10 Construction of \mathbb{Q}

Most proofs are left as reading exercises.

Definition 10.1. $\mathbb{Z}' = \mathbb{Z} \setminus \{0\}.$

Definition 10.2. Let \sim be the binary relation defined on $\mathbb{Z} \times \mathbb{Z}'$ by

$$\langle a, b \rangle \sim \langle c, d \rangle$$
 iff $ad = cb$.

Theorem 10.3. \sim is an equivalence relation on $\mathbb{Z} \times \mathbb{Z}'$.

Proof. We just check that \sim is transitive. So suppose that $\langle a, b \rangle \sim \langle c, d \rangle$ and $\langle c, d \rangle \sim \langle e, f \rangle$. Then

$$ad = cb$$
 (1)

$$cf = ed$$
 (2)

Multiplying (1) by f and (2) by b, we obtain

$$adf = cbf$$
 (3)

$$cfb = edb$$
 (4)

Hence adf = edb. Since $d \neq 0$, the Cancellation Law implies that af = eb. Hence $\langle a, b \rangle \sim \langle e, f \rangle$.

Definition 10.4. The set \mathbb{Q} of rational numbers is defined by

$$\mathbb{Q} = \mathbb{Z} {\times} \mathbb{Z}' / \sim$$

ie. \mathbb{Q} is the set of \sim -equivalence classes.

Notation For each $\langle a, b \rangle \in \mathbb{Z} \times \mathbb{Z}'$, the corresponding equivalence class is denoted by $[\langle a, b \rangle]$.

Next we want to define an addition opperation on \mathbb{Q} . [Note that

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}.$$

This suggests we make the following definition.

Definition 10.5. We define the binary operation $+_{\mathbb{Q}}$ on \mathbb{Q} by

$$[\langle a, b \rangle] +_{\mathbb{Q}} [\langle c, d \rangle] = [\langle ad + cd, bd \rangle].$$

Remark 10.6. Since $b \neq 0$ and $d \neq 0$ we have that $bd \neq 0$ and so $\langle ad + cb, bd \rangle \in \mathbb{Z} \times \mathbb{Z}'$.

2

Lemma 10.7. $+_{\mathbb{Q}}$ is well-defined.

Theorem 10.8. For all $q, r, s \in \mathbb{Q}$, we have that

$$q +_{\mathbb{Q}} r = r +_{\mathbb{Q}} q$$
$$q +_{\mathbb{Q}} (r +_{\mathbb{Q}} s) = (q +_{\mathbb{Q}} r) +_{\mathbb{Q}} s.$$

Definition 10.9 (Identity element for $+_{\mathbb{Q}}$). $0_{\mathbb{Q}} = [\langle 0, 1 \rangle]$.

Theorem 10.10.

- (a) For all $q \in \mathbb{Q}$, $q +_{\mathbb{Q}} 0_{\mathbb{Q}} = q$.
- (b) For any $q \in \mathbb{Q}$, there exists a unique $r \in \mathbb{Q}$ such that $q +_{\mathbb{Q}} r = 0_{\mathbb{Q}}$.

Proof. (a) Let $q = [\langle a, b \rangle]$. Then

$$q +_{\mathbb{Q}} 0_{\mathbb{Q}} = [\langle a, b \rangle] +_{\mathbb{Q}} [\langle 0, 1 \rangle]$$
$$= [\langle a \cdot 1 + 0 \cdot b, b \cdot 1 \rangle]$$
$$= [\langle a, b \rangle]$$
$$= q.$$

To show that there exists at least one such element, consider $r = [\langle -a, b \rangle]$. Then

$$q +_{\mathbb{Q}} r = [\langle a, b \rangle] +_{\mathbb{Q}} [\langle -a, b \rangle]$$
$$= [\langle ab + (-a)b, b^{2} \rangle]$$
$$= [\langle 0, b^{2} \rangle]$$

Since $0 \cdot 1 = 0 \cdot b^2$, we have $\langle 0, b^2 \rangle = \langle 0, 1 \rangle$. Hence

$$q +_{\mathbb{Q}} r = [\langle 0, b^2 \rangle]$$
$$= [\langle 0, 1 \rangle]$$
$$= 0_{\mathbb{Q}}$$

As before, simple algebra shows that there exists at most one such element.

Definition 10.11. For any $q \in \mathbb{Q}$, -q is the unique element of \mathbb{Q} such that

$$q +_{\mathbb{Q}} (-q) = 0_{\mathbb{Q}}.$$

Definition 10.12. We define the binary operation $-\mathbb{Q}$ on \mathbb{Q} by

$$q - \mathbb{Q} r = q + \mathbb{Q} (-r).$$

Next we want to define a multiplication operation on \mathbb{Q} . [Note that

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

This suggests we make the following definition.]

Definition 10.13. We define the binary operation $\cdot_{\mathbb{Q}}$ on \mathbb{Q} by

$$[\langle a, b \rangle] \cdot_{\mathbb{Q}} [\langle c, d \rangle] = [\langle ac, bd \rangle].$$

Remark 10.14. Since $b \neq 0$ and $d \neq 0$ m wee have that $bd \neq 0$ and so $\langle ac, bd \rangle \in \mathbb{Z} \times \mathbb{Z}'$.

Lemma 10.15. $\cdot_{\mathbb{Z}}$ is well-defined.

