

Definition 4.5. A countable Borel equivalence relation E is said to be weakly

universal iff F ≤w
B E for every countable Borel equivalence relation F .
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Of course, it also makes sense to consider weakly treeable relations, weakly

hyperfinite relations, etc. However, applying Theorem 4.4 and Jackson-Kechris-

Louveau [14, Proposition 3.3], it follows that every weakly treeable countable Borel

equivalence relation is treeable. Similarly, every weakly hyperfinite countable Borel

equivalence relation is hyperfinite. On the other hand, by Theorem 4.7, the corre-

sponding problem for weakly universal relations is equivalent to a well-known open

problem of Hjorth [3].

Question 4.6 (Hjorth). Does there exist a weakly universal countable Borel equiv-

alence relation E which is not countable universal?

Theorem 4.7. Suppose that E is a countable Borel equivalence relation on the

standard Borel space X. Then E is weakly universal iff there exists a universal

countable Borel equivalence relation R ⊆ E.

Proof. Clearly E is weakly universal iff E∞ ≤w
B E. Hence the result follows from

Theorem 4.4. �

Corollary 4.8. If E is a weakly universal countable Borel equivalence relation,

then E is not essentially free.

Proof. This is an immediate consequence of Theorems 4.7 and 1.2(b), together with

Corollary 3.10. �

Corollary 4.9. The Turing equivalence relation ≡T on 2N is weakly universal and

hence is not essentially free.

Proof. Let F2 be the free group on two generators. Then E∞ is the orbit equivalence

relation arising from the shift action of F2 on 2F2 . (Of course, it is essential here to

consider the action on the entire space 2F2 rather than on just the free part (2)F2 of

the action.) Identifying F2 with a suitably chosen group of recursive permutations

of N, we have that E∞ ⊆≡T and hence ≡T is weakly universal. �

There are currently no known techniques for distinguishing between “naturally

occurring” non-essentially free countable Borel equivalence relations up to Borel

bireducibility. In particular, it is unknown whether the Turing equivalence relation

≡T is countable universal. By Dougherty-Kechris [6], if this is indeed the case, then
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the well-known Martin Conjecture (also known as the 5th Victoria Delfino Problem

[16]) fails. This suggests that the Martin Conjecture is either extremely difficult or

else is false.

The remainder of this section is devoted to the proof of Theorem 4.4. Suppose

that E, F are countable Borel equivalence relations on the uncountable standard

Borel spaces X, Y respectively.

(a) ⇒ (b). Suppose that f : X → Y is a weak Borel reduction from E to F and

let R = f−1(F ). Then R ⊇ E is a countable Borel equivalence relation and f is a

Borel reduction from R to F .

(c) ⇒ (a). If f : X → Y is a Borel reduction from E to S, then f is a weak

reduction from E to F .

(b) ⇒ (c). This is an immediate consequence of the following somewhat surprising

result. (At least, my first instinct was to seek a counterexample.)

Proposition 4.10 (Miller). Suppose that E, F are countable Borel equivalence

relations on the uncountable standard Borel spaces X, Y respectively and that

E ≤B F . Then for every Borel equivalence relation E′ ⊆ E, there exists a Borel

equivalence relation F ′ ⊆ F such that E′ ∼B F ′.

Recall that if F is a countable Borel equivalence relation on the standard Borel

space Y , then F × I∞ denotes the countable Borel equivalence on Y ×N defined by

(y, n) (F × I∞) (z,m) iff y F z.

Of course, the Borel map (y, n) 7→ y witnesses that (F × I∞) ∼B F .

Lemma 4.11. Suppose that E, F are countable Borel equivalence relations on the

uncountable standard Borel spaces X, Y respectively and that E ≤B F . Then for

every Borel equivalence relation E′ ⊆ E, there exists a Borel equivalence relation

R ⊆ (F × I∞) such that E′ ∼B R.

Proof. Let f : X → Y be a Borel reduction from E to F . By the Lusin-Novikov

uniformization theorem [15, Theorem 18.10], there exists a partition
⊔

n∈N Xn of

X into Borel subsets such that each f � Xn is injective. Hence we can define an

injective Borel reduction ϕ : X → Y × N from E to F × I∞ by

ϕ(x) = (f(x), n), where x ∈ Xn.
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Let E′ ⊆ E be any Borel equivalence relation and let R′ be the corresponding Borel

equivalence relation on ϕ(X) defined by

ϕ(x)R′ ϕ(w) iff x E′ w.

Then we can extend R′ to a Borel equivalence relation R on Y × N by letting

R � ((Y × N) r ϕ(X)) be the identity relation. It is clear that R ⊆ (F × I∞) and

that E′ ∼B R′. Since X is uncountable, it follows that E′ ∼B (E′ t id(Y×N)rϕ(X))

and hence E′ ∼B R. �

Thus Proposition 4.10 follows from the following special case.

Proposition 4.12. Suppose that F is a countable Borel equivalence relation on

the uncountable standard Borel space Y . Then for every Borel equivalence relation

R ⊆ (F × I∞), there exists a Borel equivalence relation S ⊆ F such that R ∼B S.

