
Math 361 Order Relations

6 Order Relations

Definition 6.1. Let A be a set. A linear order on A is a binary relation on A which
satisfies the following properties:

• R is transitive.

• R satisfies trichotomy; ie if x, y ∈ A then exactly one of the three alternatives

xRy, x = y, yRx

holds.

Example 6.2. R = {〈a, b〉 | a, b ∈ N and a < b} is a linear order on N.

Example 6.3. S = {〈a, b〉 | a, b ∈ N and a > b} is a linear order on N.

Example 6.4. T = {〈a, b〉 | a, b ∈ N and a ≤ b} is not a linear order on N, since 0 = 0
and OTO. Thus T does not satisfy trichotomy.

Example 6.5. Define a binary relation <L on N×N by

〈a, b〉 <L 〈c, d〉 ⇐⇒ either a < c or (a = c and b < d).

Then <L is a linear order on N×N
Proof. We check that <L is transitive and satisfies trichotomy.

(a) Suppose that 〈a, b〉 <L 〈c, d〉 and 〈c, d〉 <L 〈e, f〉. There are four cases to consider.

Case 1 Suppose that a < c and c < e. Then a < e and so 〈a, b〉 <L 〈e, f〉.

Case 2 Suppose that a < c and (c = e and d < f). Then a < e and so 〈a, b〉 <L 〈e, f〉.

Case 3 Suppose that (a = c and b < d) and c < e. Then a < e and so 〈a, b〉 <L 〈e, f〉.

Case 4 Suppose that (a = c and b < d) and (c = e and d < f). Then a = e and b < f .
Hence 〈a, b〉 <L 〈e, f〉.

(b) Suppose that 〈a, b〉 6= 〈c, d〉. If a < c then 〈a, b〉 <L 〈c, d〉; and if c < a, then
〈c, d〉 6= 〈a, b〉. On the other hand, if a = c, then either b < d or d < b; and so either
〈a, b〉 <L 〈c, d〉 or 〈c, d〉 6= 〈a, b〉.

Hence at least one alternative always holds.
Suppose that two of the alternatives hold for 〈a, b〉, 〈c, d〉. Then clearly 〈a, b〉 6= 〈c, d〉.

Hence we must have that

〈a, b〉 <L 〈c, d〉 and 〈c, d〉 <L 〈a, b〉.
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Clearly this rules out both a < c and c < a. Thus a = c. BBut then we must have b < d
and d < b, which is impossible.

Exercise 6.6. Show that <L is a well-ordering.

7 The Natural Numbers

In this section, we shall define each natural number to be a suitable set. It will turn out
that

0 = ∅
1 = {∅}
2 = {∅, {∅}}
3 = {∅, {∅}, {∅, {∅}}

etc

In particular, we shall have
0 ∈ 1 ∈ 2 ∈ 3 ∈ . . .

and
0 ⊆ 1 ⊆ 2 ⊆ 3 ⊆ . . .

Notice also that
n < m iff n ∈ m

Definition 7.1. If a is any set, then its successor is defined to be

a+ = a ∪ {a}.

Example 7.2.

∅+ = ∅ ∪ {∅} = {∅}
{∅}+ = {∅} ∪ {{∅}} = {∅, {∅}}

Notation We shall write 0 = ∅ and n =

n times︷ ︸︸ ︷
(. . . ((∅+)+) . . .)+

Example 7.3. 2 = (∅+)+

Definition 7.4. A set A in inductive iff the following conditions are satisfied:

1. ∅ ∈ A
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2. If a ∈ A, then a+ ∈ A.

Remark 7.5. If A is inductive, then n ∈ A for all n. In particular, A is infinite. So we
cannot prove the existence of an inductive set using our current axioms.

Axiom 7.6 (Infinity). There exists an inductive set.

Definition 7.7. A natural number is a set that belongs to every inductive set.

Theorem 7.8. There exists a set B such that for all x,

x ∈ B iff x is a natural number.

Proof. By the Infinity Axiom, there exists an inductive set A. By the Subset Axiom,
there exists a set B such that for all x,

x ∈ B iff x ∈ A and x belongs to every inductive set.

Clearly B satisfies our requirements.

Definition 7.9.
ω = {x | x is a natural number}

Short discussion of the ordinals...

Theorem 7.10.

1. ω is inductive.

2. If A is inductive, then ω ⊆ A.

Proof. 1. Since ∅ belongs to every inductive set, it follows that ∅ ∈ ω. Next suppose
that a ∈ ω. Then a belongs to every inductive set and so a+ belongs to every
inductive set. Hence a+ ∈ ω. Thus ω is inductive.

