Math 361 Order Relations

6 Order Relations

Definition 6.1. Let A be a set. A linear order on A is a binary relation on A which
satisfies the following properties:

e R is transitive.
e R satisfies trichotomy; ie if x,y € A then ezxactly one of the three alternatives
xRy, ==y, yRx
holds.
Example 6.2. R = {(a,b) | a,b € N and a < b} is a linear order on N.
Example 6.3. S = {{(a,b) | a,b € N and a > b} is a linear order on N.

Example 6.4. T = {(a,b) | a,b € N and a < b} is not a linear order on N, since 0 = 0
and OT'O. Thus T does not satisfy trichotomy.

Example 6.5. Define a binary relation <y on NxN by
(a,b) <p, (¢,d) <= either a < cor (a=candb<d).
Then <y is a linear order on NxN

Proof. We check that < is transitive and satisfies trichotomy.

(a) Suppose that (a,b) < (c,d) and (c,d) <p, (e, f). There are four cases to consider.
Case 1 Suppose that a < c and ¢ < e. Then a < e and so (a,b) <y, (e, f).

Case 2 Suppose that a < c and (¢ = e and d < f). Then a < e and so (a,b) <p, (e, f).
Case 3 Suppose that (a = c and b < d) and ¢ < e. Then a < e and so (a,b) <y, (e, f).

Case 4 Suppose that (e =cand b < d) and (c=e and d < f). Then a =e and b < f.
Hence (a,b) <p, (e, f).

(b) Suppose that (a,b) # (¢, d). If a < ¢ then (a,b) <i (c,d); and if ¢ < a, then
(¢,d) # {a,b). On the other hand, if a = ¢, then either b < d or d < b; and so either
(a,b) <r, (c,d) or (c,d) # (a,b).

Hence at least one alternative always holds.

Suppose that two of the alternatives hold for (a,b), (¢, d). Then clearly (a,b) # (c, d).
Hence we must have that

(a,b) <p (c,d) and (c,d) <g (a,b).

2006,/09/27 1



Math 361 Natural Numbers

Clearly this rules out both a < ¢ and ¢ < a. Thus a = ¢. BBut then we must have b < d
and d < b, which is impossible. O

Exercise 6.6. Show that < is a well-ordering.

7 The Natural Numbers

In this section, we shall define each natural number to be a suitable set. It will turn out
that

0 = 0

1 = {0}

2 = {0,{0}}

3 {0,{0},{0,{0}}
etc

In particular, we shall have
Dele2elde...

and
0C1C2C3C...

Notice also that
n<m iff nem

Definition 7.1. If a is any set, then its successor is defined to be
at =aU{a}.
Example 7.2.

0t = 0u{0} = {0}
{03 = {0yu{{0}} = {0.{0}}

n times

A

Ve

Notation We shall write 0 =@ and n = (... ((0F))..)"
Example 7.3. 2 = (07)"
Definition 7.4. A set A in inductive iff the following conditions are satisfied:

1.0e A
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2. If a € A, then a™ € A.

Remark 7.5. If A is inductive, then n € A for all n. In particular, A is infinite. So we
cannot prove the existence of an inductive set using our current axioms.

Axiom 7.6 (Infinity). There exists an inductive set.
Definition 7.7. A natural number is a set that belongs to every inductive set.

Theorem 7.8. There exists a set B such that for all x,
r € B iff x is a natural number.

Proof. By the Infinity Axiom, there exists an inductive set A. By the Subset Axiom,
there exists a set B such that for all x,

x € Biff x € A and x belongs to every inductive set.

Clearly B satisfies our requirements. O

Definition 7.9.
w = {x | x is a natural number}

Short discussion of the ordinals...
Theorem 7.10.

1. w s inductive.

2. If A is inductive, then w C A.

Proof. 1. Since @ belongs to every inductive set, it follows that () € w. Next suppose
that ¢ € w. Then a belongs to every inductive set and so a* belongs to every
inductive set. Hence a™ € w. Thus w is inductive.