Clearly we can suppose that both F and R are nonsmooth. Let A be the Borel

subset of those y ∈ Y such that [y]F is finite. Then F � A is smooth and there is

an injective Borel reduction Y → Y rA from F to F � (Y rA). Hence, arguing as

in Lemma 4.11, we can suppose that F is aperiodic. From now on, let < be a fixed

Borel linear ordering of Y and let ≺ be the Borel ordering on Y × N defined by

(y, n) ≺ (z,m) iff n < m or ( n = m and y < z ).

Lemma 4.13. There exists a partition
⊔

n∈N Bn of Y into Borel subsets such that

each Bn has measure exactly 1/2n+1 with respect to every F -invariant probability

measure on Y .

Proof. By Kechris-Miller [16, Proposition 7.4], since F is aperiodic, there exists a

Borel equivalence relation F0 ⊂ F , all of whose classes have cardinality exactly 2.

Let i0 be the fixed-point free Borel involution which interchanges the elements of

each F0-class and let B0 be the Borel subset of Y consisting of the <-least element

of each i0-orbit. Note that F � i0(B0) is also aperiodic. Hence there also exists

a fixed-point free involution i1 on i0(B0) with graph(i1) ⊂ F and we can let B1

consist of the <-least element of each i1-orbit. Continuing in this fashion, the result

follows. �
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Let R ⊆ (F × I∞) be a Borel equivalence relation and let π : Y × N → Y be

the canonical Borel bireduction from F × I∞ to F defined by (y, n) 7→ y. For each

n ∈ N, let Yn = Y × {n}. Define Z ⊆ Y × N by

z ∈ Z iff for all n ∈ N, [z]R ∩ Yn is either empty or infinite.

Clearly R � ((Y ×N)rZ) is smooth. For each n ∈ N, let Zn = Z∩Yn. Then R � Zn is

an aperiodic countable Borel equivalence. Hence, appealing once again to Kechris-

Miller [16, Proposition 7.4], there exists a Borel equivalence relation Rn ⊆ R � Zn,

all of whose classes are of cardinality exactly 2n+1. Let ϕn : Zn → Zn be the Borel

map which sends each z ∈ Zn to the ≺-least element of [z]Rn . Note that π(ϕn(Zn))

has measure at most 1/2n+1 with respect to every F -invariant probability measure

on Y .

Examining the proof of Kechris-Miller [16, Lemma 7.10], we see that the following

result holds. (Recall that if C ⊆ X is a Borel subset, then E � C is compressible

iff µ(C) = 0 for every ergodic E-invariant probability measure µ on X.)

Lemma 4.14. Let E be a countable Borel equivalence relation on the standard Borel

space X and suppose that A, B ⊆ X are Borel subsets such that µ(A) ≤ µ(B) for

every E-invariant probability measure µ on X. Then there exists:

• an E-invariant Borel subset C ⊆ X, and

• a Borel injection ψ : Ar C → B r C

such that E � C is compressible and graph(ψ) ⊂ E.

Thus there exists an F -invariant Borel subset C ⊆ Y and Borel injections

ψn : (π(ϕn(Zn))r C) → (Bn r C)

such that F � C is compressible and each graph(ψn) ⊂ F . By Dougherty-Jackson-

Kechris [5, Proposition 2.5], since F � C is compressible, F � C ∼= (F � C) × I∞

and hence there exist Borel injections ψ′n : C → C with graph(ψ′n) ⊂ F such that

ψ′n(C) ∩ ψ′m(C) = ∅ for all n 6= m. Consider the Borel map θ : Z → Y defined by

θ(z) =

ψn ◦ π ◦ ϕn(z) if z ∈ Zn and π ◦ ϕn(z) /∈ C;

ψ′n ◦ π ◦ ϕn(z) if z ∈ Zn and π ◦ ϕn(z) ∈ C.
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Notice that if z, z′ ∈ Z and θ(z) = θ(z′), then z, z′ ∈ Zn for some n ∈ N and zRz′.

Hence we can define an equivalence relation S′ ⊆ F on θ(Z) by

θ(z) S′ θ(w) iff z R w.

Clearly θ is a Borel bireduction from R � Z to S′ and so R � Z ∼B S′. Extend S′

to a Borel equivalence relation S on Y by letting S � (Y r θ(Z)) be the identity

relation. Since R � ((Y × N)r Z) is smooth and R is nonsmooth, it follows that

R ∼B R � Z ∼B S′ ∼B S.

This completes the proof of Proposition 4.12.

5. Popa’s cocycle superrigidity theorem

In this section, after a brief discussion of the notion of a Borel cocycle, we shall

state Popa’s Cocycle Superrigidity Theorem and then present the proof of Theorem

3.6. This section also includes a simple (modulo Popa’s Theorem) proof of Adams’

Theorem [1] that there exist countable Borel equivalence relations E ⊆ F such that

E, F are incomparable with respect to Borel reducibility.

