8 The Ordering on ω

Definition 8.1. \in_{ω} is the binary relation on ω defined by

$$\in_{\omega} = \{ \langle m, n \rangle \in \omega \times \omega \mid m \in n \}.$$

In this section, we shall prove:

Theorem 8.2. \in_{ω} is a linear order on ω .

Definition 8.3. A set A is *transitive* iff whenever $x \in a \in A$, then $x \in A$.

Example 8.4.

- 1. $\{\{\emptyset\}\}\$ is *not* transitive, since $\emptyset \in \{\emptyset\} \in \{\{\emptyset\}\}\$ but $\emptyset \notin \{\{\emptyset\}\}$.
- 2. $\{\emptyset, \{\emptyset\}\}$ is transitive.

Lemma 8.5. If $n \in \omega$, then n is transitive.

Proof. It is enough to prove that the set

$$T = \{ n \in \omega \mid n \text{ is transitive} \}$$

is inductive. First \emptyset is trivially transitive and so $\emptyset \in T$. Next suppose that $n \in T$ and that

$$x \in a \in n^+ = n \cup \{n\}.$$

There are two cases to consider.

Case 1 Suppose that $a \in n$. Since $n \in T$ and $x \in a \in n$, is follows that $x \in n$ and so $x \in n^+$.

Case 2 Suppose that a = n. Then $x \in n$ and so $x \in n^+$. Thus in both cases, $x \in n^+$. Hence $n^+ \in T$.

Remark 8.6. In other words, if $a, b, c \in \omega$, then

 $a \in b$ and $b \in c$ implies $a \in c$.

Thus \in_{ω} is a transitive relation on ω .

Lemma 8.7.

(a) For any $n, m \in \omega$,

 $m \in n$ iff $m^+ \in n^+$.

(b) For all $n \in \omega$, $n \notin n$.

Proof. (a) First suppose that $m^+ \in n^+$. Then

$$m \in m^+ \in n^+ = n \cup \{n\}.$$

There are two cases to consider.

Case 1 Suppose that $m^+ \in n$. Then $m \in m^+ \in n$ and so $m \in n$.

Case 2 Suppose that $m^+ = n$. Then $m \in n$.

Thus in either case, $m \in n$.

To prove the converse, we use induction. In other words, we prove that

$$T = \{ n \in \omega \mid (\forall m \in n) \ m^+ \in n^+ \}$$

is inductive. First $\emptyset \in T$ vacuously. Next suppose that $n \in T$. We must prove that

(*) if $m \in n^+$, then $m^+ \in n^{++}$.

So suppose that $m \in n^+ = n \cup \{n\}$. If m = n then

$$m^{+} = n^{+} \in n^{++} = n^{+} \cup \{n^{+}\}.$$

Otherwise, $m \in n$ and so since $n \in T$ m

$$m^+ \in n^+ \subset n^{++}$$

and so $m^+ \in n^{++}$. Hence $n^+ \in T$. (b) It is enough to show that

$$S = \{ n \in \omega \mid n \notin n \}$$

is inductive. Clearly $\emptyset \in S$. Next suppose that $n \in S$. FOr the sake of contradiction, assume that $n^+ \in n^+$. By (a), $n \in n$, which contradicts the fact that $n \in S$. Thus $n^+ \notin n^+$ and so $n^+ \in S$.

Lemma 8.8. For any $n, m \in \omega$ at most one of the following holds:

$$m \in n, \quad m = n, \quad n \in m$$

Proof. By Lemma 8.7 (b), if two hold, then we must have that $m \in n$ and $n \in m$. By Lemma 8.5, $m \in m$, which contradicts Lemma 8.7 (b).

Lemma 8.9. For any $n, m \in \omega$ at least one of the following holds:

$$m \in n, \quad m = n, \quad n \in m.$$

2006/10/11

Proof. It is enough to show that

$$T = \{ n \in \omega \mid (\forall m \in \omega) \ (m \in n \text{ or } m = n \text{ or } n \in m) \}$$

is inductive.

Exercise 8.10. Prove that for all $m \in \omega$, $m = \emptyset$ or $\emptyset \in m$.

Hint Argue by induction on m.

Thus $\emptyset \in T$. Next suppose that $n \in T$. Let $m \in \omega$ be arbitrary. Since $n \in T$, we have that

$$m \in n$$
 or $m = n$ or $n \in m$.

If $m \in n$ or m = n, then $m \in n^+ = n \cup \{n\}$. If $n \in m$, then Lemma 8.7 (a) implies

$$n^+ \in m^+ = m \cup \{m\}$$

and so $n^+ \in m$ or $n^+ = m$. In either case, we have that

$$m \in n^+$$
 or $m = n^+$ or $n^+ \in m$.

Thus $n^+ \in T$.

This completes the proof that \in_{ω} is a linear order on ω .

Notation (Different from Enderton) From now on, if $m, n \in \omega$, then we use the following notation interchangably:

$$\begin{array}{ll} m \in n & \text{iff} \quad m < n \\ m \stackrel{\epsilon}{-} n & \text{iff} \quad m \leq n \end{array}$$

Exercise 8.11. Let < be a linear order on a A. If $a, b \in A$ satisfy $a \leq b$ and $b \leq a$ then a = b.

Theorem 8.12 (Well-ordering of ω). If $\emptyset \neq A \subseteq \omega$, then there exists $m \in A$ such that $m \leq a$ for all $a \in A$; ie $m \in a$ or m = a for all $a \in A$.

