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Abstract. We initiate the study of the E0-extensions of Borel actions Γ y X

of countable groups Γ on standard Borel spaces X.

1. Introduction

Let Γ y X be a Borel action of a countable group Γ on a standard Borel space

X and let EXΓ be the corresponding orbit equivalence relation. Suppose that E is

a countable Borel equivalence relation on X such that:

• E is Borel isomorphic to the Vitali equivalence relation E0 on 2N;

• Γ normalizes E; i.e. the action Γ y X permutes the E-classes.

Then the corresponding E0-extension of EXΓ is the countable Borel equivalence

relation E o EXΓ on X defined by

x (E o EXΓ ) y ⇐⇒ there exists γ ∈ Γ such that γ · x E y.

This definition includes the possibility that E ⊆ EXΓ , in which case we will say that

EoEXΓ = EXΓ is a trivial E0-extension. Thus EXΓ is a trivial E0-extension of itself

precisely when there exists a subequivalence relation E ⊆ EXΓ with E ∼= E0, which

is normalized by the Borel action Γ y X. (It is usually a highly nontrivial question

to classify the normal subequivalence relations of a countable Borel equivalence

relation. See Feldman-Sutherland-Zimmer [5, Section 4] or Bowen [2].)

Examples of E0-extensions arise naturally in the analysis of the complexity of the

quasi-isomorphism relation on the space of torsion-free abelian groups of finite rank.

(See Thomas [18].) In this paper, we will consider the problem of determining the
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relative complexity of EXΓ and EoEXΓ for various naturally occuring E0-extensions

E o EXΓ ; and we will point out some fundamental open questions.

Of course, the most basic example occurs when Γ = 1, X = 2N and E = E0. In

this case, EXΓ = Id2N and E o EXΓ = E0, and so EXΓ <B E o EXΓ . There also exist

many natural examples of nontrivial E0-extensions such that EXΓ ∼B E o EXΓ .

Definition 1.1. If Γ is a countably infinite group, then EΓ denotes the orbit

equivalence relation of the usual shift action Γ y 2Γ.

If Γ is a countably infinite group, then we will also denote the corresponding

Vitali equivalence relation on 2Γ by E0. Suppose that Γ contains a free nonabelian

subgroup. Then, by Dougherty-Jackson-Kechris [3, Section 1], EΓ is a universal

countable Borel equivalence relation.

Theorem 1.2. If Γ is a countably infinite group which contains a free nonabelian

subgroup, then E0 o EΓ is a universal countable Borel equivalence relation, and

hence EΓ ∼B E0 o EΓ.

Initially it might seem reasonable to expect that EXΓ ≤B E o EXΓ for every E0-

extension. However, it turns out that there is a naturally occuring counterexample.

Fix some integer n ≥ 3 and let P be the set of primes. For each p ∈ P, let

V (n, p) = Fnp be the n-dimensional vector space over the finite field Fp = Z/pZ,

and let g 7→ gp be the group homomorphism SLn(Z) → SLn(Fp) induced by the

ring homomorphism Z→ Z/pZ. Let

Γ = SLn(Z) y V =
∏
p∈P

V (n, p)

be the Borel action defined by g · (vp) = (gp · vp). Let EV0 be the countable Borel

equivalence relation defined on V by

(vp) E
V
0 (wp) ⇐⇒ vp = wp for all but finitely many p ∈ P.

Then EV0 is a uniquely ergodic, aperiodic, hyperfinite Borel equivalence relation;

and it follows that EV0 is Borel isomorphic to E0. (For example, see Dougherty-

Jackson-Kechris [3, Theorem 9.1].) Also it is clear that the action Γ y V permutes

the EV0 -classes.

Theorem 1.3. EVΓ and EV0 oEVΓ are incomparable with respect to Borel reducibility.
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By Thomas [17, Theorem 5.5], there exists a pair of countable Borel equivalence

relations E ⊆ F on a standard Borel space Z such that F <B E. However, it is

not known whether such examples exist in the context of E0-extensions.

Question 1.4. Does there exist an E0-extension EoEXΓ such that EoEXΓ <B EXΓ ?

It is also natural to consider the question of which countable Borel equivalence

relations admit E0-extensions. (Concrete instances of this question arise in the

analysis of the relative complexity of the isomorphism and quasi-isomorphism rela-

tions on the space of torsion-free abelian groups of finite rank.) Here it is necessary

to distinguish between group actions and countable Borel equivalence relations.

Definition 1.5. If Γ y X is a Borel action of a countable group Γ on a standard

Borel space X, then Γ y X admits an E0-extension if there exists a countable

Borel equivalence relation E on X such that E ∼= E0 and Γ normalizes E.

Definition 1.6. If F is a countable Borel equivalence relations on a standard Borel

space X, then F admits an E0-extension if there exists a Borel action Γ y X of a

countable group Γ such that F = EXΓ and Γ y X admits an E0-extension.

There is an obvious necessary condition for a countable Borel equivalence relation

to admit an E0-extension.

Proposition 1.7. If a countable Borel equivalence relation F on a standard Borel

space X admits an E0-extension, then there exists an F -invariant nonatomic prob-

ability measure on X.

Proof. Let Γ y X be a Borel action of a countable group Γ such that F = EXΓ and

such that there exists a countable Borel equivalence relation E on X such that:

• E is Borel isomorphic to the Vitali equivalence relation E0 on 2N;

• Γ normalizes E.

Since E ∼= E0, it follows that there exists a unique E-invariant probability measure

ν on X and that ν is nonatomic. Since Γ acts as a group of automorphisms of

(X,E ), it follows that ν is Γ-invariant, and thus ν is F -invariant. �

It is currently unknown whether or not the converse of Proposition 1.7 also holds.
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Question 1.8. Does there exist a countable Borel equivalence relation F with an

F -invariant nonatomic probability measure such that F does not admit an E0-

extension?

On the other hand, there exist many examples of Borel actions Γ y X of count-

able groups Γ on standard Borel spaces X such that Γ y X does not admit an

E0-extension.

Theorem 1.9. If F is an aperiodic nonhyperfinite countable Borel equivalence

relation on a standard Borel space X, then there exists a Borel action Γ y X of

a countable group Γ such that F = EXΓ and such that Γ y X does not admit an

E0-extension.

If F is a countable Borel equivalence relation on a standard Borel space X,

then [F ] denotes the corresponding Borel full group; i.e. the group of all Borel

automorphisms of f : (X,F )→ (X,F ). The proof of Theorem 1.9 will make use

of the following result. (Recall that a permutation group G on an infinite set Ω is

said to be highly transitive if G acts k-transitively on Ω for every k ≥ 1.)

Lemma 1.10. If F is an aperiodic countable Borel equivalence relation on a stan-

dard Borel space X, then there exists a countable subgroup Γ 6 [F ] such that

F = EXΓ and such that:

(i) Γ acts highly transitively on each F -class;

(ii) Γx 6= Γy for all x 6= y ∈ X.

Sketch proof of Lemma 1.10. Clearly we can suppose that X is an uncountable

standard Borel space. Then X is Borel isomorphic to R; and it follows that we can

express

X2 r { (x, x) | x ∈ X } =
⋃
`∈N

(A` ×B` ),

where A`, B` are Borel subsets of X such that:

• A` ∩B` = ∅ for all ` ∈ N;

• if (x1, · · · , xk, xk+1, xk+2 ) is a finite sequence of distinct elements of X,

then there exists ` ∈ N such that xk+1 ∈ A`, xk+2 ∈ B`, and xm /∈ A` ∪B`
for all 1 ≤ m ≤ k.
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Now the proof of Kechris-Miller [10, Theorem 1.3]1 yields the existence of a sequence

of Borel bijections ( gn | g ∈ N ) such that whenever (x1, · · · , xk, xk+1, xk+2 ) is a

finite sequence of distinct elements of X with xk+1 F xk+2, then there exist n ∈ N

such that gn(xk+1) = xk+2 and gn(xm) = xm for all 1 ≤ m ≤ k. Let Γ 6 [F ] be the

subgroup generated by { gn | n ∈ N }. Then clearly F = EXΓ ; and an easy inductive

argument shows that Γ acts k-transitively on every F -class for each k ≥ 1. �

Proof of Theorem 1.9. Applying Lemma 1.10, let Γ 6 [F ] be a countable subgroup

such that F = EXΓ and such that:

(i) Γ acts highly transitively on each F -class;

(ii) Γx 6= Γy for all x 6= y ∈ X.