We shall begin by recalling the notion of a Borel cocycle. Suppose that G

is a countable group and that X is a standard Borel G-space with an invariant

probability measure µ.

Definition 5.1. If H is a countable group, then a Borel function α : G×X → H

is called a cocycle if for all g, h ∈ G,

α(hg, x) = α(h, g · x)α(g, x) for µ-a.e. x ∈ X.

Cocycles typically (but not always) arise in the following manner. Suppose that

Y is a standard Borel H-space on which H acts freely and that f : X → Y is

a Borel homomorphism between the corresponding orbit equivalence relations EX
G

and EY
H . Then we can define a Borel cocycle α : G×X → H by setting

α(g, x) = the unique h ∈ H such that h · f(x) = f(g · x).

Notice that if α(g, x) = α(g) only depends on the g-variable, then α : G → H is

a group homomorphism and (G,X)
α,f−−→ (H,Y ) is a permutation group homomor-

phism. Even if a given Borel cocycle is not a group homomorphism, there remains
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the possibility that the cocycle corresponding to a “suitably adjusted” perturbation

f ′ might be. More precisely, suppose that b : X → H is a Borel function and that

f ′ : X → Y is defined by f ′(x) = b(x) ·f(x). Then f ′ is also a Borel homomorphism

between EX
G and EY

H ; and the corresponding cocycle β : G×X → H satisfies

β(g, x) = b(g · x)α(g, x)b(x)−1

for all g ∈ G and x ∈ X. This motivates the following definition.

Definition 5.2. The cocycles α, β : G × X → H are equivalent iff there exist a

Borel function b : X → H such that for all g ∈ G,

β(g, x) = b(g · x)α(g, x)b(x)−1 for µ-a.e. x ∈ X.

Of course, it is not true that an arbitrary Borel cocycle is equivalent to a group

homomorphism. However, the following Popa Cocyle Superrigidity Theorem says

that with suitable hypotheses on the group G and the G-space (X,µ), every Borel

cocycle from G × X into an arbitrary countable group is equivalent to a group

homomorphism. (In contrast, the earlier superrigidity theorems of Zimmer [39],

Furman [9], Monod-Shalom [22] and Hjorth-Kechris [12] imposed strong restrictions

on either the target group H or else on the cocycle α itself. For example, while

Furman imposes no hypotheses on H, he does require that the relevant cocycle

arise from a weak orbit equivalence.)

Theorem 5.3 (Popa [30]). Let Γ be a countably infinite Kazhdan group and let G,

G be countable groups such that Γ E G 6 G. If H is any countable group, then

every Borel cocycle

α : G× (2)G → H

is equivalent to a group homomorphism of G into H.

Remark 5.4. In most applications, we can let G = G. In this paper, we shall always

take the Kazhdan group Γ to be either SL3(Z) or else a subgroup of finite index

in SL3(Z). (For a proof that these groups do indeed satisfy the Kazhdan property,

see Lubotzky [19, Chapter 3] or Zimmer [39, Chapter 7].)

Remark 5.5. It should be pointed out that this is not the most general statement

of Popa’s Cocyle Superrigidity Theorem. (For example, in his later paper [31],
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Popa has extended his result to cover nonamenable groups with infinite centers.

Of course, this includes every group of the form Z × G, where G is an arbitrary

countable nonamenable group.) However, there are currently no applications to the

theory of countable Borel equivalence relations which do not follow from Theorem

5.3.

Remark 5.6. Popa’s original proof [30] of Theorem 5.3 was discovered within the

framework of Operator Algebra theory. More recently, Furman [9] has given a

self-contained purely ergodic-theoretic presentation of Popa’s proof.

Proof of Theorem 3.6. Let G = SL3(Z)× S, where S is any countable group. Let

H be a countable group and let Y be a free standard Borel H-space. Suppose that

f : (2)G → Y is a µ-nontrivial Borel homomorphism from EG to EY
H . Then we can

define a Borel cocycle α : G× (2)G → H by

α(g, x) = the unique h ∈ H such that h · f(x) = f(g · x).

By Theorem 5.3, after deleting a nullset and slightly adjusting f if necessary, we

can suppose that α : G→ H is a group homomorphism. Suppose that N = kerα is

infinite. Since the action of G is strongly mixing, it follows that N acts ergodically

on ((2)G, µ). But this means that the N -invariant function f : (2)G → Y must be

µ-a.e. constant, which is a contradiction. Hence N = kerα is finite and α : G→ H

is a virtual embedding. �

In the remainder of this section, we shall use Popa’s Superrigidity Theorem to

give a simple proof of the following theorem.

Theorem 5.7 (Adams [1]). There exists a pair of countable Borel equivalence

relations E ⊆ F on a standard Borel space X such that E, F are incomparable with

respect to Borel reducibility.

