
Math 361 Ordering on ω

8 The Ordering on ω

Definition 8.1. ∈ω is the binary relation on ω defined by

∈ω= {〈m,n〉 ∈ ω×ω |m ∈ n}.

In this section, we shall prove:

Theorem 8.2. ∈ω is a linear order on ω.

Definition 8.3. A set A is transitive iff whenever x ∈ a ∈ A, then x ∈ A.

Example 8.4.

1. {{∅}} is not transitive, since ∅ ∈ {∅} ∈ {{∅}} but ∅ /∈ {{∅}}.

2. {∅, {∅}} is transitive.

Lemma 8.5. If n ∈ ω, then n is transitive.

Proof. It is enough to prove that the set

T = {n ∈ ω | n is transitive}

is inductive. First ∅ is trivially transitive and so ∅ ∈ T . Next suppose that n ∈ T and
that

x ∈ a ∈ n+ = n ∪ {n}.
There are two cases to consider.

Case 1 Suppose that a ∈ n. Since n ∈ T and x ∈ a ∈ n, is follows that x ∈ n and so
x ∈ n+.

Case 2 Suppose that a = n. Then x ∈ n and so x ∈ n+.
Thus in both cases, x ∈ n+. Hence n+ ∈ T .

Remark 8.6. In other words, if a, b, c ∈ ω, then

a ∈ b and b ∈ c implies a ∈ c.

Thus ∈ω is a transitive relation on ω.

Lemma 8.7.

(a) For any n,m ∈ ω,
m ∈ n iff m+ ∈ n+.

(b) For all n ∈ ω, n /∈ n.
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Proof. (a) First suppose that m+ ∈ n+. Then

m ∈ m+ ∈ n+ = n ∪ {n}.

There are two cases to consider.

Case 1 Suppose that m+ ∈ n. Then m ∈ m+ ∈ n and so m ∈ n.

Case 2 Suppose that m+ = n. Then m ∈ n.
Thus in either case, m ∈ n.
To prove the converse, we use induction. In other words, we prove that

T = {n ∈ ω | (∀m ∈ n) m+ ∈ n+}

is inductive. First ∅ ∈ T vacuously. Next suppose that n ∈ T . We must prove that

(∗) if m ∈ n+, then m+ ∈ n++.

So suppose that m ∈ n+ = n ∪ {n}. If m = n then

m+ = n+ ∈ n++ = n+ ∪ {n+}.

Otherwise, m ∈ n and so since n ∈ Tm

m+ ∈ n+ ⊆ n++

and so m+ ∈ n++. Hence n+ ∈ T .
(b) It is enough to show that

S = {n ∈ ω | n /∈ n}

is inductive. Clearly ∅ ∈ S. Next suppose that n ∈ S. FOr the sake of contradiction,
assume that n+ ∈ n+. By (a), n ∈ n, which contradicts the fact that n ∈ S. Thus
n+ /∈ n+ and so n+ ∈ S.

Lemma 8.8. For any n,m ∈ ω at most one of the following holds:

m ∈ n, m = n, n ∈ m.

Proof. By Lemma 8.7 (b), if two hold, then we must have that m ∈ n and n ∈ m. By
Lemma 8.5, m ∈ m, which contradicts Lemma 8.7 (b).

Lemma 8.9. For any n,m ∈ ω at least one of the following holds:

m ∈ n, m = n, n ∈ m.
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Proof. It is enough to show that

T = {n ∈ ω | (∀m ∈ ω) (m ∈ n or m = n or n ∈ m)}

is inductive.

Exercise 8.10. Prove that for all m ∈ ω, m = ∅ or ∅ ∈ m.

Hint Argue by induction on m.
Thus ∅ ∈ T . Next suppose that n ∈ T . Let m ∈ ω be arbitrary. Since n ∈ T , we

have that
m ∈ n or m = n or n ∈ m.

If m ∈ n or m = n, then m ∈ n+ = n ∪ {n}. If n ∈ m, then Lemma 8.7 (a) implies

n+ ∈ m+ = m ∪ {m}

and so n+ ∈ m or n+ = m. In either case, we have that

m ∈ n+ or m = n+ or n+ ∈ m.

Thus n+ ∈ T .

This completes the proof that ∈ω is a linear order on ω.

Notation (Different from Enderton) From now on, if m,n ∈ ω, then we use the following
notation interchangably:

m ∈ n iff m < n

m
∈
− n iff m ≤ n

Exercise 8.11. Let < be a linear order on a A. If a, b ∈ A satisfy a ≤ b and b ≤ a then
a = b.