Note that (i) implies that Γ acts primitively2 on each F -class; and it follows that

Γx is a maximal proper subgroup of Γ for each x ∈ X.

Suppose that E is a countable Borel equivalence relation on X such that E ∼= E0

and Γ normalizes E. Let x ∈ X. Then, since Γ acts primitively on [x ]F , it follows

that either [x ]F ⊆ [x ]E or else E � [x ]F is the equality relation on [x ]F .

Applying Dougherty-Jackson-Kechris [3, Proposition 5.2], if [x ]F ⊆ [x ]E for all

x ∈ X, then F is hyperfinite, which is a contradiction. Hence there exists x ∈ X

such that E � [x ]F is the equality relation on [x ]F . Let y ∈ [x ]E r {x }. If

[ y ]E ∩ [ y ]F = { y }, then Γx 6 Γy; and, since Γx is a maximal proper subgroup of

Γ, it follows that Γx = Γy, which is a contradiction. Thus [ y ]F ⊆ [ y ]E = [x ]E .

But then if γ ∈ ΓrΓx, then [ y ]F ⊆ γ ·[x ]E∩[x ]E = ∅, which is a contradiction. �

There is a natural candidate for a countable Borel equivalence relation E with an

E-invariant nonatomic probability measure which does not admit an E0-extension.

Suppose that n ≥ 3 and that p is a prime. Let Zp be the ring of p-adic integers

and let ν be the Haar probability measure on the compact group SLn(Zp). Since

SLn(Z) is a dense subgroup of SLn(Zp), it follows that ν is the unique SLn(Z)-

invariant probability measure under the left translation action SLn(Z) y SLn(Zp).

Question 1.11. Does E
SLn(Zp)

SLn(Z) admit an E0-extension?

1This is the Feldman-Moore Theorem [4].
2Recall that a transitive action Γ y C is primitive if there are no nontrivial Γ-invariant

equivalence relations on C.
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Remark 1.12. It is currently unknown whether SLn(Z) y SLn(Zp) admits an

E0-extension.

Remark 1.13. E
SLn(Zp)

SLn(Z) is not a trivial E0-extension of itself. In order to see this,

let Γ = SLn(Z) and let X = SLn(Zp). Suppose that E ⊆ EXΓ is a subequivalence

relation with E ∼= E0, which is normalized by the Borel action Γ y X. Then,

applying Feldman-Sutherland-Zimmer [5, Theorem 4.1], since E is a normal ergodic

subequivalence relation of EXΓ , it follows that there exists a Γ-invariant Borel subset

Y ⊆ X with ν(Y ) = 1 such that every EXΓ -class C ⊆ Y contains only finitely many

E-classes. But then, by Jackson-Kechris-Louveau [8, Proposition 1.3], EXΓ � Y is

hyperfinite, which is a contradiction.

It is also natural to ask how many E0-extensions up to Borel bireducibility can

be realized by a fixed countable Borel equivalence relation. In fact, there exist

examples of Borel actions Γ y X admitting uncountably many E0-extension up

to Borel bireducibility. In more detail, if Γ is any countably infinite group, let

AΓ =
⊕

γ∈ΓAγ , where each Aγ = 〈 aγ 〉 is cyclic of order 2; and let AΓ y 2Γ be

the Borel action defined by

(aγ · x)(g) =

x(g), if g 6= γ;

1− x(g) if g = γ.

Thus E0oEΓ is the orbit equivalence relation of the Borel action of the semidirect

product WΓ = AΓ o Γ on 2Γ. Finally, let

FrWΓ
(2Γ) = {x ∈ 2Γ | g · x 6= x for all g ∈WΓ r 1 }

be the free part of the action WΓ y 2Γ.

Theorem 1.14. With the above notation, if Γ is the free group on 3 generators

and X = FrWΓ
(2Γ), then Γ y X admits 2ℵ0 many E0-extension up to Borel bire-

ducibility.

This paper is organized as follows. In Section 2, we will recall some basic notions

and results concerning countable Borel equivalence relations and ergodic theory. In

Section 3, we will present the proof of Theorem 1.2. In Section 4, we will discuss

the superrigidity theory that will be used in the proofs of Theorems 1.3 and 1.14.
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In Section 5, we will present the proof of Theorem 1.14. The final three sections

will be devoted to the proof of Theorem 1.3.

2. Preliminaries

In this section, we will recall some basic notions and results concerning countable

Borel equivalence relations and ergodic theory.

2.1. Countable Borel equivalence relations. A detailed development of the

general theory of countable Borel equivalence relations can be found in Jackson-

Kechris-Louveau [8]. Here we shall only recall some basic notions and results.

A Borel equivalence relation E on a standard Borel space X is said to be count-

able if every E-class is countable. For example, if G y X is a Borel action of

a countable group G on a standard Borel space X, then the corresponding orbit

equivalence relation EXG is a countable Borel equivalence relation. Conversely, by

a classical result of Feldman-Moore [4], if E is an arbitrary countable Borel equiv-

alence relation on a standard Borel space X, then there exists a countable group

G and a Borel action G y X such that E = EXG . A countable Borel equivalence

relation E is aperiodic if every E-class is infinite.

If E, F are Borel equivalence relations on the standard Borel spaces X, Y , then

a Borel map f : X → Y is a homomorphism from E to F if for all x, y ∈ X,

x E y =⇒ f(x) F f(y).

If f satisfies the stronger property that for all x, y ∈ X,

x E y ⇐⇒ f(x) F f(y),

then f is said to be a Borel reduction and we write E ≤B F . If both E ≤B F

and F ≤B E, then we write E ∼B F and we say that E, F are Borel bireducible.

Finally, if both E ≤B F and F �B E, then we write E <B F .

If E, F are Borel equivalence relations on the standard Borel spaces X, Y , then

E and F are said to be Borel isomorphic, written E ∼= F , if there exists a Borel

bijection f : X → Y such that for all x, y ∈ X,

x E y ⇐⇒ f(x) F f(y).
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Of course, if E ∼= F , then E ∼B F . However, there are many examples of countable

Borel equivalence relations E, F with E ∼B F such that E � F .

A countable Borel equivalence relation E is smooth if E is Borel reducible to

the equality relation IdZ on some (equivalently every) uncountable standard Borel

space Z. The countable Borel equivalence relation E on the standard Borel space

X is said to be hyperfinite if there exists an increasing sequence

F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · ·

of finite Borel equivalence relations on X such that E =
⋃
n∈N Fn. (Here a Borel

equivalence relation F is said to be finite if every F -class is finite.) For example,

the Vitali equivalence relation, defined on 2N by

x E0 y ⇐⇒ x(n) = y(n) for all but finitely many n,

is hyperfinite. By Dougherty-Jackson-Kechris [3], if E is a nonsmooth hyperfinite

equivalence relation, then E ∼B E0. Finally, a countable Borel equivalence relation

E is universal if F ≤B E for every countable Borel equivalence relation F .

2.2. Ergodic theory. Let Gy X be a Borel action of a countably infinite group

G on a standard Borel space X. Throughout this paper, a probability measure on

X will always mean a Borel probability measure; i.e. a measure which is defined on

the collection of Borel subsets of X. The probability measure µ on X is G-invariant

if µ(g(A)) = µ(A) for every g ∈ G and Borel subset A ⊆ X. If µ is G-invariant,

then the Borel action Gy (X,µ) is said to be ergodic if for every G-invariant Borel

subset A ⊆ X, either µ(A) = 0 or µ(A) = 1. It is well-known that a Borel action

G y (X,µ) is ergodic if and only if whenever Y is a standard Borel space and

f : X → Y is a G-invariant Borel map, then there exists a Borel subset X0 ⊆ X

with µ(X0) = 1 such that f � X0 is a constant map.

The Borel action G y X is said to be uniquely ergodic if there exists a unique

G-invariant probability measure µ on X. In this case, it is well-known that µ must

be ergodic. (For example, see Bekka-Mayer [1, Section I.3].)

