8 The Ordering on ω

Definition 8.1. \in_ω is the binary relation on ω defined by

$$\in_\omega = \{ (m, n) \in \omega \times \omega \mid m < n \}.$$

In this section, we shall prove:

Theorem 8.2. \in_ω is a linear order on ω.

Definition 8.3. A set A is transitive iff whenever $x \in a \in A$, then $x \in A$.

Example 8.4.

1. $\{\{\emptyset\}\}$ is not transitive, since $\emptyset \in \{\emptyset\} \in \{\{\emptyset\}\}$ but $\emptyset \notin \{\{\emptyset\}\}$.

2. $\{\emptyset, \{\emptyset\}\}$ is transitive.

Lemma 8.5. If $n \in \omega$, then n is transitive.

Proof. It is enough to prove that the set

$$T = \{ n \in \omega \mid n \text{ is transitive} \}$$

is inductive. First \emptyset is trivially transitive and so $\emptyset \in T$. Next suppose that $n \in T$ and that

$$x \in a \in n^+ = n \cup \{n\}.$$

There are two cases to consider.

Case 1 Suppose that $a \in n$. Since $n \in T$ and $x \in a \in n$, it follows that $x \in n$ and so $x \in n^+$.

Case 2 Suppose that $a = n$. Then $x \in n$ and so $x \in n^+$. Thus in both cases, $x \in n^+$. Hence $n^+ \in T$. □

Remark 8.6. In other words, if $a, b, c \in \omega$, then

$$a \in b \quad \text{and} \quad b \in c \quad \text{implies} \quad a \in c.$$

Thus \in_ω is a transitive relation on ω.

Lemma 8.7.

(a) For any $n, m \in \omega$, $m \in n$ iff $m^+ \in n^+$.

(b) For all $n \in \omega$, $n \notin n$.
Proof. (a) First suppose that \(m^+ \in n^+ \). Then
\[
m \in m^+ \in n^+ = n \cup \{n\}.
\]
There are two cases to consider.

Case 1 Suppose that \(m^+ \in n \). Then \(m \in m^+ \in n \) and so \(m \in n \).

Case 2 Suppose that \(m^+ = n \). Then \(m \in n \).

Thus in either case, \(m \in n \).

To prove the converse, we use induction. In other words, we prove that
\[
T = \{ n \in \omega \mid (\forall m \in n) \ m^+ \in n^+ \}
\]
is inductive. First \(\emptyset \in T \) vacuously. Next suppose that \(n \in T \). We must prove that
\[
(\ast) \text{ if } m \in n^+, \text{ then } m^+ \in n^{++}.
\]
So suppose that \(m \in n^+ = n \cup \{n\} \). If \(m = n \) then
\[
m^+ = n^+ \in n^{++} = n^+ \cup \{n^+\}.
\]
Otherwise, \(m \in n \) and so since \(n \in T \),\(m \in n^+ \in n^{++} \)
and so \(m^+ \in n^{++} \). Hence \(n^+ \in T \).

(b) It is enough to show that \(S = \{ n \in \omega \mid n \notin n \} \)
is inductive. Clearly \(\emptyset \in S \). Next suppose that \(n \in S \). For the sake of contradiction, assume that \(n^+ \in n^+ \). By (a), \(n \in n \), which contradicts the fact that \(n \in S \). Thus \(n^+ \notin n^+ \) and so \(n^+ \in S \).

Lemma 8.8. For any \(n, m \in \omega \) at most one of the following holds:
\[
m, m = n, \ n \in m.
\]

Proof. By Lemma 8.7 (b), if two hold, then we must have that \(m \in n \) and \(n \in m \). By Lemma 8.5, \(m \in m \), which contradicts Lemma 8.7 (b). \(\square \)

Lemma 8.9. For any \(n, m \in \omega \) at least one of the following holds:
\[
m, m = n, \ n \in m.
\]

2006/10/11
Proof. It is enough to show that
\[T = \{ n \in \omega \mid (\forall m \in \omega) (m \in n \text{ or } m = n \text{ or } n \in m) \} \]
is inductive.

Exercise 8.10. Prove that for all \(m \in \omega \), \(m = \emptyset \) or \(\emptyset \in m \).

Hint Argue by induction on \(m \).

Thus \(\emptyset \in T \). Next suppose that \(n \in T \). Let \(m \in \omega \) be arbitrary. Since \(n \in T \), we have that
\[
m \in n \quad \text{or} \quad m = n \quad \text{or} \quad n \in m.
\]
If \(m \in n \) or \(m = n \), then \(m \in n^+ = n \cup \{n\} \). If \(n \in m \), then Lemma 8.7 (a) implies
\[
n^+ \in m^+ = m \cup \{m\}
\]
and so \(n^+ \in m \) or \(n^+ = m \). In either case, we have that
\[
m \in n^+ \quad \text{or} \quad m = n^+ \quad \text{or} \quad n^+ \in m.
\]
Thus \(n^+ \in T \).

This completes the proof that \(\in_\omega \) is a linear order on \(\omega \).

Notation (Different from Enderton) From now on, if \(m, n \in \omega \), then we use the following notation interchangeably:
\[
 m \in n \quad \text{iff} \quad m < n
\]
\[
 m \in \overrightarrow{n} \quad \text{iff} \quad m \leq n
\]

Exercise 8.11. Let \(< \) be a linear order on a \(A \). If \(a, b \in A \) satisfy \(a \leq b \) and \(b \leq a \) then \(a = b \).

Theorem 8.12 (Well-ordering of \(\omega \)). If \(\emptyset \neq A \subseteq \omega \), then there exists \(m \in A \) such that \(m \leq a \) for all \(a \in A \); ie \(m \in a \) or \(m = a \) for all \(a \in A \).

