361 SECOND MIDTERM 2017

Question 1.

- (a) Give the definition of $A \approx B$; i.e. the set A is equinumerous to the set B.
- (b) Prove that if A is any set, then $A \not\approx \mathcal{P}(A)$.

Question 2.

- (a) State the Cantor-Bernstein Theorem.
- (b) Prove that $\mathbb{Z} \times \mathbb{Q} \sim \mathbb{N}$.
- (c) Let $S(\mathbb{N})$ be the set of *strictly increasing* functions $f: \mathbb{N} \to \mathbb{N}$; ie. those functions f such that f(n) < f(m) for all $0 \le n < m$. Prove that $\mathcal{P}(\mathbb{N}) \approx S(\mathbb{N})$.

Question 3.

- (a) Define the addition operation $\kappa + \lambda$ for cardinal numbers κ and λ .
- (b) Prove that $\aleph_0 + 2^{\aleph_0} = 2^{\aleph_0}$.

Question 4.

- (a) Give the definition of a well-ordering < of a set W.
- (b) Let \prec be the linear ordering on $\mathbb{N} \times \mathbb{N}$ defined by $\langle a, b \rangle \prec \langle c, d \rangle$ if either:
 - a < c, or
 - a = c and b < d.

Prove that \prec is a well-ordering of $\mathbb{N} \times \mathbb{N}$.

[Note: You do not need to prove that \prec is a linear ordering of $\mathbb{N} \times \mathbb{N}$.]

(c) Prove that $\langle \mathbb{N} \times \mathbb{N}, \prec \rangle$ is *not* isomorphic to $\langle \mathbb{N}, < \rangle$.