Suppose that G y (X,µ) is ergodic and that H 6 G is a subgroup of finite

index. Then an H-invariant Borel subset Z ⊆ X is said to be an ergodic component

for the action of H y (X,µ) if

• µ(Z) > 0; and
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• H acts ergodically on (Z, µZ), where µZ is the normalized probability mea-

sure defined on Z by µZ(A) = µ(A)/µ(Z).

It is easily checked that there exists a partition Z1 t · · · t Zd of X into finitely

many ergodic components and that the collection of ergodic components is uniquely

determined up to µ-null sets. Furthermore, if the action of G on X is uniquely

ergodic, then the action of H on each ergodic component Z ⊆ X is also uniquely

ergodic.

Suppose that E is a countable Borel equivalence relation on the standard Borel

space X and that µ is a probability measure on X. Then µ is said to be E-invariant

if µ is G-invariant for some (equivalently every) countable group G with a Borel

action on X such that E = EXG . Similarly, an E-invariant probability measure µ on

X is said to be E-ergodic if µ is ergodic for some (equivalently every) Borel action

G y X of a countable group G such that E = EXG ; and E is said to be uniquely

ergodic if there exists a unique E-invariant probability measure on X.

Suppose that E, F are countable Borel equivalence relations on the standard

Borel spaces X, Y and that µ is an E-invariant probability measure on X. Then a

Borel homomorphism f : X → Y from E to F is said to be µ-trivial if there exists

a Borel subset Z ⊆ X with µ(Z) = 1 such that f maps Z into a single F -class.

Otherwise, f is said to be µ-nontrivial . E is said to be F -ergodic with respect to µ

if every Borel homomorphism from E to F is µ-trivial.

By Dougherty-Jackson-Kechris [3], the cardinality of the set of ergodic invariant

probability measures is a complete invariant for Borel isomorphism of nonsmooth

aperiodic hyperfinite Borel equivalence relations. The following special case is due

to Nadkarni [13].

Theorem 2.1. If E is a uniquely ergodic, aperiodic, hyperfinite Borel equivalence

relation, then E is Borel isomorphic to E0.

3. The proof of Theorems 1.2

In this section, we will present the proof of Theorem 1.2. Let Γ be a countable

group which contains a free nonabelian subgroup. Let G 6 Γ be a free nonabelian

subgroup, freely generated by the elements a, b. By Karras-Solitar [9, p. 950], the
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set { anbnan | n ≥ 1 } freely generates a malnormal3 subgroup F of G. It is easily

seen that H = 〈 aba, a2b2a2 〉 is a malnormal subgroup of F , and hence H is also a

malnormal subgroup of G. Furthermore, it is clear that [G : H ] =∞.

Let EH be the orbit equivalence relation of the shift action H y 2H . Then,

by Dougherty-Jackson-Kechris [3, Section 1], EH is a universal countable Borel

equivalence relation, and hence it is enough to show that EH ≤B E0 o EΓ. From

now on, we will identify the elements of 2Γ, 2H with the corresponding subsets of Γ,

H. Under this identification, the shift actions EH , EΓ correspond to the translation

actions, S
g7→ gS; and E0 corresponds to the almost equality relation =∗ on P(Γ),

defined by

S =∗ T ⇐⇒ |S 4 T | <∞.

The proof of Theorem 1.2 will make use of the following observation.

Lemma 3.1. If g ∈ GrH and c, d ∈ G, then |gHc ∩Hd| ≤ 1.

Proof. First note that gHc = gHg−1z, where z = gc, and that gHg−1 ∩ H = 1.

Hence if x ∈ gHc ∩Hd, then

gHc ∩Hd = gHg−1z ∩Hd = (gHg−1 ∩H)x = {x }.

�

Let (Hxn | n ≥ 0 ) enumerate the distinct cosets Hx of H in G such that

Hx 6= H, and let ( gn | n ≥ 1 ) be a list of the elements of G r H in which each

g ∈ G r H occurs infinitely many times. We will inductively define elements yn,

zn ∈ GrH for n ≥ 1 such that the following conditions are satisfied:

(i) the cosets Hx0, Hy1, Hz1, · · · , Hyn, Hzn are distinct;

(ii) Hx0 ∩ gnHyn 6= ∅.

Suppose inductively that y1, z1, · · · , yn−1, zn−1 have been defined. Then Lemma

3.1 implies that

|Hx0 ∩ gn(H tHx0 tHy1 tHz1 · · ·Hyn−1 tHzn−1)| ≤ 2n,

and hence we can define suitable elements yn, zn.

3Recall that a subgroup F of a group G is said to be malnormal if g F g−1 ∩ F = 1 for all

g ∈ G r F .
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Let f : 2H → 2Γ be the Borel map defined by S 7→ S t Hx0 t
⊔
n≥1 Szn. We

claim that f is a Borel reduction from EH to E0 o EΓ. Clearly if S, T ∈ 2H

and h ∈ H satisfy hS = T , then hf(S) = f(T ). Conversely, suppose that S,

T ∈ 2H and g ∈ Γ satisfy gf(S) =∗ f(T ). If g ∈ Γ r G, then Hx0 ⊆ f(T )

and Hx0 ∩ gf(S) ⊆ G ∩ gf(S) = ∅, which is a contradiction. Next suppose that

g ∈ G rH and let n ≥ 1 be any of the infinitely many n such that g = gn. Then

there exists cn ∈ Hx0 ∩ gnHyn and clearly cn /∈ gnf(S). Since Hx0 ⊆ f(T ), we

again reach a contradiction. Hence g ∈ H. Clearly if gS 6= T , then gf(S) 6=∗ f(T );

and so we obtain that gS = T . This completes the proof of Theorem 1.2.

4. Some Superrigidity Results

In this section, we will discuss the superrigidity theory that will be used in the

proofs of Theorems 1.3 and 1.14. Until further notice, we will fix a Borel action

Gy (X,µ) of a countable group G on a standard Borel space X with an invariant

probability measure µ.

Definition 4.1. If H is a countable group, then a Borel function α : G×X → H

is called a cocycle if for all g, h ∈ G and x ∈ X,

α(hg, x) = α(h, g · x)α(g, x).

Cocycles typically arise in the following manner. Suppose that Y is a standard

Borel H-space and that H acts freely on Y ; i.e., that h · y 6= y for all y ∈ Y and

1 6= h ∈ H. If f : X → Y is a Borel homomorphism from EXG to EYH , then we can

define a corresponding Borel cocycle α : G×X → H by

α(g, x) = the unique element h ∈ H such that h · f(x) = f(g · x).

Suppose now that b : X → H is a Borel map and that f ′ : X → Y is the “adjusted

map” defined by f ′(x) = b(x) · f(x). Then f ′ is also a Borel homomorphism from

EXG to EYH and the corresponding cocycle β : G×X → H satisfies

β(g, x) = b(g · x)α(g, x)b(x)−1

for all g ∈ G and x ∈ X. This observation motivates the following definition.
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Definition 4.2. If H is a countable group, then the cocycles α, β : G ×X → H

are equivalent if there exist a Borel function b : X → H and a G-invariant Borel

subset X0 ⊆ X with µ(X0) = 1 such that

β(g, x) = b(g · x)α(g, x)b(x)−1

for all g ∈ G and x ∈ X0.

Cocycle superrigidity theorems state that with suitable hypotheses on G, (Xµ )

and H, every Borel cocycle α : G×X → H is equivalent to a group homomorphism4

ϕ : G→ H. In this case, if α is the cocycle corresponding to a Borel homomorphism

f : X → Y from EXG to EYH and f ′ : X → Y is the “adjusted homomorphism”

corresponding to ϕ, then

ϕ(g) · f ′(x) = f ′(g · x)

for all g ∈ G and x ∈ X0; i.e., the pair (ϕ, f ′ � X0 ) is a permutation group

homomorphism from (G,X0 ) to (H,Y ).

The proof of Theorem 1.14 will make use of of the following special case of Popa’s

cocycle superrigiditity theorem [16]. (In the statement of the following theorem, we

are considering the shift action G y ( 2G, µ ), together with the uniform product

probability measure µ on 2G.)

The Popa Superrigidity Theorem. If G is a countably infinite Kazhdan group

and H is any countable group, then every Borel cocycle

α : G× 2G → H

is equivalent to a group homomorphism from G into H.