Proof. Assume that no such element exists. Define

$$B = \{ n \in \omega \mid (\forall k \in n) \ k \in \omega \backslash A \}$$

We shall prove that B is inductive. Clearly $\emptyset \in B$ vacuously. Next suppose that $n \in B$. Thus (i) If $k \in n$, then $k \notin A$. Suppose that $n^+ \notin B$. Then there exists $k \in n^+ = n \cup \{n\}$ such that $k \in A$. By (i) we must have that (ii) $n \in A$ Now let $a \in A$ be arbitrary. By Trichotomy, either

$$a \in n$$
 or $a = n$ or $n \in a$.

By (i), $a \notin n$. Thus for all $a \in A$, a = n or $n \in a$, contradicting our assumption. Hence $n^+ \in B$. By Induction, $B = \omega$. But this means that $A = \emptyset$, which is a contradiction. \Box

2006/10/11

Theorem 8.13 (Strong Induction Principle for ω). Let $A \subseteq \omega$ and suppose that for every $n \in \omega$,

(*) if
$$m \in A$$
 for all $m < n$, then $n \in A$.

Then $A = \omega$.

Proof. Suppose that $A \neq \omega$. Then $\omega \setminus A \neq \emptyset$ and so there exists a least element $k \in \omega \setminus A$. Since k is the least such element, it follows that $m \in A$ for all m < k. Then (*) implies that $k \in A$, which is a contradiction.

Definition 8.14. Suppose that $<_A, <_B$ are linear orders on A, B respectively. Then a function $f: A \to B$ is order-preserving iff for all $a_1, a_2 \in A$,

(*) if $a_1 <_A a_2$, then $f(a_1) <_B f(a_2)$.

Exercise 8.15. Suppose that $f: A \to B$ is order-preserving. Then the following statements are true.

- If $a_1, a_2 \in A$, then $a_1 <_A a_2$ iff $f(a_1) <_B f(a_2)$.
- f is an injection.
- If f is a bijection, then $f^{-1}: B \to A$ is also order-preserving.

Theorem 8.16. If $f: \omega \to \omega$ is order-preserving, then $f(n) \ge n$ for all $n \in \omega$.

Proof. If not, then

$$C = \{ n \in \omega \mid f(n) < n \} \neq \emptyset.$$

Let $k \in C$ be the least element. Then f(k) < k. Since f is order-preserving, this implies that f(f(k)) < f(k). Hence $f(k) \in C$, which contradicts the minimality of k.

Corollary 8.17. If $f: \omega \to \omega$ is an order-preserving bijection, then f(n) = n for all $n \in \omega$.

Proof. Since f is order-preserving, $f(n) \ge n$ for all $n \in \omega$. Since f^{-1} is order-preserving, $f^{-1}(n) \ge n$ for all $n \in \omega$. This implies that $f(f^{-1}(n)) \ge f(n)$ and so $n \ge f(n)$ for all $n \in \omega$. \square Hence f(n) = n for all $n \in \omega$.

Remark 8.18. The above remark fails for \mathbb{Z} . For example, the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(z) = z + 1 is an order-preserving bijection.

Exercise 8.19. Suppose that A is a transitive set. Then

- $\mathcal{P}(A)$ is also a transitive set.
- $A \subseteq \mathcal{P}(A)$.

Informal discussion of $V = \bigcup_{\alpha \in On} V_{\alpha}$, where

$$V_0 = \emptyset$$

$$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$$

$$V_{\lambda} = \bigcup_{\alpha < \lambda} V_{\alpha} \text{ for lim } \lambda$$

Axioms so far	
Extensionality	By the transitivity of V_{α}
Empty Set	$\emptyset \in V_1$
Subset Axiom	If $A \in V_{\alpha}$ and $B \subseteq A$, then $B \in V_{\alpha+1}$
Union Axiom	If $A \in V_{\alpha}$, then $\bigcup A \in V_{\alpha+1}$
Pairing Axiom	If $A, B \in V_{\alpha}$, then $\{A, B\} \in V_{\alpha+1}$
Powerset Axiom	If $A \in V_{\alpha}$, then $\mathcal{P}(A) \in V_{\alpha+2}$
Infinity	$\omega \in V_{\omega+1}$
The following results will be crucial in our construction of \mathbb{Z}	

Theorem 8.20. For any $m, n, p \in \omega$, we have that

$$m < n$$
 iff $m + p < n + p$.

Proof. Reading Exercise, Enderton p. 85-86.

Corollary 8.21 (Cancellation Law). For any $m, n, p \in \omega$, if m + p = n + p, then m = n.

Proof. Suppose that m + p = n + p. By Trichotomy, if $m \neq n$, then either m < n or n < m. By Theorem 8.20, if m < n then m + p < n + p, which contradict Trichotomy. Similarly, if n < m, then n + p < m + p, which also contradicts Trichotomy. Hence m = n.

The following resuls will be crucial in our construction of \mathbb{Q} .

Theorem 8.22. If $m, n, p \in \omega$ and $p \neq 0$, then

$$m < n$$
 iff $m \cdot p < n \cdot p$.

Proof. Reading Exercise, Enderton p. 85-86.

Corollary 8.23 (Cancellation Law). If $m, n, p \in \omega$ and $p \neq 0$, then $m \cdot p = n \cdot p$ implies m = n.

5