PRACTICE FINAL EXAM

1. Set Theory

Question 1.

- (a) State and prove the Cantor-Bernstein Theorem.
- (b) Let $\mathbb{Z}[x]$ be the set of polynomials with integer coefficients in the variable x; i.e. each $p(x) \in \mathbb{Z}[x]$ has the form

$$p(x) = z_0 + z_1 x + \dots + z_n x^n$$

where $n \ge 0$ and $z_0, \ldots, z_n \in \mathbb{Z}$. Prove that $\mathbb{N} \sim \mathbb{Z}[x]$.

(c) A function $f: \mathbb{N} \to \mathbb{N}$ is said to be a *quasi-identity function* iff

 $|f(n) - n| \le 1$ for all $n \in \mathbb{N}$.

Determine whether the set $QI(\mathbb{N})$ of quasi-identity functions is countable or uncountable.

Question 2.

- (a) Give the definition of a linear ordering.
- (b) Give the definition of an isomorphism between two linear orders $\langle L_1, < \rangle$ and $\langle L_2, \prec \rangle$.

Prove or disprove each of the following statements.

- (c) $\langle \mathbb{Q} \smallsetminus \{0,1\}, < \rangle \simeq \langle \mathbb{Q} \smallsetminus [0,1], < \rangle$.
- (d) $\langle \mathbb{Q} \smallsetminus \{0,1\}, < \rangle \simeq \langle \mathbb{Q} \smallsetminus (0,1), < \rangle$.
- (e) $\langle \mathbb{Q} \smallsetminus \mathbb{Z}, < \rangle \simeq \langle \mathbb{R} \smallsetminus \mathbb{Z}, < \rangle$.

2. Propositional Logic

Question 3.

- (a) Give the definition of $\Sigma \models \alpha$, where Σ is a set of propositional wffs and α is a propositional wff.
- (b) Which of the following wffs are tautologies?

(i)
$$(Q \lor (\neg (P \to Q))).$$

PRACTICE FINAL EXAM

(ii) $((P \to (Q \to R)) \leftrightarrow ((P \land Q) \to R)).$

- (c) A set Σ of wffs is said to be *independent* iff for all φ ∈ Σ, Σ \ {φ} ⊭ φ.
 Prove that if Σ is a finite set of wffs, then there exists a subset Δ ⊆ Σ such that:
 - (i) Δ is independent; and
 - (ii) for all $\varphi \in \Sigma$, $\Delta \vDash \varphi$.

(*Hint:* Consider a subset $\Delta \subseteq \Sigma$ of *minimal* size such that for all $\varphi \in \Sigma$, $\Delta \models \varphi$.)

Question 4.

- (a) State the Compactness Theorem for propositional logic.
- (b) Let $\{S_n \mid n \in \mathbb{N}\}$ be a collection of finite subsets of \mathbb{N} such that for each finite subset $F \subset \mathbb{N}$, there exists a subset $A_F \subseteq \mathbb{N}$ with $|A_F \cap S_n| = 1$ for all $n \in F$. Prove that there exists a subset $A \subseteq \mathbb{N}$ such that $|A \cap S_n| = 1$ for all $n \in \mathbb{N}$.
- (c) Give an example of a collection $\{T_n \mid n \in \mathbb{N}\}$ of subsets of \mathbb{N} satisfying both of the following conditions.
 - (i) For each finite subset $F \subset \mathbb{N}$, there exists a subset $B_F \subseteq \mathbb{N}$ such that $|B_F \cap T_n| = 1$ for all $n \in F$.
 - (ii) There does *not* exist a subset $B \subseteq \mathbb{N}$ such that $|B \cap T_n| = 1$ for all $n \in \mathbb{N}$.

3. Predicate Logic

Question 5.

- (a) Give the definition of $\Gamma \models \varphi$ and $\Gamma \vdash \varphi$.
- (b) State the Completeness Theorem and the Soundness Theorem for predicate logic.
- (c) Let \mathcal{L} have the following nonlogical symbols :
 - (i) a binary predicate symbol <; and
 - (ii) two unary predicate symbols P and Q.
 - Let T be the theory in \mathcal{L} with the following axioms:
 - (1) $(\forall x) \neg (x < x)$
 - $(2) \ (\forall x)(\forall y)(x < y \lor y < x \lor x = y)$

 $\mathbf{2}$

- (3) $(\forall x)(\forall y)(\forall z)([x < y \land y < z] \rightarrow [x < z])$
- $(4) \ (\forall x)(\forall y)([x < y] \to (\exists z)[x < z \land z < y])$
- (5) $(\forall x)(\exists y)(\exists z)(y < x \land x < z)$
- (6) $(\forall x)(Px \lor Qx)$
- (7) $(\forall x) \neg (Px \land Qx)$
- (8) $(\forall x)(\exists y)(\exists z)(y < x \land Py \land x < z \land Pz)$
- $(9) \ (\forall x)(\exists y)(\exists z)(y < x \land Qy \land x < z \land Qz)$

Let σ be the following sentence:

$$(\forall x)(\forall y)([x < y \land Px \land Py] \to (\exists z)[x < z \land z < y \land Pz]).$$

Prove that $T \not\vdash \sigma$ and $T \not\vdash \neg \sigma$.

Question 6. Recall that two structures \mathcal{A} , \mathcal{B} for the first-order language \mathcal{L} are said to be *elementarily equivalent*, written $\mathcal{A} \equiv \mathcal{B}$, if for every sentence σ , we have that $\mathcal{A} \models \sigma$ iff $\mathcal{B} \models \sigma$.

- (a) Let **C** be an axiomatizable class of structures for the first-order language \mathcal{L} and let \mathcal{A}, \mathcal{B} be any structures for the language \mathcal{L} . Prove that if $\mathcal{A} \equiv \mathcal{B}$, then $\mathcal{A} \in \mathbf{C}$ iff $\mathcal{B} \in \mathbf{C}$.
- (b) State the Compactness Theorem for predicate logic.
- (c) A graph Γ is *connected* if for every pair of distinct vertices $c, d \in V$, there exists a path in Γ from c to d. Otherwise, Γ is *nonconnected*. For example, if $\Gamma = \langle \mathbb{Z}, E \rangle$ is the graph such that nEm iff |n m| = 1, then Γ is connected. Prove that there exists a graph G such that $G \equiv \Gamma$ and G is nonconnected.
- (d) Prove that the class of nonconnected graphs is not axiomatizable.