The proof of Theorem 1.14 involves the application of the Popa Superrigidity

Theorem to a suitable family of simple quasi-finite Kazhdan groups. Recall that a

countably infinite group ∆ is said to be quasi-finite if every proper subgroup of ∆

is finite. The following result is implicitly contained in Ol’shanskii [14]. (For more

details, see Ozawa [15].)

4In some superrigidity theorems, it is necesssary to restrict to a subgroup G0 6 G of finite

index and an ergodic component of the restricted action G0 y (X,µ ).
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Theorem 4.3 (Ol’shanskii [14]). If H is a noncyclic torsion-free hyperbolic group,

then H has a family {∆α = H/Nα | α < 2ℵ0 } of uncountably many pairwise

nonisomorphic simple quasi-finite quotient groups.

Corollary 4.4. There exists a family {∆α =| α < 2ℵ0 } of uncountably many

pairwise nonisomorphic simple quasi-finite 2-generator Kazhdan groups.

Proof of Corollary 4.4. Let L be a noncyclic torsion-free hyperbolic Kazhdan group.

(For example, we can let L be a co-compact lattice in Sp(n, 1) for some n ≥ 2. See

de la Harpe-Valette [6].) Let K 6 L be a 2-generator non-cyclic subgroup. Then,

by Ol’shanskii [14, Theorem 2], L has a quotient H = L/M such that:

(i) H is a noncyclic torsion-free hyperbolic group; and

(ii) π(K) = H, where π : L→ L/M is the natural surjection.

In particular, (ii) implies that H is a 2-generator group. Applying Theorem 4.3, let

{∆α = H/Nα | α < 2ℵ0 } be a family of uncountably many pairwise nonisomorphic

simple quasi-finite quotient groups. Let α < 2ℵ0 . Since ∆α is a quotient of H, it

follows that ∆α is a 2-generator group; and since ∆α is a quotient of L, it follows

that ∆α is a Kazhdan group. �

Remark 4.5. For later use, suppose that α 6= β < 2ℵ0 and that ϕ : ∆α → ∆β is a

group homomorphism. Since ∆α � ∆β and every proper subgroup of ∆β is finite,

it follows that ϕ is not an embedding; and since ∆α is simple, it follows that ϕ is

the trivial homomorphism such that ϕ(g) = 1 for all g ∈ ∆α.

For each α < 2ℵ0 , let E∆α
be the orbit equivalence relation of the shift action

∆α y 2∆α and let µα denote the uniform product probability measure on 2∆α . The

proof of Theorem 1.14 will make use of the following strong Borel incomparability

result.

Theorem 4.6. If α 6= β, then E∆α
is E∆β

-ergodic with respect to µα.

Proof. Suppose not and let f : 2∆α → 2∆β be a µα-nontrivial Borel homomorphism

from E∆α
to E∆β

. Let

Fr∆β
(2∆β ) = {x ∈ 2∆β | g · x 6= x for all g ∈ ∆β r 1 }
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be the free part of the action ∆β y 2∆β . Applying Thomas [19, Lemma 7.8], since

∆β is a simple quasi-finite group, it follows that E∆β
is Borel bireducible with

E∆β
� Fr∆β

(2∆β ). Hence we can suppose that f(x) ∈ Fr∆β
(2∆β ) for all x ∈ 2∆α ;

and we can define a Borel cocycle α : ∆α × 2∆α → ∆β by

α(g, x) = the unique h ∈ ∆β such that h · f(x) = f(g · x).

By the Popa Superrigidity Theorem, α is equivalent to a group homomorphism

ϕ : ∆α → ∆β ; and, by Remark 4.5, ϕ is necessarily the trivial homomorphism such

that ϕ(g) = 1 for all g ∈ ∆α. Thus there exist a Borel map b : 2∆α → ∆β and a

∆α-invariant Borel subset X0 ⊆ 2∆α with µα(X0) = 1 such that

b(g · x)α(g, x)b(x)−1 = 1

for all g ∈ ∆α and x ∈ X0. Let f ′ : 2∆α → ∆β be the Borel map defined by

f ′(x) = b(x) · f(x). Then f ′ � X0 is ∆α-invariant; and hence, by ergodicity, there

exists a Borel subset X1 ⊆ X0 with µα(X1) = 1 such that such that f ′ � X1 is

a constant map. But this means that f maps X1 into a single E∆β
-class, which

contradicts the assumption that f is µα-nontrivial. �

The proof of Theorem 1.3 will make use of the following result, which is an easy

consequence of the Ioana cocycle superrigidity theorem [7] for profinite actions of

Kahzdan groups. Let n ≥ 3, let V =
∏
p∈P V (n, p), and let Γ = SLn(Z). Then we

can define a Γ-invariant ergodic probability measure ν for the Borel action Γ y V

as follows.5 For each p ∈ P, let νp be the probability measure on V (n, p) defined by

νp(v) =

1/(pn − 1), if v 6= 0;

0 if v = 0.

Then the corresponding product measure ν =
∏
p∈P νp on V is Γ-invariant and

ergodic.

Theorem 4.7. Let n ≥ 3 and let Γ = SLn(Z). If H is any countable group and

α : Γ× V → H

5In Section 6, we will classify all of the Γ-invariant ergodic probability measure on V .
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is a Borel cocycle, then there exists a subgroup ∆ 6 Γ with [ Γ : ∆ ] < ∞ and an

ergodic component X0 for the action of ∆ y (V, ν ) such that α � ( ∆ × X0 ) is

equivalent to either:

(a) an embedding ϕ : ∆→ H; or else

(b) the trivial homomorphism ϕ : ∆→ H which takes constant value 1.

Remark 4.8. The proof of Theorem 4.7 is virtually identical to that of Thomas [20,

Theorem 4.3]. There is a slight complication when n is even and Z(SLn(Z)) is a

nontrivial finite normal subgroup of Γ. However, this is easily dealt with by first

passing to a subgroup Γ0 6 Γ of finite index such that Γ0 ∩ Z(SLn(Z)) = 1.

The proof of Theorem 1.3 will also make use of the following non-embeddability

theorem, which is an easy consequence of the Margulis superrigidity theorems [11].

Theorem 4.9. Let n ≥ 3 and let Γ = SLn(Z). If ∆ ≤ Γ is a subgroup with

[ Γ : ∆ ] <∞ and 1 ≤ m < n, then ∆ does not embed into GLm(C).

5. The proof of Theorems 1.14

In this section, we will present the proof of Theorem 1.14. First we will recall

the notation that we will use throughout this section. Let Γ be a countably infinite

group, let EΓ be the orbit equivalence relation of the shift action Γ y 2Γ and

let µ be the uniform product probability measure on 2Γ. Throughout, the Vitali

equivalence relation on 2Γ will be denoted by E0. Let A =
⊕

γ∈ΓAγ , where each

Aγ = 〈 aγ 〉 is cyclic of order 2; and let Ay 2Γ be the Borel action defined by

(aγ · x)(g) =

x(g), if g 6= γ;

1− x(g) if g = γ.

Thus E0 is the orbit equivalence relation of the action A y 2Γ; and E0 o EΓ is

the orbit equivalence relation of the action of WΓ = Ao Γ on 2Γ. Finally, for each

H ∈ {Γ,WΓ }, let

FrH(2Γ) = {x ∈ 2Γ | h · x 6= x for all h ∈ H r 1 }

be the free part of the action H y 2Γ. Then clearly FrH(2Γ) is an H-invariant

Borel subset of 2Γ. In this section, we will continue to identify each x ∈ 2Γ with the
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corresponding subset S ⊆ Γ and to identify E0 with the almost equality relation

=∗ on P(Γ).

Lemma 5.1. µ( FrWΓ
(2Γ) ) = 1.

Proof. It is enough to show that

µ( {x ∈ 2Γ | g · x = x } ) = 0

for all 1 6= g ∈WΓ. Let g = aγ, where a ∈ A and γ ∈ Γ. Since A acts freely on 2Γ,

we can suppose that γ 6= 1. Note that if S ∈ 2Γ and g ·S = S, then γ ·S =∗ S. Let

C = 〈 γ 〉 be the cyclic subgroup generated by γ.