Proof. Assume that no such element exists. Define
\[
 B = \{ n \in \omega \mid (\forall k \in n) k \in \omega \setminus A \}
\]
We shall prove that \(B \) is inductive. Clearly \(\emptyset \in B \) vacuously. Next suppose that \(n \in B \). Thus (i) If \(k \in n \), then \(k \notin A \). Suppose that \(n^+ \notin B \). Then there exists \(k \in n^+ = n \cup \{n\} \) such that \(k \in A \). By (i) we must have that (ii) \(n \in A \) Now let \(a \in A \) be arbitrary. By Trichotomy, either
\[
a \in n \quad \text{or} \quad a = n \quad \text{or} \quad n \in a.
\]
By (i), \(a \notin n \). Thus for all \(a \in A \), \(a = n \) or \(n \in a \), contradicting our assumption. Hence \(n^+ \in B \). By Induction, \(B = \omega \). But this means that \(A = \emptyset \), which is a contradiction. \(\square \)
Theorem 8.13 (Strong Induction Principle for ω). Let $A \subseteq \omega$ and suppose that for every $n \in \omega$,
\[
(*) \text{ if } m \in A \text{ for all } m < n, \text{ then } n \in A.
\]
Then $A = \omega$.

Proof. Suppose that $A \neq \omega$. Then $\omega \smallsetminus A \neq \emptyset$ and so there exists a least element $k \in \omega \smallsetminus A$. Since k is the least such element, it follows that $m \in A$ for all $m < k$. Then $(*)$ implies that $k \in A$, which is a contradiction. \qed

Definition 8.14. Suppose that $<_A,<_B$ are linear orders on A,B respectively. Then a function $f : A \to B$ is order-preserving iff for all $a_1,a_2 \in A$,
\[
(*) \text{ if } a_1 <_A a_2, \text{ then } f(a_1) <_B f(a_2).
\]

Exercise 8.15. Suppose that $f : A \to B$ is order-preserving. Then the following statements are true.

- If $a_1,a_2 \in A$, then $a_1 <_A a_2$ iff $f(a_1) <_B f(a_2)$.
- f is an injection.
- If f is a bijection, then $f^{-1} : B \to A$ is also order-preserving.

Theorem 8.16. If $f : \omega \to \omega$ is order-preserving, then $f(n) \geq n$ for all $n \in \omega$.

Proof. If not, then
\[
C = \{n \in \omega \mid f(n) < n\} \neq \emptyset.
\]
Let $k \in C$ be the least element. Then $f(k) < k$. Since f is order-preserving, this implies that $f(f(k)) < f(k)$. Hence $f(k) \in C$, which contradicts the minimality of k. \qed

Corollary 8.17. If $f : \omega \to \omega$ is an order-preserving bijection, then $f(n) = n$ for all $n \in \omega$.

Proof. Since f is order-preserving, $f(n) \geq n$ for all $n \in \omega$. Since f^{-1} is order-preserving, $f^{-1}(n) \geq n$ for all $n \in \omega$. This implies that $f(f^{-1}(n)) \geq f(n)$ and so $n \geq f(n)$ for all $n \in \omega$. Hence $f(n) = n$ for all $n \in \omega$. \qed

Remark 8.18. The above remark fails for \mathbb{Z}. For example, the function $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(z) = z + 1$ is an order-preserving bijection.

Exercise 8.19. Suppose that A is a transitive set. Then

- $\mathcal{P}(A)$ is also a transitive set.
- $A \subseteq \mathcal{P}(A)$.

2006/10/11
Informal discussion of $V = \bigcup_{\alpha \in \text{On}} V_\alpha$, where

\[
V_0 = \emptyset \\
V_{\alpha+1} = \mathcal{P}(V_\alpha) \\
V_\lambda = \bigcup_{\alpha<\lambda} V_\alpha \text{ for lim } \lambda
\]

Axioms so far...
- **Extensionality**
 By the transitivity of V_α
- **Empty Set**
 $\emptyset \in V_1$
- **Subset Axiom**
 If $A \in V_\alpha$ and $B \subseteq A$, then $B \in V_{\alpha+1}$
- **Union Axiom**
 If $A \in V_\alpha$, then $\bigcup A \in V_{\alpha+1}$
- **Pairing Axiom**
 If $A, B \in V_\alpha$, then $\{A, B\} \in V_{\alpha+1}$
- **Powerset Axiom**
 If $A \in V_\alpha$, then $\mathcal{P}(A) \in V_{\alpha+2}$
- **Infinity**
 $\omega \in V_{\omega+1}$

The following results will be crucial in our construction of \mathbb{Z}.

Theorem 8.20. For any $m, n, p \in \omega$, we have that

\[m < n \iff m + p < n + p.\]

Proof. Reading Exercise, Enderton p. 85-86.

Corollary 8.21 (Cancellation Law). For any $m, n, p \in \omega$, if $m + p = n + p$, then $m = n$.

Proof. Suppose that $m + p = n + p$. By Trichotomy, if $m \neq n$, then either $m < n$ or $n < m$. By Theorem 8.20, if $m < n$ then $m + p < n + p$, which contradicts Trichotomy. Similarly, if $n < m$, then $n + p < m + p$, which also contradicts Trichotomy. Hence $m = n$.

The following results will be crucial in our construction of \mathbb{Q}.

Theorem 8.22. If $m, n, p \in \omega$ and $p \neq 0$, then

\[m < n \iff m \cdot p < n \cdot p.\]

Proof. Reading Exercise, Enderton p. 85-86.

Corollary 8.23 (Cancellation Law). If $m, n, p \in \omega$ and $p \neq 0$, then $m \cdot p = n \cdot p$ implies $m = n$.

2006/10/11