Adams’ original proof [1] was based on an elegant application of the unique er-

godicity of actions arising from dense embeddings of countable groups into compact

groups. In [12], Hjorth-Kechris used the following result to apply Adams’ idea to

the strongly mixing actions of a suitably chosen pair of groups T 6 S on (2)S . As

we shall see next, Popa’s Superrigidity Theorem allows us to choose a particularly

simple pair of such groups.
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Lemma 5.8 (Hjorth-Kechris [12]). Suppose that G is a countable group and that

(X,µ) is a standard Borel G-space with invariant probability measure µ. If the

action of G on (X,µ) is strongly mixing, then there exists a G-invariant Borel subset

X0 ⊆ X with µ(X0) = 1 such that the action of every infinite finitely generated

subgroup of G on (X0, µ) is uniquely ergodic.

From now on, let S = SL3(Z) and let T be a proper subgroup of finite index. For

example, we could let T be the kernel of the homomorphism ϕ : SL3(Z) → SL3(F7).

Then S and T are both Kazhdan groups and hence we can apply Theorem 5.3 to

the strongly mixing actions of S and T on ((2)S , µ). Let X ⊆ (2)S be an S-invariant

Borel subset with µ(X) = 1 such that the action of every infinite finitely generated

subgroup of S on (X,µ) is uniquely ergodic. Let E ⊆ F be the the orbit equivalence

relations corresponding to the free actions of T , S respectively on (X,µ). We shall

prove that E, F are are incomparable with respect to Borel reducibility.

To see this, first suppose that F ≤B E. Then Theorem 5.3 implies that there

exists a virtual embedding π : S = SL3(Z) → T . But the following lemma shows

that this is impossible. (Lemma 5.9 is a consequence of an elementary rigidity result

of Steinberg [33, Theorem 6]. In particular, it does not require an application of

the deep results of Margulis [20].)

Lemma 5.9. Suppose that G is a (not necessarily proper) subgroup of finite index

in SL3(Z). Then:

(a) G has no nontrivial finite normal subgroups.

(b) G does not embed into any of its proper subgroups of finite index.

Next suppose that E ≤B F and let f : X → X be a Borel reduction from E to

F . Then we can define a corresponding Borel cocycle α : T ×X → S by

α(t, x) = the unique s ∈ S such that s · f(x) = f(t · x).

Applying Theorem 5.3, after deleting a nullset and slightly adjusting f if necessary,

we can suppose that α : T → S is a virtual embedding. Since T has no finite normal

subgroups, it follows that α is an embedding; and since S � T , it follows that α(T )

is a proper subgroup of S. Because the actions of S, T on (X,µ) are free and

α(t) · f(x) = f(t · x) for t ∈ T, x ∈ X,
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it also follows that f is an injection. Thus we have an embedding (T,X)
α,f−−→ (S,X)

of permutation groups and so we can define an α(T )-invariant probability measure

ν = f∗µ on X by ν(A) = µ(f−1(A)). Since the action of α(T ) on (X,µ) is uniquely

ergodic, we must have that ν = µ and hence µ(f(X)) = 1. Of course, this means

that

µ( f(X) ∩ s · f(X) ) = 1

for all s ∈ S. In particular, choosing s ∈ S r α(T ), there exist x, y ∈ X such that

f(x) = s · f(y) ∈ f(X) ∩ s · f(X).

Then f(x) F f(y) and so x E y. Hence there exists t ∈ T such that x = t · y. It

follows that

α(t) · f(y) = f(t · y) = f(x) = s · f(y)

and so s−1α(t) · f(y) = f(y), which contradicts the fact that S acts freely on X.

Hence E �B F . This completes the proof of Theorem 5.7.

Remark 5.10. A minor variant of the above argument shows that if f : X → X is

a Borel reduction from F to F , then µ(f(X)) > 0 and hence µ(S · f(X)) = 1. It

follows easily that

F <B F ⊕ F <B F ⊕ F ⊕ F <B · · ·

For more details, see Thomas [34] or Hjorth-Kechris [12, Theorem 3.9].

6. Torsion-free abelian groups of finite rank

In this section, we shall consider the complexity of the isomorphism relation on

the standard Borel space of torsion-free abelian groups of finite rank. Recall that,

up to isomorphism, the torsion-free abelian groups A of rank n are exactly the

additive subgroups of the n-dimensional vector space Qn which contain n linearly

independent elements. Thus the classification problem for the torsion-free abelian

groups of rank n can be naturally identified with the corresponding problem for the

standard Borel space

R(Qn) = {A 6 Qn | A contains n linearly independent elements}.
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Letting ∼=n denote the isomorphism relation on R(Qn), it is easily checked that if

A, B ∈ R(Qn), then

A ∼=n B iff there exists ϕ ∈ GLn(Q) such that ϕ(A) = B.

Thus ∼=n is a countable Borel equivalence relation. In Thomas [36], making essential

use of the Zimmer Superrigidity Theorem [39], together with the ideas of Adams-

Kechris [2] and Hjorth [11], it was shown that

(∼=1) <B (∼=2) <B · · · <B (∼=n) <B · · ·

In particular, for each fixed n ≥ 1, the isomorphism relation ∼=n on the space

of torsion-free abelian groups of rank n is not countable universal. Of course, this

strongly suggests that the isomorphism relation
⊔

n≥1
∼=n on the space

⊔
n≥1R(Qn)

of torsion-free abelian groups of finite rank is also not countable universal. In the

remainder of this section, we shall confirm that this is indeed the case.