First suppose that C is finite and let T be a set of right coset representatives of

C in Γ. Then T is infinite and γ · S =∗ S if and only if for all but finitely many

t ∈ T , we have that either S∩Ct = Ct or S∩Ct = ∅. There exists a fixed 0 < p < 1

such that for all t ∈ T ,

µ( {S ∈ 2Γ | S ∩ Ct 6= Ct and S ∩ Ct 6= ∅ } ) = p.

By the second Borel-Cantelli Lemma, since these events are independent, it follows

that for µ-a.e. S ∈ 2Γ, there exist infinitely many t ∈ T such that S ∩Ct 6= Ct and

S ∩ Ct 6= ∅.

Next suppose that C is an infinite cyclic group. Then if γ · S =∗ S, we must

have that either:

(i) S ∩ C is finite; or

(ii) there exists ` ∈ Z such that { γn | n ≤ ` } ⊆ S ∩ C; or

(iii) there exists ` ∈ Z such that { γn | n ≥ ` } ⊆ S ∩ C.

Clearly the set of S ∈ 2Γ satisfying conditions (i), (ii) or (iii) forms a µ-null set. �

From now on, let Γ = 〈 a, b, c 〉 be the free group on the generators a, b, c and let

F = 〈 a, b 〉 be the free group on the generators a, b. Let π : Γ→ F be the surjective

homomorphism such that π(a) = a, π(b) = b and π(c) = 1; and let N = kerπ. Then

clearly F is a set of coset representatives of N in Γ. Let XF ⊆ 2Γ be the Borel

subset consisting of the subsets S ⊆ Γ such that there exists a (possibly empty)

subset I ⊆ F with S =
⊔
t∈I Nt. For each S ∈ 2Γ, let [S ]E0

be the corresponding

E0-class.
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Claim 5.2. If S ∈ XF , then [S ]E0 r FrΓ(2Γ) = {S }.

Proof of Claim 5.2. Suppose that S =
⊔
t∈I Nt ∈ XF . Then clearly g · S = S for

each g ∈ N and so S /∈ FrΓ(2Γ). Let S′ ∈ [S ]E0
r {S }. Then at least one of the

following possibilities must hold:

(i) { t ∈ T | 0 < |S′ ∩Nt| <∞} is a nonempty finite subset of T r I;

(ii) { t ∈ T | 0 < |Ntr S′| <∞} is a nonempty finite subset of T .

Suppose that g ∈ Γ satisfies g · S′ = S′. Since N is a normal subgroup of Γ, it

follows that g permutes the cosets {Nt | t ∈ T }; and since at one of (i) or (ii) holds,

it follows that there exists a nonempty finite subset A ⊆ Γ such that g ·A = A, and

this implies that g = 1. �

Let Y =
⋃
{FrΓ(2Γ) ∩ [S ]E0

| S ∈ XF }. Note that Claim 5.2 implies that if

S ∈ XF and 1 6= a ∈ A, then a · S ∈ Y .

Claim 5.3. If 1 6= a ∈ A, then the map S 7→ a · S is a Borel reduction from

EΓ � XF to (E0 o EΓ) � Y .

Proof of Claim 5.3. Suppose that S1, S2 ∈ XF . If there exists γ ∈ Γ such that

γ · S1 = S2, then γ · [S1 ]E0 = [S2 ]E0 and it follows that there exists g ∈ WΓ such

that g · (a · S1) = a · S2. Conversely, suppose that there exists g ∈ WΓ such that

g · (a · S1) = a · S2. Let g = γb, where γ ∈ Γ and b ∈ A. Then γ · [S1 ]E0
= [S2 ]E0

,

and Claim 5.2 implies that γ · S1 = S2. �

Note that the above argument also yields the following result.

Claim 5.4. Let σ : Y → XF be the Borel map defined by

σ(y) = the unique z ∈ XF such that z E0 y.

Then σ is a Borel reduction from (E0 o (EΓ) � Y to EΓ � XF .

Applying Corollary 4.4, let {∆α =| α < 2ℵ0 } be a family of uncountably many

pairwise nonisomorphic simple quasi-finite 2-generator Kazhdan groups. For each

α < 2ℵ0 , let πα : F → ∆α be a surjective homomorphism and let

fα : 2∆α → XF
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be the Borel injection defined by

(5.3) S 7→
⊔

t∈π−1
α (S)

Nt.

Let X∆α
= fα(2∆α). Then X∆α

is a Γ-invariant Borel subset of XF and fα is a

Borel isomorphism from E∆α
to EΓ � X∆α

. Let

Yα =
⋃
{FrΓ(2Γ) ∩ [S ]E0 | S ∈ X∆α }

and let Zα = FrWΓ(2Γ) t Yα. Then clearly Yα, Zα are Γ-invariant Borel subsets of

FrΓ(2Γ) and Γ permutes the (E0 � Zα)-classes.

Claim 5.6. E0 � Zα is Borel isomorphic to E0.

Proof of Claim 5.6. Applying Claim 5.2, we see that the following conditions hold:

(i) E0 � Yα is aperiodic; and

(ii) E0 � Yα is smooth.

Since E0 � FrWΓ
(2Γ) is clearly aperiodic, it follows that E0 � Zα is aperiodic. Also

condition (ii) implies that if ν is an (E0 � Zα)-invariant probability measure on

Zα, then ν(Yα ) = 0. (For example, see Dougherty-Jackson-Kechris [3].) Since

E0 � FrWΓ(2Γ) is uniquely ergodic, it follows that E0 � Zα is also uniquely ergodic.

Hence the result follows from Theorem 2.1. �

Claim 5.7. Γ y Zα is Borel isomorphic to Γ y FrWΓ
(2Γ).

Proof of Claim 5.7. It is enough to show that EΓ � Yα is smooth. To see this, first

let {An | n ∈ N } be an enumeration of the finite nonempty subsets of Γ. Now

suppose that C ⊆ Yα is a Γ-orbit; and for each S′ ∈ C, let S ∈ X∆α be the unique

element such that S′ E0 S. Then S =
⊔
t∈IS Nt for some subset IS ⊆ T ; and

FS′ =
⋃
{S′ ∩Nt | 0 < |S′ ∩Nt| <∞} ∪

⋃
{Ntr S′ | 0 < |Ntr S′| <∞}

is a nonempty finite subset of Γ. Furthermore, it is clear that if γ ∈ Γ, then

Fγ·S′ = γ · FS′ . It follows that the map

C → {An | n ∈ N }

S′ 7→ FS′
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is injective; and so we can make a Borel selection of an element S′C ∈ C by letting

S′C be the unique S′ ∈ C such that FS′ = An(C), where

n(C) = min{n ∈ N | (∃S′ ∈ C )FS′ = An }.

�

Combining Claims 5.6 and 5.7, we see that (E0 � Zα) o (EΓ � Zα) is Borel

isomorphic to an E0-extension of Γ y FrWΓ
(2Γ). Hence, in order to complete the

proof of Theorem 1.14, it is enough to prove the following result.

Theorem 5.8. If α 6= β, then (E0 � Zα) o (EΓ � Zα) is not Borel reducible to

(E0 � Zβ)o (EΓ � Zβ).

Suppose that f : Zα → Zβ is a Borel reduction from (E0 � Zα) o (EΓ � Zα) to

(E0 � Zβ)o (EΓ � Zβ). Let fα : 2∆α → X∆α
be the Borel isomorphism from E∆α

to EΓ � X∆α given by (5.3) and let 1 6= a ∈ A be a fixed nonidentity element. Let

ϕ : 2∆α → Zβ be the Borel map defined by

S 7→ f( a · fα(S) ).

Applying Claim 5.3, we see that S 7→ a · fα(S) is a Borel reduction from E∆α
to

(E0 � Zα) o (EΓ � Zα); and it follows that ϕ is a Borel reduction from E∆α
to

(E0 � Zβ)o (EΓ � Zβ). Since ∆α y ( 2∆α , µα ) is ergodic, either:

• ϕ(x) ∈ FrWΓ(2Γ) for µα-a.e. x ∈ 2∆α ; or

• ϕ(x) ∈ Yβ for µα-a.e. x ∈ 2∆α .