Theorem 8.12 (Well-ordering of ω). If ∅ 6= A ⊆ ω, then there exists m ∈ A such
that m ≤ a for all a ∈ A; ie m ∈ a or m = a for all a ∈ A.

Proof. Assume that no such element exists. Define

B = {n ∈ ω | (∀k ∈ n) k ∈ ωrA}

We shall prove that B is inductive. Clearly ∅ ∈ B vacuously. Next suppose that n ∈ B.
Thus (i) If k ∈ n, then k /∈A. Suppose that n+ /∈B. Then there exists k ∈ n+ = n∪{n}
such that k ∈ A. By (i) we must have that (ii) n ∈ A Now let a ∈ A be arbitrary. By
Trichotomy, either

a ∈ n or a = n or n ∈ a.
By (i), a /∈ n. Thus for all a ∈ A, a = n or n ∈ a, contradicting our assumption. Hence
n+ ∈ B. By Induction, B = ω. But this means that A = ∅, which is a contradiction.
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Theorem 8.13 (Strong Induction Principle for ω). Let A ⊆ ω and suppose that
for every n ∈ ω,

(*) if m ∈ A for all m < n, then n ∈ A.

Then A = ω.

Proof. Suppose that A 6= ω. Then ωrA 6= ∅ and so there exists a least element k ∈
ωrA. Since k is the least such element, it follows that m ∈ A for all m < k. Then (*)
implies that k ∈ A, which is a contradiction.

Definition 8.14. Suppose that <A, <B are linear orders on A,B respectively. Then a
function f : A→ B is order-preserving iff for all a1, a2 ∈ A,

(*) if a1 <A a2, then f(a1) <B f(a2).

Exercise 8.15. Suppose that f : A→ B is order-preserving. Then the following state-
ments are true.

• If a1, a2 ∈ A, then a1 <A a2 iff f(a1) <B f(a2).

• f is an injection.

• If f is a bijection, then f−1 : B → A is also order-preserving.

Theorem 8.16. If f : ω → ω is order-preserving, then f(n) ≥ n for all n ∈ ω.

Proof. If not, then
C = {n ∈ ω | f(n) < n} 6= ∅.

Let k ∈ C be the least element. Then f(k) < k. Since f is order-preserving, this implies
that f(f(k)) < f(k). Hence f(k) ∈ C, which contradicts the minimality of k.

Corollary 8.17. If f : ω → ω is an order-preserving bijection, then f(n) = n for all
n ∈ ω.

Proof. Since f is order-preserving, f(n) ≥ n for all n ∈ ω. Since f−1 is order-preserving,
f−1(n) ≥ n for all n ∈ ω. This implies that f(f−1(n)) ≥ f(n) and so n ≥ f(n) for all
n ∈ ω. Hence f(n) = n for all n ∈ ω.

Remark 8.18. The above remark fails for Z. For example, the function f : Z → Z
defined by f(z) = z + 1 is an order-preserving bijection.

Exercise 8.19. Suppose that A is a transitive set. Then

• P(A) is also a transitive set.

• A ⊆ P(A).
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Informal discussion of V =
⋃
α∈On Vα, where

V0 = ∅
Vα+1 = P(Vα)

Vλ =
⋃

α<λ

Vα for lim λ

Axioms so far. . .
Extensionality By the transitivity of Vα
Empty Set ∅ ∈ V1

Subset Axiom If A ∈ Vα and B ⊆ A, then B ∈ Vα+1

Union Axiom If A ∈ Vα, then
⋃
A ∈ Vα+1

Pairing Axiom If A,B ∈ Vα, then {A,B} ∈ Vα+1

Powerset Axiom If A ∈ Vα, then P(A) ∈ Vα+2

Infinity ω ∈ Vω+1

The following results will be crucial in our construction of Z.

Theorem 8.20. For any m,n, p ∈ ω, we have that

m < n iff m+ p < n+ p.

Proof. Reading Exercise, Enderton p. 85-86.

Corollary 8.21 (Cancellation Law). For any m,n, p ∈ ω, if m + p = n + p, then
m = n.

Proof. Suppose that m + p = n + p. By Trichotomy, if m 6= n, then either m < n or
n < m. By Theorem 8.20, if m < n then m + p < n + p, which contradict Trichotomy.
Similarly, if n < m, then n + p < m + p, which also contradicts Trichotomy. Hence
m = n.

The following resuls will be crucial in our construction of Q.

Theorem 8.22. If m,n, p ∈ ω and p 6= 0, then

m < n iff m · p < n · p.

Proof. Reading Exercise, Enderton p. 85-86.

Corollary 8.23 (Cancellation Law). If m,n, p ∈ ω and p 6= 0, then m · p = n · p
implies m = n.
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