Theorem 6.1. The isomorphism relation on the space of torsion-free abelian groups

of finite rank is not countable universal.

Of course, Theorem 6.1 would follow trivially from the previous results if it were

known that a smooth disjoint union of countably many non-universal countable

Borel equivalence relations was also non-universal. Unfortunately, as mentioned

earlier, this question remains open even for the case E1 t E2 of two non-universal

relations. However, the following weaker statement is an immediate consequence of

Theorem 1.2(c) and Corollary 3.10.

Proposition 6.2. If En, n ∈ N, are essentially free countable Borel equivalence

relations, then
⊔

n∈N En is not countable universal.

�

It is well-known that ∼=1 is hyperfinite and hence is essentially free. It is conceiv-

able that Król’s analysis [18] might be enough to prove that ∼=2 is also essentially

free. (Cf. Thomas [35].) However, the following question appears to be very difficult

when n ≥ 3.

Question 6.3. Let n ≥ 2. Is the isomorphism relation ∼=n on the space of torsion-

free abelian groups of rank n essentially free?
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Roughly speaking, the following proof of Theorem 6.1 will depend upon the

weaker result that each ∼=n is (hyperfinite)-by-(essentially free). From now on, let

S be a suitably chosen countable group and let

G = SL3(Z)× S.

(We will give a more precise definition of S at the appropriate point in the proof.)

Let EG be the orbit equivalence relation of the action of G on ((2)G, µ) and suppose

that

f : (2)G →
⊔
n≥1

R(Qn)

is a Borel reduction from EG to the isomorphism relation
⊔

n≥1
∼=n. After deleting

a nullset of (2)G if necessary, we can suppose that

f : (2)G → R(Qn)

for some fixed n ≥ 1. Unfortunately, we can not define a corresponding cocycle at

this point, since action of GLn(Q) is not free. In fact, for each A ∈ R(Qn), the

stabilizer of A in GLn(Q) is precisely the automorphism group Aut(A) of A. To

get around this difficulty, we shall shift our focus from the isomorphism relation on

R(Qn) to the coarser quasi-isomorphism relation.

Definition 6.4. Let A, B ∈ R(Qn). Then:

(a) A and B are said to be quasi-equal , written A ≈n B, iff A ∩ B has finite

index in both A and B.

(b) A and B are said to be quasi-isomorphic, written A ∼n B, if there exists

ϕ ∈ GLn(Q) such that ϕ(A) ≈n B.

The next result shows that we do not lose too much information in passing from

the isomorphism relation to the quasi-isomorphism relation.

Theorem 6.5 (Thomas [36]). The quasi-equality relation ≈n is a hyperfinite count-

able Borel equivalence relation.

For each A ∈ R(Qn), let [A] be the ≈n-class containing A. We shall consider the

induced action of GLn(Q) on the set

X = {[A] | A ∈ R(Qn)}
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of ≈n-classes. (Of course, since ≈n is nonsmooth, it follows that X is not a stan-

dard Borel space. Fortunately, this will not lead to any difficulties.) In order to

describe the setwise stabilizer in GLn(Q) of each ≈n-class [A] , it is first necessary

to introduce the notions of a quasi-endomorphism and a quasi-automorphism.

Definition 6.6. Let A ∈ R(Qn). Then:

(a) The ring of quasi-endomorphisms of A is defined to be

QE(A) = {ϕ ∈ Matn(Q) | (∃m ≥ 1)mϕ ∈ End(A)}.

(b) A linear transformation ϕ ∈ Matn(Q) is said to be a quasi-automorphism

of A iff ϕ is a unit of the ring QE(A). The group of quasi-automorphisms

of A is denoted by QAut(A).

It is easily checked that QE(A) is a Q-subalgebra of Matn(Q). In particular, it

follows that there are only countably many possibilities for QAut(A).

Lemma 6.7 (Thomas [36]). If A ∈ R(Qn), then QAut(A) is the setwise stabilizer

of [A] in GLn(Q).

For each x ∈ (2)G, let Ax = f(x) ∈ R(Qn). Since there are only countably

possibilities for the group QAut(Ax), there exists a fixed subgroup L 6 GLn(Q)

and a Borel subset X ⊆ (2)G with µ(X) > 0 such that QAut(Ax) = L for all x ∈ X.

Since G acts ergodically on ( (2)G, µ ), it follows that µ(G · X) = 1. In order to

simplify notation, we shall assume that G ·X = (2)G. After slightly adjusting f if

necessary, we can suppose that QAut(Ax) = L for all x ∈ (2)G. (More precisely, let

c : X → X be a Borel function such that c(x) EG x and c(x) ∈ X for all x ∈ (2)G.

Then we can replace f with f ′ = f ◦ c.)