Case 1: Suppose that ϕ(x) ∈ FrWΓ(2Γ) for µα-a.e. x ∈ 2∆α . Then, after deleting

a µα-null subset of 2∆α , we can define a Borel cocycle α : ∆α × 2∆α →WΓ by

α(γ, x) = the unique g ∈WΓ such that g · ϕ(x) = ϕ(γ · x).

Applying the Popa Superrigidity Theorem, it follows that α is equivalent to a group

homomorphism ψ : ∆α → WΓ. Hence, after adjusting ϕ, we can suppose that for

µα-a.e. x ∈ 2∆α , for all γ ∈ ∆α,

ψ(γ) · ϕ(x) = ϕ(γ · x).

It is clear that the simple quasi-finite group ∆α does not embed into WΓ = Ao Γ;

and it follows that ψ is the trivial homomorphism such that ψ(γ) = 1 for all
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γ ∈ ∆α. Thus ϕ is µα-a.e. ∆α-invariant; and by ergodicity, this implies that ϕ is

µα-a.e. constant, which is a contradiction.

Case 2: Suppose that ϕ(x) ∈ Yβ for µα-a.e. x ∈ 2∆α . Applying Claim 5.2, let

σ : Yβ → X∆β
be the Borel map defined by

σ(y) = the unique z ∈ X∆β
such that z E0 y.

Then, by Claim 5.4, σ is a Borel reduction from (E0 o (EΓ) � Yβ to EΓ � X∆β
. It

follows that the map x 7→ (f−1
β ◦ σ ◦ ϕ)(x) is µα-a.e. a Borel reduction from Eα to

Eβ , which contradicts Theorem 4.6.

It should be pointed out that the current version of Theorem 1.14 is situated

very much in the Borel setting, rather than in the measurable setting in which sets

and functions are identified if they agree on a conull set. This suggests the following

problem.

Notation 5.9. For each countable Borel equivalence relation E such that E ∼= E0,

let µE be the unique E-invariant probability measure.

Question 5.10. Does there exist a countable Borel equivalence relation F on a

standard Borel space X with uncountably many E0-extensions {EαoF | α < 2ℵ0 }

such that whenever Y ⊆ X is a Borel subset with µEα(Y ) = 1 and β 6= α, then

(Eα o F ) � Y is not Borel reducible to Eβ o F?

6. Ergodic probability measures

The remaining sections of this paper will be devoted to the proof of Theorem

1.3. From now on, we will let Γ = SLn(Z). Recall that EVΓ is the orbit equivalence

relation corresponding to the Borel action

Γ = SLn(Z) y V =
∏
p∈P

V (n, p),

and that EV0 is the countable Borel equivalence relation on V defined by

(vp) E
V
0 (wp) ⇐⇒ vp = wp for all but finitely many p ∈ P.

In order to simply notation, for the remainder of this paper, we will write E, E∗

instead of EVΓ , EV0 o EVΓ respectively. For each p ∈ P, let Tp = { tv | v ∈ V (n, p) },

where

tv(w) = v + w, w ∈ V (n, p).
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Let T =
⊕

p∈P Tp and let G = T o Γ. Then clearly E∗ is the orbit equivalence

relation corresponding to the Borel action Gy V .

In this section, in preparation for the proof of Theorem 1.3, we will classify the

Γ-invariant and G-invariant ergodic probability measures on V . First note that Γ

is a dense subgroup of the compact group K0 =
∏
p∈P SL(n, p). It follows that

G is a dense subgroup of the compact group K =
∏
p∈P[Tp o SL(n, p) ]. Since K

acts transitively on V , it follows that the action G y V is uniquely ergodic; and,

since G clearly preserves the product µ of the uniform probability measures on the

V (n, p), it follows that µ is the unique G-invariant probability measure on V .

The situation for the action Γ y V is a little more complex. First note that the

orbits of K0 on V are precisely {VS | S ⊆ P }, where

VS = { (vp) ∈ V | vp 6= 0⇐⇒ p ∈ S }.

It follows that each action Γ y VS is uniquely ergodic. Let

VS(n, p) =

V (n, p)r { 0 }, if p ∈ S;

{ 0 }, otherwise.

Then VS =
∏
p∈P VS(n, p) and the unique Γ-invariant probability measure on VS is

the product µS of the uniform probability measures on the sets VS(n, p).

Lemma 6.1. The Γ-invariant ergodic probability measures on V are {µS | S ⊆ P }.

Proof. Suppose that ν is a Γ-invariant ergodic probability measures on V . Since Γ is

a dense subgroup of K0, it follows that ν is also K0-invariant. Since K0 is compact,

every K0-invariant ergodic probability measure on V is supported on a K0-orbit.

(For example, see Bekka-Mayer [1, Corollary 2.21].) It follows that ν = µS for some

S ⊆ P. �

Finally, we will also need to know the ∆-invariant ergodic probability measures

on V for subgroups ∆ 6 Γ of finite index. Recall that if ν is a probability measure

on a topological space X, then the support of ν, denoted by supp(ν), is the smallest

closed subset C ⊆ X such that ν(X r C) = 0.

Lemma 6.2. Suppose that ∆ 6 Γ is a subgroup with [ Γ : ∆ ] < ∞ and that ν is

an ergodic probability measure for the action ∆ y V . Then there exists a subset
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S ⊆ P such that supp(ν) is an ergodic component of ∆ y (V, µS ) and ν is the

normalized probability measure on supp(ν) corresponding to µS.

Proof. Let H be the closure of ∆ in K0 =
∏
p∈P SL(n, p). Then ν is also H-

invariant and hence is supported on an H-orbit; say, H ·v. Furthermore, the action

of H y H · v is uniquely ergodic. Let S ⊆ P be the subset such that K0 · v = VS .

Then the normalized probability measure onH ·v corresponding to µS isH-invariant

and hence is equal to ν. �

7. The proof of Theorem 1.3

Let ν = µP be the Γ-invariant probability measure which concentrates on

VP = { (vp) ∈ V | vp 6= 0 for all p ∈ P },

and let FrG(V ) = { v ∈ V | g · v 6= v for all g ∈ G r 1 }. Equivalently, v ∈ FrG(V )

if and only if for all 1 6= γ ∈ Γ, v and γ · v are not EV0 -equivalent. The proof of the

following technical result will be delayed until Section 8.

Lemma 7.1. If f : V → V is a ν-nontrivial Borel homomorphism from E to E∗,

then ν( { v ∈ V | f(v) ∈ FrG(V ) } ) = 1.

In this section, we will present the proof of Theorem 1.3, modulo Lemma 7.1.

First suppose that that f : V → V is a Borel reduction from E∗ to E. Then f is

a ν-nontrivial Borel homomorphism from E to E∗. Hence, by Lemma 7.1, there

exists a Γ-invariant Borel subset X ⊆ V with ν(X) = 1 such that f(v) ∈ FrG(V )

for all v ∈ X; and we can define a Borel cocycle α : Γ×X → Γ by

α(g, v) = h, where h ∈ Γ is the unique element such that h · f(v) = f(g · v).

By Theorem 4.7, there exists a subgroup ∆ 6 Γ with [ Γ : ∆ ] <∞ and an ergodic

component X0 ⊆ X for the action ∆ y X such that α � ( ∆ × X0 ) is equivalent

to either an embedding ϕ : ∆ → Γ or else the trivial homomorphism ϕ : ∆ → Γ

which takes constant value 1. Thus, after deleting a null subset of X0 if necessary,

we can suppose that there exists a Borel map b : X0 → Γ such that

ϕ(g) = b(g · v)α(g, v)b(v)−1
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for all v ∈ X0 and g ∈ ∆. Let f ′ : X0 → V be the Borel map defined by

f ′(v) = b(v) · f(v). Then

f ′(g · v) = ϕ(g) · f ′(v)

for all v ∈ X0 and g ∈ ∆. If ϕ is the trivial homomorphism, then f ′ : X0 → V is

∆-invariant; and hence, since ∆ acts ergodically on X0, it follows that f ′ is ν-a.e.

constant. But this means that f maps ν-a.e. v ∈ X0 into a single E-class, which is

a contradiction. Thus we can suppose that ϕ is an embedding; and it follows that

[ Γ : ϕ(∆) ] < ∞. In order to simplify notation, we will suppose that f ′ = f , so

that

f(g · v) = ϕ(g) · f(v)

for all v ∈ X0 and g ∈ ∆. Next note that by applying Lemma 7.1 to the identity

map V → V , it follows that ν(FrG(V )) = 1. (Lemma 7.3 will provide a direct

proof of this result.) Hence can suppose that X0 ⊆ X ⊆ FrG(V ). It follows that

if v ∈ X0, then f restricts to a bijection between the orbits ∆ · v and ϕ(∆) · f(v).