2. Let A be any inductive set. If a € w, then a belongs to every inductive set. In
particular, a € A. Thus w C A.
]

Question 7.11. Does there exist an inductive set A # w?
Answer. Yes...

Theorem 7.12 (Induction principle for w). If T is an inductive subset of w, then
T=uw.

Proof. Suppose that 7' is an inductive subset of w. Then clearly 7' C w. By the previous
theorem, since T is inductive, w C T'. Hence T" = w. O
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Application. If n € w, then either n = 0 or there exists m € w such that n = m™.

Proof. Let T = {n € w|n=0or (Im € w) n=m*}. We claim that T is inductive.
Clearly 0 € T. Next suppose that k € T. Then clearly k* € T. Hence T is an inductive
subset of w. By Induction, T' = w. O

Next we would like to define the usual arithmetic operations on w.
Definition 7.13.

1. fis a unary operation on A iff f: A — A.

2. g is a binary operation on A iff f: AxA — A.

Example 7.14. The successor operation on w is the unary operation o: w — w defined
by o(n) = n*. In other words,

o= {(n,m) | (n,m) € wxw and m =n*}.
Next we would like to define a binary operation
a: WXW — w

such that
a(m,n) =m+n.

We shall define a by recursion on w, using the successor operation, as follows:

m+0 = m

m+nt = (m+n)t
In other words, we shall define a by:

a(m,0) = m

= o(a(m,n))

Slight Problem At first glance, we appear to be defining a in terms of a.

More Serious Problem

1. Can we prove that a function a: wxw — w satisfying the above properties exists,
using our current axioms of set theory?

2. If so, can we prove that there exists a unique such function?
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Theorem 7.15 (Recursion on w). Suppose that A is a set, a € A and F: A — A
is a function. Then there exists a unique function h: w — A satisfying the following
conditions:

(i) h(0) =a
(ii) for every n € w, h(n™) = F(h(n)).

Proof. We break the proof up into a series of claims.

Claim. There exists at most one such function h: w — A.

Proof. Suppose that h;: w — A and hy: w — A both satisfy conditions (i) and (ii). We
must prove that hy = ho. Let

S={ne€w|hi(n)=hyn)}.
We shall prove that S is inductive. By condition (i),
hy(0) = a = hy(0).
Hence 0 € S. Now suppose that n € S. Then hy(n) = ha(n). By condition (ii),
hi(n") = F(hi(n)) = F(ha(n)) = ha(n™).
Thus nt € S. By induction, S = w and so h; = ha. O

Now we show that there is at least one such function.

Definition 7.16. A function v is acceptable if domv C w, ranv C A, and the following
conditions hold:

(a) If 0 € domw, then v(0) = a.
(b) If n™ € domw, then n € domv and v(n™) = F(v(n)).

Example 7.17.
v ={(0,a)} is acceptable.

v =1{(0,a), (1, F(a))} is acceptable.
Let K C P(wxA) be the set of acceptable functions. Then we define

h=|JK

Clearly h C wx A. In particular, h is a set of ordered pairs.

Claim. h is a function.
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Proof. We must prove that for each n € dom h, there exists a unique y € A such that
(n,y) € h. (Note that we are not yet proving that domh = w.) Let

T = {n € w | there exists at most one y so that (n,y) € h}

We shall prove that T is inductive. First suppose that (0,y1), (0,y2) € h. Then there
exists acceptable functions vymuy so that v1(0) = y; and v2(0) = y». By condition (a),

v1(0) = a = v3(0)

Thus 0 € T. Next suppose that n € T'. To see that n™ € T'. suppose that (n™,y1), (n*,y2) €
h. Then there exist acceptable functions vy, vy such that vy(n*) = y; and ve(nt) = ys.
By condition (b), we have that

n € domv; and wvi(n") = F(vi(n))

n € domvy and wvy(n") = F(vy(n))

Since n € T, we have that vi(n) = vy(n). Hence v1(n™) = vy(n™) and so nt € T. By
induction, 7" = w and so h is a function. O

Claim. h is acceptable.