Now suppose that x, y ∈ (2)G and that x EG y. Then Ax
∼=n Ay and so there

exists ϕ ∈ GLn(Q) such that ϕ(Ax) = Ay. Notice that

ϕLϕ−1 = ϕQAut(Ax)ϕ−1 = QAut(ϕ(Ax)) = QAut(Ay) = L

and so ϕ ∈ N = NGLn(Q)(L). Clearly we also have that ϕ · [Ax] = [Ay]. Fur-

thermore, by Lemma 6.7, for each x ∈ (2)G, the stabiliser of [Ax] in GLn(Q) is

QAut(Ax) = L. Let H = N/L and for each ϕ ∈ N , let ϕ = ϕL ∈ H. Then we can

define a Borel cocycle

α : G× (2)G → H
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by setting

α(g, x) = the unique ϕ ∈ H such that ϕ · [Ax] = [Ag·x].

Now let S be a countable simple nonamenable group which does not embed into

any of the countably many possibilities for H. (To see that such a group exists, let

T be a finitely generated nonamenable group which does not embed into any of the

countably many possibilities for H and let S be a countable simple group which

into which T embeds.) Applying Theorem 5.3, after deleting a nullset of (2)G and

slightly adjusting f if necessary, we can suppose that

α : G = SL3(Z)× S → H

is a group homomorphism. By the choice of S, we must have that S 6 kerα. Hence

if g ∈ S, then

[Ag·x] = [Ax] for µ-a.e. x ∈ (2)G.

In other words, after deleting a nullset of (2)G, the map f : (2)G → R(Qn) is a

Borel homomorphism from the S-action on (2)G to the hyperfinite quasi-equality

≈n-relation. By Hjorth-Kechris [12, Theorem A4.1], since S is nonamenable, the

S-action on (2)G is E0-ergodic and hence µ-almost all x ∈ (2)G are mapped to a

single ≈n-class, which is a contradiction. This completes the proof of Theorem 6.1.

7. Quasi-finite groups

In this section, we shall study the orbit equivalence relations arising from the

(not necessarily free) Borel actions of quasi-finite groups. In particular, we shall

show that no such countable Borel equivalence relation is universal. But first we

shall present a proof of Proposition 3.15, which makes use of the existence of a

suitable uncountable family of simple quasi-finite groups.

Definition 7.1. An infinite group G is said to be quasi-finite iff every proper

subgroup of G is finite.

It is easily shown that every abelian quasi-finite group is isomorphic to a quasi-

cyclic group Cp∞ for some prime p. (See Ol’shanskii [27, Theorem 7.5].) However,

it was a long outstanding problem whether there existed a nonabelian quasi-finite
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group. This problem was finally solved by Ol’shanskii in his celebrated papers

[24, 25]. A clear account of this work can be found in Ol’shanskii [27].

The following result is essentially a restatement of Ol’shanskii [27, Theorem 28.6].

(While Ol’shanskii does not state his result in terms of standard Borel spaces, it is

easily checked that the map x 7→ Tx is Borel.)

Theorem 7.2 (Ol’shanskii [27]). Let P be the standard Borel space of all strictly

increasing sequences x = 〈pn | n ∈ N〉 of primes such that p0 > 1075. Then

there exists a Borel family {Tx | x ∈ P} of 2-generator groups such that for every

x = 〈pn | n ∈ N〉 ∈ P, the following conditions are satisfied:

(a) Tx contains a cyclic subgroup of order pn for each n ∈ N.

(b) Every nontrivial proper subgroup of Tx is cyclic of order pn for some n ∈ N.

(c) Tx is simple.

�

Clearly Proposition 3.15 is an immediate consequence of the following result.

Proposition 7.3. For each x ∈ P, let Gx = SL3(Z)× Tx. Then the Borel family

{Gx | x ∈ P} of finitely generated groups satisfies the following conditions:

(i) If x 6= y, then Gx and Gy are not isomorphic up to finite kernels.

(ii) If x 6= y, then Gx does not virtually embed into Gy.

Proof. Since SL3(Z) has no nontrivial finite normal subgroups and each Tx is an

infinite simple group, it follows that each group Gx also has no nontrivial finite

normal subgroups. Hence it is enough to prove that if x 6= y, then Gx does not

embed into Gy. Suppose that

π : Gx = SL3(Z)× Tx → SL3(Z)× Ty = Gy

is an embedding. Let p : Gy → SL3(Z) be the canonical projection and consider

the homomorphism

ϕ = p ◦ π : SL3(Z)× Tx → SL3(Z).

By Wehrfritz [38, Corollary 4.9], every finitely generated periodic linear group is

finite. It follows that Tx 6 kerϕ and hence π embeds Tx into Ty. But then π(Tx)

is an infinite proper subgroup of Ty, which is a contradiction. �
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In the remainder of this section, we shall study the orbit equivalence relations

arising from arbitrary (not necessarily free) Borel actions of quasi-finite groups.

This study is motivated by the following problem.

Problem 7.4. Classify the countable groups G for which there exists a standard

Borel G-space X such that EX
G is countable universal.