Furthermore, if v ∈ X0 and 1 6= g ∈ Γ, then v and g · v are not EV0 -equivalent.

Also, since ν(X0) > 0, it follows that EV0 � X0 is not smooth and so we can

suppose that [v]EV0 ∩ X0 is infinite for each v ∈ X0. Fix some v ∈ X0 and let

v = v0, v1, · · · , vn, · · · enumerate [v]EV0 ∩ X0. Then the orbits {∆ · vn | n ∈ N }

are distinct; and ϕ(∆) · f(vn) ⊆ Γ · f(v) for all n ∈ N. Since [ Γ : ϕ(∆) ] < ∞,

it follows that Γ · f(v) contains only finitely many ϕ(∆)-orbits. Let ν̄ be the ∆-

ergodic probability measure on X0 defined by ν̄(A) = ν(A)/ν(X0) Let Z = f(X0)

and let m = f∗ν̄. Then ϕ(∆) acts ergodically on the standard probability space

(Z,m ). By ergodicity, we can suppose that each ϕ(∆)-orbit is the image of the

same number of ∆-orbits; and this number is necessarily infinite. Thus we can

define a smooth aperiodic countable Borel equivalence relation F ⊆ EX0

∆ by

v F w ⇐⇒ f(v) = f(w).

But, by Dougherty-Jackson-Kechris [3, Proposition 2.5], this means that EX0

∆ is

compressible, which is a contradiction. (Recall that, by Nadkarni [12], if a countable

Borel equivalence relation E is compressible, then E does not admit an invariant

probability measure.)
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Next suppose that f : V → V is a Borel reduction from E to E∗. Applying

Lemma 7.1, there exists a Γ-invariant Borel subset X ⊆ V with ν(X) = 1 such that

f(v) ∈ FrG(V ) for all v ∈ X; and we can define a Borel cocycle α : Γ×X → G by

α(g, v) = h, where h ∈ G is the unique element such that h · f(v) = f(g · v).

By Theorem 4.7, there exists a subgroup ∆ 6 Γ with [ Γ : ∆ ] <∞ and an ergodic

component X0 ⊆ X for the action ∆ y X such that α � ( ∆×X0 ) is equivalent to

either an embedding ϕ : ∆→ G or else the trivial homomorphism ϕ : ∆→ G which

takes constant value 1. Furthermore, arguing as above, we can suppose that ϕ is

an embedding; and, after deleting a null subset of X0 and adjusting f if necessary,

we can also suppose that

f(g · v) = ϕ(g) · f(v)

for all v ∈ X0 and g ∈ ∆. Since Γ is finitely generated and [ Γ : ∆ ] <∞, it follows

that ∆ is also finitely generated. Thus there exists a finite subset F ⊂ P such that

ϕ(∆) 6 [
⊕
p∈F

Tp]o Γ.

Suppose that v, w ∈ X0 and that g ∈ ∆ satisfies g ·v = w. Then ϕ(g) ·f(v) = f(w).

Let ϕ(g) = th, where t ∈
⊕

p∈F Tp and h ∈ Γ. Let f(v) = (up) and f(w) = (zp).

Then h · up = zp for all p ∈ P r F .

Let f ′ : X0 → V be the Borel map defined by

f ′(v) =

f(v)p, if p ∈ P r F ;

0, if p ∈ F .

Also, let ϕ′ : ∆→ Γ be the homomorphism defined by ϕ′(g) = h, where ϕ(g) = th

for some t ∈
⊕

p∈F Tp. Then clearly f ′(v) E∗ f(v) and so f ′ is a Borel reduction

from E � X0 to E∗. Furthermore, if v ∈ X0 and g ∈ ∆, then

f ′(g · v) = ϕ′(g) · f ′(v)

and so f ′(g ·v)E f ′(v). Let Z = f ′(X0). Then the above remarks imply that if C is

an E∗-class of V , then C ∩ Z is contained in a single E-class. In order to simplify

notation, we will suppose that f ′ = f � X0 and that ϕ′ = ϕ.

Let ν̄ be the ∆-ergodic probability measure on X0 defined by ν̄(A) = ν(A)/ν(X0)

and let m = f∗ν̄. Then ϕ(∆) acts ergodically on the standard probability space
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(Z,m ). By Lemma 6.2, there exists a subset S ⊆ P such that m is the normalized

probability measure on Z corresponding to the finite measure µS � Z and it is clear

that S cannot be a finite subset of P. Thus, in order to reach a contradiction, it is

enough to prove the following result.

Proposition 7.2. Suppose that S ⊆ P is an infinite subset and that Z ⊆ V is a

Borel subset such that if C is an E∗-class of V , then C ∩Z is contained in a single

E-class. Then µS(Z) = 0.

First we need to prove the following result.

Lemma 7.3. If S ⊆ P is an infinite subset, then µS(VS ∩ FrG(V )) = 1.

Proof. For each 1 6= g ∈ Γ, let W g
S be the subset of those v ∈ VS such that v and

g ·v are not E0-equivalent. Then it is enough to show that each µS(W g
S) = 1. To see

this, for each p ∈ S, let gp ∈ SL(n, p) be the corresponding element. Then gp 6= 1

for all but finitely many p ∈ S. Let T ⊆ { p ∈ S | gp 6= 1 } be an infinite subset

such that
∑
p∈T 1/p <∞. For each p ∈ T , let Fix(gp) 6 V (n, p) be the subspace of

vectors fixed by gp and let Egp = { v ∈ V | vp ∈ Fix(gp) }. Since dim Fix(gp) ≤ n−1,

it follows that

µS(Egp) ≤ (pn−1 − 1)/(pn − 1) < 1/p.

Applying the Borel-Cantelli Lemma, since∑
p∈T

µS(Egp) <
∑
p∈T

1/p <∞,

it follows that for µS-a.e. v ∈ VS , the set { p ∈ T | gp · vp = vp } is finite. Hence

µS(W g
S) = 1. �

Proof of Proposition 7.2. Suppose S, Z is a counterexample. Applying Lemma 7.3,

we can suppose that Z ⊆ VS ∩ FrG(V ). Let GS = [
⊕

p∈S Tp]o Γ and let νS be the

uniform product probability measure on V +
S =

∏
p∈S V (n, p). Then νS is a GS-

ergodic probability measure on V +
S ; and, identifying VS with

∏
p∈S(V (n, p)r{ 0 } ),

we have that νS(VS) =
∏
p∈S(1 − 1/pn). Since

∑
p∈S 1/pn < ∞, it follows that

νS(VS) > 0 and hence νS(Z) = µS(Z)νS(VS) > 0. It follows that there exists

1 6= t ∈
⊕

p∈S Tp such that tZ ∩ Z 6= ∅; say, t · v ∈ Z, where v ∈ Z. Then,

since v and t · v are E∗-equivalent, it follows that there exists 1 6= g ∈ Γ such that
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g · v = t · v. But then v and g · v are E0-equivalent, which contradicts the fact that

v ∈ FrG(V ). �

This completes the proof of Theorem 1.3.

8. The proof of Lemma 7.1

In this section, we will present the proof of Lemma 7.1. Suppose that f : V → V

is a counterexample; i.e. that f : V → V is a ν-nontrivial Borel homomorphism

from E to E∗ such that ν( { v ∈ V | f(v) ∈ FrG(V ) } ) 6= 1. Then, by ergodicity,

it follows that there exists a Γ-invariant Borel subset X ⊆ V with ν(X) = 1 such

that f(v) /∈ FrG(V ) for all v ∈ X.

Let E2P

0 be the countable Borel equivalence relation on 2P defined by

(xp) E
2P

0 (yp) ⇐⇒ xp = yp for all but finitely many p ∈ P.