Proof. Clearly domh C w and ranh C A. Suppose that 0 € dom h. Then there exists
an acceptable function v such that h(0) = v(0) = a. Thus (a) holds.

Now suppose that nt € dom h. Then there exists an acceptable function v such that
h(n™) = v(n™). Futhermore, n € domwv and h(n) = v(n). Also,

and so (b) also holds. O
Claim. domh = w

Proof. We shall prove that dom h is inductive. First note that v = {(0, a)} is acceptable
and so 0 € domh. Next suppose that n € domh. Thus there exists an acceptable
function v such that v(n) = h(n). If n* € domw, then n* € domh. If n™ ¢ dom v, then

u=vU{(n", F(v(n)))}
is acceptable and so n™ € dom h. By induction, domh = w.

This completes the proof of the Recursion Theorem.

Now we are ready to define the various arithmetic operations on w.
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Addition

First for each m € w, the Recursion Theorem gives a unique function A,,: w — w such
that

An(0) = m
Am<n+> = Am(n)+

Now we can define addition to be the binary operation on w defined by
A(m,n) = A, (n).
Thus
A= {{{m,n),p) [ {{m,n),p) € (Wxw)xw and p = A (n)}.

Notation We shall write m +n = A(m,n).
Thus the above equations can be rewritten as

m+0 = m

m+nt = (m+n)t

Multiplication

Our plan is to define multiplication recursively in terms of addition, so that:

m-0 = 0

m-n = m+m-n

Once again, first for each m € w, the Recursion Theorem gives a unique function
M,,: w — w such that

M, (0) = 0
M, (n*) = m+ M,(n)

Now we can define multiplication to be the binary operation on w defined by M (m,n) =

Notation We shall write m - n = M,,(n). As desired, the above equations can now be
rewritten as

m-n = m+m-n
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Summary We have the following identities.

(A1) m+0 = m
(A2) m+nt = (m+n)"
(M1)  m-0 = 0
(M2) m-nt = m+4+m-n

When functions are defined by recursion, properties of the functions are usually
proved by induction.

Theorem 7.18. For all m,n € w,
m-+n=mn-+m.
We first need to prove two lemmas,
Lemma 7.19. For alln € w, 0 4+n =n.
Proof. 1t is enough to prove that the set
A={new|0+n=n}
is inductive. By (A1), 0+ 0 =0 and so 0 € A. Next suppose that &k € A. Then

0+k=Fk (%)
and so
0+kT = (0+k)*" by (A2)
kT by ()
Thus k* € A. Hence A is inductive. O

Lemma 7.20. For all m,n € w, m* +n=(m+n)*.
Proof. Fix some m € w. Then it is enough to show that
B={new|m"+n=m+n)*}
is inductive. Applying (A1) twice, we see that
m +0=m"=(m+0)"
and so 0 € B. Next suppose that £k € B. Then
mT+k=(m+k)T (xx).

Hence
mT+kT = (mt+k)T by (A2)
= (m+k)" by (*)
= (m+kt)T by (A2)
Thus kT € B. Hence B is inductive. O
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Proof of Theorem 7.18. Fix some n € w. Then it is enough to show that
C={mew|m+n=n+m}
is inductive. By Lemma 7.19 and (A1),
O+n=n=n+0
and so 0 € C'. Next suppose that £ € C'. Then

E+n=n+k (*x%x)

Hence
kt*+n = (k+n)" by Lemma 7.20
= (n+k)" by (%)
= n+k" by (A2)
Thus k™ € C. Hence C is inductive. ]

Theorem 7.21. The following identities hold for all natural numbers
1L.m+(n+p)=(m+n)+p
2.m+n=n+m
3. m-(n+p)=m-n+m-p
4.-m-(n-p)=(m-n)-p
bom-n=n-m
Proof. Reading exercise. Enderton p. 81. O
Remark 7.22. Note that, as expected, we have that

+ (A1)

nt @ (40 @

n+0"=n+1.

Exercise 7.23. Prove that m -1 = m.
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