By Dougherty-Jackson-Kechris [5], if G contains a nonabelian free subgroup,

then the orbit equivalence relation arising from the shift action of G on 2G is

countable universal. (Of course, it is essential here to consider the action on the

entire space 2G rather than on just the free part (2)G of the action.) On the other

hand, by Jackson-Kechris-Louveau [14, Section 2], if G is a countable amenable

group and X is a standard Borel G-space X, then EX
G is never countable universal.

Of course, this raises the possibility of a “dynamic” version of the von Neumann

Conjecture that every countable group is either amenable or else contains a non-

abelian free subgroup. (The original von Neumann conjecture, which is actually

due to Day, was disproved by Ol’shanskii [26] in 1980. For another equally implau-

sible “dynamic” version due to Gaboriau, see Kechris-Miller [16, Problem 28.14].)

The following result constitutes a very modest contribution to this presumably very

difficult problem.

Theorem 7.5. Suppose that G is a quasi-finite group and that X is a standard

Borel G-space. Then EX
G is not countable universal.

Remark 7.6. It is an open question whether every nonabelian quasi-finite group

is nonamenable. However, the results of Ol’shanskii [28] imply that there exist

nonabelian quasi-finite groups with the Kazhdan property and these groups are

certainly nonamenable.

Of course, in the proof of Theorem 7.5, we can restrict our attention to the case

when G is nonabelian. In this case, it is well-known that G is almost simple. (As I

have not been able to find a reference for this result, I have included the following

easy proof.)

Proposition 7.7. If G is a nonabelian quasi-finite group, then Z(G) is finite and

G/Z(G) is simple.
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Proof. It is clear that Z(G) is finite. In order to prove that G/Z(G) is simple, it

is enough to show that Z(G) is the unique maximal proper normal subgroup of G.

To see this, suppose that N is a proper normal subgroup and let x ∈ N . Then

[G : CG(x)] = |xG| ≤ |N | <∞

and so CG(x) = G; i.e. x ∈ Z(G). �

As we shall soon see, Theorem 7.5 is an easy consequence of the following result.

Lemma 7.8. Suppose that G is a simple quasi-finite group and that X is a standard

Borel G-space. Let

Y = {x ∈ X | There exists 1 6= g ∈ G such that g · x = x}

be the non-free part of the action. Then EX
G � Y is smooth.

Proof. If Z = {x ∈ Y | g · x = x for all g ∈ G}, then EX
G � Z is clearly smooth and

so we can suppose that Z = ∅. Fix an element FC of each of the countably many

conjugacy classes C of nontrivial finite subgroups of G.

If x ∈ Y , then Gx = {g ∈ G | g · x = x} is a nontrivial finite subgroup of G. Let

C be the conjugacy class containing Gx and define

π(x) = {y ∈ G · x | Gy = FC}.

We claim that π(x) is a nonempty finite subset of the orbit G · x. To see this, first

choose g ∈ G such that gGxg
−1 = FC and let y = g · x. Then Gy = gGxg

−1 = FC

and so y ∈ π(x). Next suppose that y, z ∈ π(x) and let g · y = z. Since

gFCg
−1 = gGyg

−1 = Gz = FC ,

it follows that g ∈ NG(FC). Since G is simple, NG(FC) is a proper subgroup of G

and so |NG(FC)| <∞. Hence π(x) is finite. Clearly if G·x = G·y, then π(x) = π(y).

Thus the Borel map π : Y → Y <ω witnesses that EX
G � Y is smooth. �

Proof of Theorem 7.5. By Jackson-Kechris-Louveau [14], if G is abelian, then EX
G

is not countable universal. Hence we can suppose that Z(G) is finite and that

G = G/Z(G) is simple. Since Z(G) is finite, it follows that the orbit space

X = {Z(G) · x | x ∈ X}
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is a standard Borel space. It is easily checked that the map x 7→ Z(G) ·x is a Borel

bireduction between EX
G and the orbit equivalence relation EX

G
of the naturally

induced G-action on X. Hence we can suppose that G is simple. But then Lemma

7.8 implies that EX
G is essentially free and hence is not countable universal. �

Appendix A

In this appendix, we shall present a proof of the following result. The argument

is an extension of the proof of Thomas [37, Theorem 5.1], which in turn was based

on the ideas of Gefter-Golodets [10].

Theorem A.1. There exists a pair E, F of countable Borel equivalence relations

on standard Borel spaces X, Y such that:

(a) there exists a unique E-invariant probability measure on X;

(b) E is not F -ergodic; and

(c) E �w
B F .

From now on, let P0 be the set of odd primes p such that p ≡ 2 mod 3. It is

well-known that these are exactly the odd primes p such that the ring Zp of p-adic

integers does not contain a primitive third root of unity. (For example, see Robert

[32, Section I.6.7].) It is also well-known that P0 is an infinite set of primes. (For

example, see Ireland-Rosen [13].) However, for our purposes, it is enough that there

are at least 2 such primes. For each nonempty subset J ⊆ P0, let

K(J) =
∏
p∈J

SL3(Zp).