Then clearly E2P

0
∼= E0. For each v ∈ V , let σ(v) = { p ∈ P | vp 6= 0 }. Then the

map v 7→ σ(v) is a Borel homomorphism from E to E2P

0 . Since Γ is a Kazhdan

group, it follows that E is E0-ergodic with respect to ν; and hence we can suppose

that f maps X into a single E2P

0 -class; say, [S ]
E2P

0
. Clearly S cannot be a finite

subset of P. Let D be any nonprincipal ultrafilter over P such that S ∈ D.

From now on, for each v ∈ V , the corresponding EV0 -class will be denoted by

[ v ]; and we define

Γ[ v ] = { γ ∈ Γ | γ · [ v ] = [ v ] }.

Let v ∈ X and let f(v) = (up). Then there exists a non-identity element γ ∈ Γr 1

such that γ · [ f(v) ] = [ γ · f(v) ] = [ f(v) ]. Let

f(v)D = (up)D ∈
∏
D
V (n, p) = V (n, F ),

where F =
∏
D Fp. For each p ∈ P and γ ∈ Γ, let γp ∈ SL(n, p) be the correspond-

ing matrix over the finite field Fp = Z/pZ. Then (γp)D · f(v)D = f(v)D and clearly

(γp)D = γ. From now on, regard F as a subfield of C and let Γ y V (n,C) be the

corresponding extension of the action Γ y V (n, F ). Then f(v)D 6= 0 is a nontrivial

element of the γ-eigenspace E 6 V (n,C) corresponding to the eigenvalue 1; and

since γ 6= 1, it follows that E is a nontrivial proper Q-subspace of V (n,C).

Here Q is the algebraic closure of Q; and a subspace W 6 V (n,C) is said to be

a Q-subspace if there exists a (possibly empty) collection of vectors b1, . . . ,bt ∈
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V (n,Q) such that E = 〈b1, . . . ,bt〉. Clearly if E, F 6 V (n,C) are Q-subspaces,

then E∩F is also a Q-subspace. Thus, for each v ∈ X, there exists a unique minimal

proper Q-subspace Wv such that f(v)D ∈ Wv. Furthermore, the above argument

shows that each γ ∈ Γ[ f(v) ] acts trivially on Wv. Thus, for each v ∈ X, there

exists a unique nontrivial maximal (necessarily proper) Q-subspace Uv 6 V (n,C)

on which Γ[ f(v) ] acts trivially. Note that the Q-subspace Uv does not depend on

the choice of the nonprincipal ultrafilter over P such that S ∈ D. In particular, the

above argument shows that if v ∈ X and if D is any nonprincipal ultrafilter over

P such that S ∈ D, then f(v)D ∈ Uv. Clearly the map v 7→ Uv is Borel and hence

there exists a Q-subspace U such that

ν( { v ∈ X | Uv = U } ) > 0.

After adjusting f and shrinking X if necessary, we can suppose that Uv = U for

all v ∈ X. Let H = Γ{U} be the setwise stabilizer of U in Γ. Now suppose that

v, w ∈ X and that γ ∈ Γ satisfies γ · v = w. Then there exists h ∈ Γ such that

h · [ f(v) ] = [ f(w) ], and we have that

h[U ] = h[Uv] = Uw = U.

Thus h ∈ H. Let H0 = {h � U | h ∈ H } be the group of linear transformation

induced on U by H; and for each h ∈ H, let h̃ = h � U .

Claim 8.1. Suppose that v, w ∈ X and that h ∈ H satisfies h · [ f(v) ] = [ f(w) ].

If h̃ = 1, then [ f(v) ] = [ f(w) ].

Proof of Claim 8.1. Let f(v) = (up) and f(w) = (zp). Suppose that

D = { p ∈ P | up 6= zp }

is infinite, and let D be a nonprincipal ultrafilter over P such that D ∈ D. Then

clearly |D r S| <∞ and so S ∈ D. Hence f(v)D, f(w)D ∈ U and f(v)D 6= f(w)D.

Since h · f(v)D = f(w)D, it follows that h̃ 6= 1. �

Again suppose that v, w ∈ X and that γ ∈ Γ satisfies γ · v = w. Then there

exists h ∈ H such that h · [ f(v) ] = [ f(w) ]. Suppose that h′ ∈ H also satisfies

h′ · [ f(v) ] = [ f(w) ]. Then h−1h′ ∈ Γ[ f(v) ] and it follows that h � U = h′ � U .
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Hence we can define a Borel cocycle α̃ : Γ×X → H0 by

α̃(γ, v) = h̃, where h ∈ H is any element such that h · [ f(v) ] = [ f(γ · v) ].

By Theorem 4.7, there exists a subgroup ∆ 6 Γ with [ Γ : ∆ ] <∞ and an ergodic

component X0 ⊆ X for the action ∆ y X such that α � ( ∆ × X0 ) is equivalent

to either an embedding ϕ : ∆→ H0 or else the trivial homomorphism ϕ : ∆→ H0

which takes constant value 1. Furthermore, applying Theorem 4.9, it follows that

∆ does not embed into H0. Thus, after deleting a null subset of X0 if necessary,

we can suppose that there exists a Borel map b̃ : X0 → H0 such that

b̃(γ · v)α̃(γ, v)b̃(v)−1 = 1

for all v ∈ X0 and γ ∈ ∆. Let b : X0 → H be a Borel map such that b̃(v) = b̃(v)

and let f ′ : X0 → V be the Borel map defined by f ′(v) = b(v) · f(v).

Suppose that v, w ∈ X0 and that γ ∈ ∆ satisfies γ · v = w. Let h ∈ H be such

that h · [ f(v) ] = [ f(w) ] = [ f(γ · v) ]. Then

b(γ · v)hb(v)−1 · [ f ′(v) ] = b(γ · v) · [ f(γ · v) ] = [ f ′(γ · v) ] = [ f ′(w) ]

and b(γ · v)hb(v)−1 7→ b̃(γ · v)α̃(γ, v)b̃(v)−1 = 1.

Claim 8.2. [ f ′(v) ] = [ f ′(w) ].

Proof of Claim 8.2. Let f ′(v) = (up) and f ′(w) = (zp). Suppose that

D = { p ∈ P | up 6= zp }

is infinite, and let D be a nonprincipal ultrafilter over P such that D ∈ D. Once

again, it is clear that |D r S| < ∞ and so S ∈ D. Thus f(v)D, f(w)D ∈ U ; and

clearly f ′(v)D 6= f ′(w)D. Since f ′(v) = b(v) · f(v) and f ′(w) = b(w) · f(w) for some

b(v), b(w) ∈ H = Γ{U}, it follows that f ′(v)D, f ′(w)D ∈ U . Finally, since

b(g · v)hb(v)−1 · [ f ′(v) ] = [ f ′(w) ],

it follows that b(g · v)hb(v)−1 7→ b̃(g · v)α̃(g, v)b̃(v)−1 6= 1, which is a contradiction.

�

Since ∆ is a Kazhdan group, it follows that EX0

∆ is E0-ergodic; and hence we

can suppose that f ′ maps X0 into a single EV0 -class. However, this implies that f
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maps ν-a.e. v ∈ X into a single E∗-class, which contradicts the assumption that f

is ν-nontrivial. This completes the proof of Lemma 7.1.

References

[1] M. B. Bekka and M. Mayer, Ergodic Theory and Topological Dynamics of Group Actions on

Homogeneous Spaces, London Math. Soc. Lecture Notes Series 269, Cambridge University

Press, 2000.

[2] L. Bowen, Simple and large equivalence relations, Proc. Amer. Math. Soc. 145 (2017), 215–

224.

[3] R. Dougherty, S. Jackson and A. S. Kechris, The structure of hyperfinite Borel equivalence

relations, Trans. Amer. Math. Soc. 341 (1994), 193–225.

[4] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neumann

algebras, I , Trans. Amer. Math. Soc. 234 (1977), 289–324.

[5] J. Feldman, C. E. Sutherland, and R. J. Zimmer, Subrelations of ergodic equivalence relations,

Ergodic Theory Dynam. Systems 9 (1989), 239–269.

[6] P. de la Harpe and A. Valette, La propriété (T ) de Kazhdan pour les groupes localement
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