Theorem 10.16. For all $q, r, s \in \mathbb{Q}$, we have that

$$\begin{array}{rcl} q \cdot_{\mathbb{Q}} r & = & r \cdot_{\mathbb{Q}} q \\ (q \cdot_{\mathbb{Q}} r) \cdot_{\mathbb{Q}} s & = & q \cdot_{\mathbb{Q}} (r \cdot_{\mathbb{Q}} s) \\ q \cdot_{\mathbb{Q}} (r +_{\mathbb{Q}} s) & = & (q \cdot_{\mathbb{Q}} r) +_{\mathbb{Q}} (q \cdot_{\mathbb{Q}} s) \end{array}$$

Definition 10.17 (Identity element for $\cdot_{\mathbb{Q}}$).

$$1_{\mathbb{Q}} = [\langle 1, 1 \rangle].$$

Theorem 10.18.

- (a) For all $q \in \mathbb{Q}$, $q \cdot_{\mathbb{Q}} 1_{\mathbb{Q}} = q$.
- (b) For every $0_{\mathbb{Q}} \neq q \in \mathbb{Q}$, there exists a unique $r \in \mathbb{Q}$ such that $q \cdot_{\mathbb{Q}} r = 1_{\mathbb{Q}}$.

Proof. (a) Let $q = [\langle a, b \rangle]$. Then

$$q \cdot_{\mathbb{Q}} 1_{\mathbb{Q}} = [\langle a, b \rangle] \cdot_{\mathbb{Q}} [\langle 1, 1 \rangle]$$
$$= [\langle a \cdot 1, b \cdot 1 \rangle]$$
$$= [\langle a, b \rangle]$$
$$= 1_{\mathbb{Q}}$$

(b) Suppose that $q = [\langle a, b \rangle] \neq [\langle 0, 1 \rangle]$. Then $a \neq 0$ and so $\langle b, a \rangle \in \mathbb{Z} \times \mathbb{Z}'$. Let $r = [\langle b, a \rangle]$. Then

$$\begin{array}{rcl} q \cdot_{\mathbb{Q}} r & = & [\langle a, b \rangle] \cdot_{\mathbb{Q}} [\langle b, a \rangle] \\ & = & [\langle ab, ba \rangle] \\ & = & [\langle 1, 1 \rangle] \\ & = & 1_{\mathbb{Q}}. \end{array}$$

2006/10/25

To see that there is at most one such $r \in \mathbb{Q}$, suppose that also that $q \cdot_{\mathbb{Q}} r' = 1_{\mathbb{Q}}$. Then

$$r = r \cdot_{\mathbb{Q}} 1_{\mathbb{Q}}$$

$$= r \cdot_{\mathbb{Q}} (q \cdot_{\mathbb{Q}} r')$$

$$= (r \cdot_{\mathbb{Q}} q) \cdot_{\mathbb{Q}} r'$$

$$= (q \cdot_{\mathbb{Q}} r) \cdot_{\mathbb{Q}} r'$$

$$= 1_{\mathbb{Q}} \cdot_{\mathbb{Q}} r'$$

$$= r'.$$

Definition 10.19. For any $0_{\mathbb{Q}} \neq q \in \mathbb{Q}$, q^{-1} is the unique element of \mathbb{Q} such that $q \cdot_{\mathbb{Q}} q^{-1} = 1_{\mathbb{Q}}$.

Finally we want to define an order relation on \mathbb{Q} . [Note that if b, d > 0, then

$$\frac{a}{b} < \frac{c}{d}$$
 iff $ad < cb$.

Note that $[\langle a, b \rangle] = [\langle -a, -b \rangle]$, so each $q \in \mathbb{Q}$ can be represented as $[\langle a, b \rangle]$, where b > 0. This suggests that we make the following definition.

Definition 10.20. Suppose that $r, s \in \mathbb{Q}$ and that $r = [\langle a, b \rangle]$ and $s = [\langle c, d \rangle]$, where b, d > 0. Then

$$r \leq_{\mathbb{Q}} s$$
 iff $ad < cb$.

Lemma 10.21. $<_{\mathbb{Q}}$ is well-defined.

Theorem 10.22. $<_{\mathbb{Q}}$ is a linear order on \mathbb{Q} .

Definition 10.23. If $q \in \mathbb{Q}$, then

- q is positive iff $0_{\mathbb{Q}} <_{\mathbb{Q}} q$.
- q is negative iff $q <_{\mathbb{Q}} 0_{\mathbb{Q}}$.

Definition 10.24. If $q \in \mathbb{Q}$, then the absolute value of q is

$$|q| = -q$$
 if q is negative
= q otherwise.

Remark 10.25. Clearly \mathbb{Z} is not *literally* a subset of \mathbb{Q} . However, \mathbb{Q} does contain an "isomorphis copy" of \mathbb{Z} .

Definition 10.26. Let $E \colon \mathbb{Z} \to \mathbb{Q}$ be the function defined by

$$E(a) = [\langle a, 1 \rangle].$$

Theorem 10.27. E is an injection of \mathbb{Z} into \mathbb{Q} which satisfies the following conditions for all $a, b \in \mathbb{Z}$

- $E(a+b) = E(a) +_{\mathbb{Q}} E(b)$
- $E(ab) = E(a) \cdot_{\mathbb{Q}} E(b)$
- $E(0) = 0_{\mathbb{Q}}$ and $E(1) = 1_{\mathbb{Q}}$.
- $a < b \text{ iff } E(a) <_{\mathbb{Q}} E(b).$

Notation From now on, we write $+,\cdot,<,0,1$ instead of $+_{\mathbb{Q}},\cdot_{\mathbb{Q}},<_{\mathbb{Q}},0_{\mathbb{Q}},1_{\mathbb{Q}}$.