Then K(J) is a compact second countable group and we can regard Γ = SL3(Z) as

a subgroup of K(J) via the diagonal embedding. Let µJ be the Haar probability

measure on K(J) and let EJ be the orbit equivalence relation arising from the free

action of Γ on K(J) via left translations. By the Strong Approximation Theorem

[29, Theorem 7.12], Γ is a dense subgroup of K(J) and hence µJ is the unique

EJ -invariant probability measure on K(J).

Let J0 and J1 be nonempty subsets of P0 such that J1  J0. We shall show that

the countable Borel equivalence relations E = EJ0 , F = EJ1 on the standard Borel

spaces X = K(J0), Y = K(J1) satisfy the conditions of Theorem A.1. We have

already noted that condition (a) holds. In order to see that condition (b) holds, let



30 SIMON THOMAS

π : K(J0) → K(J1) be the canonical surjective homomorphism. Then π is a Borel

homomorphism from E to F such that µJ0(π
−1(y)) = 0 for all y ∈ K(J1). Hence

E is not F -ergodic.

Finally, in order to see that condition (c) holds, suppose that f : K(J0) → K(J1)

is a countable-to-one Borel homomorphism from E to F . Then, applying Thomas

[37, Theorem 4.4], there exist

• subgroups Λ0,Λ1 6 Γ with [Γ : Λ0] = [Γ : Λ1] <∞,

• ergodic components Zi, i = 0, 1, for the action of Λi on K(Ji),

• a Borel map f̃ : Z0 → Z1, and

• an isomorphism ϕ : Λ0 → Λ1

such that the following conditions are satisfied:

(i) f̃∗(µJ0)Z0 = (µJ1)Z1 .

(ii) f̃(γ · x) = ϕ(γ) · f̃(x) for all γ ∈ Λ0 and x ∈ Z0.

(iii) f̃(x) ∈ Γ · f(x) for all x ∈ Z0.

In condition (i), (µJi
)Zi

denotes the probability measure on Zi defined by

(µJi
)Zi

(A) = µJi
(A)/µJi

(Zi).

Notice that condition (iii) implies that f̃ is also a countable-to-one map. For each

0 ≤ i ≤ 1, let Hi be the closure of Λi in K(Ji) and let µi = (µJi
)Zi

. Then Hi is

an open subgroup of K(Ji); and by Thomas [37, Lemma 2.2], we can suppose that

Zi ⊆ Hi and that µi is the Haar probability measure on Hi.

For each t ∈ H0, consider the Borel map ht : Z0 → Z1 defined by

ht(x) = f̃(x)−1f̃(xt) µ0-a.e. x ∈ Z0.

Then for all γ ∈ Λ0, we have that for µ0-a.e. x ∈ Z0,

ht(γ · x) = f̃(γ · x)−1 f̃(γ · xt)

= f̃(x)−1 ϕ(γ)−1 ϕ(γ) f̃(xt)

= ht(x).

Since Λ0 acts ergodically on (Z0, µ0), there exists an element θ(t) ∈ H1 such that

ht(x) = θ(t) µ0-a.e. x ∈ Z0.
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In other words, we have that for all t ∈ H0,

f̃(xt) = f̃(x) θ(t) µ0-a.e. x ∈ Z0.

By Kechris [15, Theorem 17.25], the map θ : H0 → H1 is Borel. Furthermore, an

easy calculation shows that θ is a group homomorphism. Hence, applying Kechris

[15, Theorem 9.10], it follows that θ : H0 → H1 is a continuous homomorphism.

In particular, N = ker θ is a closed subgroup of H0. Let ν be the Haar probability

measure on N . By Fubini’s Theorem, we have that for µ0-a.e. x ∈ Z0,

f̃(xt) = f̃(x) ν-a.e. t ∈ N.

As f̃ is countable-to-one, this implies that N is countable and hence is finite. It

is well-known that if p is an arbitrary prime, then the finite normal subgroups of

SL3(Zp) are contained in its center, which consists of the scalar matrices d I with

d3 = 1. In particular, if p ∈ P0, since Zp does not contain a primitive third root

of unity, it follows that SL3(Zp) has no nontrivial finite normal subgroups. This

easily implies that the same is true of K(J0); and since [K(J0) : H0] < ∞, the

same is also true of H0. Thus θ is an injective homomorphism. Applying Fubini’s

Theorem once again, there exists x0 ∈ Z0 such that

f̃(x0t) = f̃(x0) θ(t) µ0-a.e. t ∈ H0.

Since f̃∗µ0 = µ1, we must have that

µ1(θ(H0)) = µ1(f̃(Z0)) = 1

and so θ is also surjective. Since H0, H1 are compact Hausdorff, it follows that θ

is a homeomorphism. But this contradicts Gefter-Golodets [10, Lemma A.6] which

says that the groups K(J0) and K(J1) do not contain open subgroups which are

isomorphic as topological groups. This completes the proof of Theorem A.1.
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