2. Let A be any inductive set. If a ∈ ω, then a belongs to every inductive set. In
particular, a ∈ A. Thus ω ⊆ A.

Question 7.11. Does there exist an inductive set A 6= ω?

Answer. Yes...

Theorem 7.12 (Induction principle for ω). If T is an inductive subset of ω, then
T = ω.

Proof. Suppose that T is an inductive subset of ω. Then clearly T ⊆ ω. By the previous
theorem, since T is inductive, ω ⊆ T . Hence T = ω.
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Application. If n ∈ ω, then either n = 0 or there exists m ∈ ω such that n = m+.

Proof. Let T = {n ∈ ω | n = 0 or (∃m ∈ ω) n = m+}. We claim that T is inductive.
Clearly 0 ∈ T . Next suppose that k ∈ T . Then clearly k+ ∈ T . Hence T is an inductive
subset of ω. By Induction, T = ω.

Next we would like to define the usual arithmetic operations on ω.

Definition 7.13.

1. f is a unary operation on A iff f : A→ A.

2. g is a binary operation on A iff f : A×A→ A.

Example 7.14. The successor operation on ω is the unary operation σ : ω → ω defined
by σ(n) = n+. In other words,

σ = {〈n,m〉 | 〈n,m〉 ∈ ω×ω and m = n+}.

Next we would like to define a binary operation

a : ω×ω → ω

such that
a(m,n) = m+ n.

We shall define a by recursion on ω, using the successor operation, as follows:

m+ 0 = m

m+ n+ = (m+ n)+

In other words, we shall define a by:

a(m, 0) = m

a(m,n+) = σ(a(m,n))

Slight Problem At first glance, we appear to be defining a in terms of a.

More Serious Problem

1. Can we prove that a function a : ω×ω → ω satisfying the above properties exists,
using our current axioms of set theory?

2. If so, can we prove that there exists a unique such function?
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Theorem 7.15 (Recursion on ω). Suppose that A is a set, a ∈ A and F : A → A
is a function. Then there exists a unique function h : ω → A satisfying the following
conditions:

(i) h(0) = a

(ii) for every n ∈ ω, h(n+) = F (h(n)).

Proof. We break the proof up into a series of claims.

Claim. There exists at most one such function h : ω → A.

Proof. Suppose that h1 : ω → A and h2 : ω → A both satisfy conditions (i) and (ii). We
must prove that h1 = h2. Let

S = {n ∈ ω | h1(n) = h2(n)}.

We shall prove that S is inductive. By condition (i),

h1(0) = a = h2(0).

Hence 0 ∈ S. Now suppose that n ∈ S. Then h1(n) = h2(n). By condition (ii),

h1(n+) = F (h1(n)) = F (h2(n)) = h2(n+).

Thus n+ ∈ S. By induction, S = ω and so h1 = h2.

Now we show that there is at least one such function.

Definition 7.16. A function v is acceptable if dom v ⊆ ω, ran v ⊆ A, and the following
conditions hold:

(a) If 0 ∈ dom v, then v(0) = a.

(b) If n+ ∈ dom v, then n ∈ dom v and v(n+) = F (v(n)).

Example 7.17.
v = {〈0, a〉} is acceptable.

v = {〈0, a〉, 〈1, F (a)〉} is acceptable.

Let K ⊆ P(ω×A) be the set of acceptable functions. Then we define

h =
⋃

K.

Clearly h ⊆ ω×A. In particular, h is a set of ordered pairs.

Claim. h is a function.
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Proof. We must prove that for each n ∈ domh, there exists a unique y ∈ A such that
〈n, y〉 ∈ h. (Note that we are not yet proving that domh = ω.) Let

T = {n ∈ ω | there exists at most one y so that 〈n, y〉 ∈ h}

We shall prove that T is inductive. First suppose that 〈0, y1〉, 〈0, y2〉 ∈ h. Then there
exists acceptable functions v1mv2 so that v1(0) = y1 and v2(0) = y2. By condition (a),

v1(0) = a = v2(0)

Thus 0 ∈ T . Next suppose that n ∈ T . To see that n+ ∈ T . suppose that 〈n+, y1〉, 〈n+, y2〉 ∈
h. Then there exist acceptable functions v1, v2 such that v1(n+) = y1 and v2(n+) = y2.
By condition (b), we have that

n ∈ dom v1 and v1(n+) = F (v1(n))

n ∈ dom v2 and v2(n+) = F (v2(n))

Since n ∈ T , we have that v1(n) = v2(n). Hence v1(n+) = v2(n+) and so n+ ∈ T . By
induction, T = ω and so h is a function.

Claim. h is acceptable.

Proof. Clearly domh ⊆ ω and ranh ⊆ A. Suppose that 0 ∈ domh. Then there exists
an acceptable function v such that h(0) = v(0) = a. Thus (a) holds.

Now suppose that n+ ∈ domh. Then there exists an acceptable function v such that
h(n+) = v(n+). Futhermore, n ∈ dom v and h(n) = v(n). Also,

h(n+) = v(n+) = F (v(n)) = F (h(n))

and so (b) also holds.

Claim. domh = ω

Proof. We shall prove that domh is inductive. First note that v = {〈0, a〉} is acceptable
and so 0 ∈ domh. Next suppose that n ∈ domh. Thus there exists an acceptable
function v such that v(n) = h(n). If n+ ∈ dom v, then n+ ∈ domh. If n+ /∈ dom v, then

u = v ∪ {〈n+, F (v(n))〉}

is acceptable and so n+ ∈ domh. By induction, domh = ω.

This completes the proof of the Recursion Theorem.

Now we are ready to define the various arithmetic operations on ω.
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Addition

First for each m ∈ ω, the Recursion Theorem gives a unique function Am : ω → ω such
that

Am(0) = m

Am(n+) = Am(n)+

Now we can define addition to be the binary operation on ω defined by

A(m,n) = Am(n).

Thus
A = {〈〈m,n〉, p〉 | 〈〈m,n〉, p〉 ∈ (ω×ω)×ω and p = Am(n)}.

Notation We shall write m+ n = A(m,n).
Thus the above equations can be rewritten as

m+ 0 = m

m+ n+ = (m+ n)+

Multiplication

Our plan is to define multiplication recursively in terms of addition, so that:

m · 0 = 0

m · n+ = m+m · n

Once again, first for each m ∈ ω, the Recursion Theorem gives a unique function
Mm : ω → ω such that

Mm(0) = 0

Mm(n+) = m+Mm(n)

Now we can define multiplication to be the binary operation on ω defined by M(m,n) =
Mm(n).

Notation We shall write m · n = Mm(n). As desired, the above equations can now be
rewritten as

m · 0 = 0

m · n+ = m+m · n
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Summary We have the following identities.

(A1) m+ 0 = m
(A2) m+ n+ = (m+ n)+

(M1) m · 0 = 0
(M2) m · n+ = m+m · n

When functions are defined by recursion, properties of the functions are usually
proved by induction.

Theorem 7.18. For all m,n ∈ ω,

m+ n = n+m.

We first need to prove two lemmas,

Lemma 7.19. For all n ∈ ω, 0 + n = n.

Proof. It is enough to prove that the set

A = {n ∈ ω | 0 + n = n}
is inductive. By (A1), 0 + 0 = 0 and so 0 ∈ A. Next suppose that k ∈ A. Then

0 + k = k (∗)
and so

0 + k+ = (0 + k)+ by (A2)

= k+ by (*)

Thus k+ ∈ A. Hence A is inductive.

Lemma 7.20. For all m,n ∈ ω, m+ + n = (m+ n)+.

Proof. Fix some m ∈ ω. Then it is enough to show that

B = {n ∈ ω |m+ + n = (m+ n)+}
is inductive. Applying (A1) twice, we see that

m+ + 0 = m+ = (m+ 0)+

and so 0 ∈ B. Next suppose that k ∈ B. Then

m+ + k = (m+ k)+ (∗∗).
Hence

m+ + k+ = (m+ + k)+ by (A2)

= (m+ k)++ by (**)

= (m+ k+)+ by (A2)

Thus k+ ∈ B. Hence B is inductive.
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Proof of Theorem 7.18. Fix some n ∈ ω. Then it is enough to show that

C = {m ∈ ω |m+ n = n+m}

is inductive. By Lemma 7.19 and (A1),

0 + n = n = n+ 0

and so 0 ∈ C. Next suppose that k ∈ C. Then

k + n = n+ k (∗ ∗ ∗)

Hence

k+ + n = (k + n)+ by Lemma 7.20

= (n+ k)+ by (***)

= n+ k+ by (A2)

Thus k+ ∈ C. Hence C is inductive.

Theorem 7.21. The following identities hold for all natural numbers

1. m+ (n+ p) = (m+ n) + p

2. m+ n = n+m

3. m · (n+ p) = m · n+m · p

4. m · (n · p) = (m · n) · p

5. m · n = n ·m

Proof. Reading exercise. Enderton p. 81.

Remark 7.22. Note that, as expected, we have that

n+ (A1)
= (n+ 0)+ (A2)

= n+ 0+ = n+ 1.

Exercise 7.23. Prove that m · 1 = m.
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