Math 461 Applications and proof of compactness

11 The compactness theorem

Question 11.1. Suppose that X is an infinite set of wffs and that ¥ = 7. Does there
necessarily exists a finite subset g C X such that ¥y | 77

A positive answer follows from the following result...

Theorem 11.2 (The Compactness Theorem). Let ¥ be a set of wffs. If every finite
subset Yo C X is satisfiable, then ¥ is satisfiable.

Definition 11.3. A set ¥ of wifs is finitely satisfiable iff every finite subset ¥y C X is
satisfiable.

Theorem 11.4 (The Compactness Theorem). If ¥ is a finitely satisfiable set of
wffs, then ¥ is satisfiable.

Before proving the compactness theorem, we present a number of its applications.
Corollary 11.5. If ¥ |= 7, then there exists a finite subset ¥o C 3 such that X |= .

Proof. Suppose not. Then for every finite subset ¥y C ¥, we have that Xy = 7 and hence
Yo U{(—7)} is satisfiable. Thus ¥ U {(—7)} is finitely satisfiable. By the Compactness
Theorem, XU{(—7)} is satisfiable. But this means that ¥ [~ 7, which is a contradiction.

0J

12 A graph-theoretic application

Definition 12.1. Let E be a binary relation on the set V. Then I' = (V| E) is a graph
iff:

1. E is irreflexive; and

2. FE is symmetric.

Example 12.2. Let V = {0,1,2,3,4} and let £ = {(i,j) | j = ¢+ 1 mod 5}. This is
called the cycle of length five.

Definition 12.3. Let & > 1. Then the graph I' = (V| E) is k-colorable iff there exists a
function y: V' — {1,2,...k}. such that for all a,b € V,

(*) if aEb, then x(a) # x(b).

Example 12.4. Any cycle of even length is two-colorable. Any cycle of odd length is
three-colorable but not two-colorable.

Theorem 12.5 (Erdos). A countable graph T' = (V| E) is k-colorable iff every finite
subgraph vy C T is k-colorable.
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Proof. = Suppose that I" is k-colorable and let x: V' — {1,2,...,k} is any k-coloring.
Let 'y = (Vy, Ep) be any finite subgraph of I'. Then xo = x|Vp is a k-coloring of Ty.
< In this direction we use the Compactness Theorem.

Step 1 We choose a suitable propositional language. The idea is to have a sentence
symbol for every decision we must make. So our language has sentence symbols:

Cyp; foreachv eV, 1<i<k.
(The intended meaning of C,; is: “color vertex v with color i.”)

Step 2 We write down a suitable set of wifs which imposes a suitable set of constraints
on our truth assignments. Let X be the set of wifs of the following forms:

(a) Cp1VCyaV ... VCyy for each v € V.
(b) =(CyiNCy ;) foreach v € V and 1 <i# j <k.

(¢) =(CyiNCy ;) for each pair v,w € V of adjacent vertices and each 1 < i < k.

Step 3 We check that we have chosen a suitable set of wifs.

Claim 12.6. Suppose that v is a truth assignment which satisfies ¥. Then we can
define a k-coloring x: I' — {1,...,k} by
x(w) =1iff v(C,;) =T.

Proof. By (a) and by (b), for each v € V| there exists a unique 1 < ¢ < k such that
v(C,;) =T. Thus x: V — {1,...} is a function. By (c), if v,w € V are adjacent, then
x(v) # x(w). Hence x is a k-coloring,. O

Step 4 We next prove that 3 is finitely satisfiable. So let ¥y C 3 be any finite subset.
Let V5 C V be the finite set of vertices that are mentioned in ¥y. Then the finite
subgraph T'g = (Vj, Ey) is k-colorable. Let

x:Vo—{1,...,k}

be a k-coloring of I'y. Let vy be a truth assignment such that if v € Vj and 1 <i <k,
then

v(Co;) =T if xo(v) =1

Clearly v satisfies .
By the Compactness Theorem, 3 is satisfiable. Hence I' is k-colorable. Il

2006,/02/27 2



Math 461 Applications and proof of compactness

13 Extending partial orders

Theorem 13.1. Let (A, <) be a countable partial order. Then there exists a linear
ordering < of A which extends <.

Proof. We work with the propositional language which has sentence symbols

Loy for a#bec A
Let X be the following set of wifs:

a) LopVip, fora#be A

(

(b) ~(LapALpa) fora#be A
(¢) ((LapALpe)—La,) for distinct a,b,c € A
(d) Lgy for distinct a,b € A with a < b.

Claim 13.2. Suppose that v is a truth assignment which satisfies >. Define the binary
relation < on A by
a<b iff v(Ly)=T.

Then < is a linear ordering of A which extends <.

Proof. Clearly < is irreflexive. By (a) and (b), < has the trichotomy property. By (c),
< is transitive. Finally, by (d), < extends <. O]

Next we prove that X is finitely satisfiable. So let >y C ¥ be any finite subset. Let
Ag C A be the finite set of elements that are mentioned in ¥y and consider the partial
order (Ag, <o). Then there exists a partial ordering <q of Ay extending <. Let vy be
the truth assignment such that if a # b € Ay, then

UQ(L(L(,) =T iff a SO b.

Clearly vy satisfies .
By the compactness theorem, X is satisfiable. Hence there exists a linear ordering <
of A which extends <. l

14 Hall’s Theorem

Definition 14.1. Suppose that S is a set and that (S; |7 € I) is an indexed collection
of (not necessarily distinct) subsets of S. A system of distinct representatives is a choice
of elements x; € S; for @ € I such that if i # j € I, then x; # z;.
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Example 14.2. Let S = N and let (S, | n € N) be defined by
Sp={n,n+1}
Thus Sy = {0,1}, S; = {1,2}, ... Then we can take z; =i € 5.

Theorem 14.3 (Hall’s Matching Theorem (1935)). Let S be any set and let n €
N*. Let (S1,Sa,...,5,) be an indexed collection of subsets of S. Then a necessary and
sufficent condition for the existance of a system of distinct representatives is:

(H) For every 1 < k < n and choice of k distinct indices 1 < iq,...,1; < n, we have
1S, UL US| > k.

Challange: Prove this!

Problem 14.4. State and prove an infinite analogue of Hall’s Matching Theorem.

First Attempt Let S be any set and let (S, |n € N*t) be an indexed collection of
subsets of S. Then a necessary and sufficient condition for the existence of a system of
distinct representatives is:

(H*) For every k € Nt and choice of k distinct indices iy,...,i; € N, we have
1Si, U...US;, | > k.

Counterexample Take S; = N, S, = {0}, S3 = {1}, ..., S, = {n — 2}, ... Clearly

(H*) is satisfied and yet there is no system of distinct representatives.
Question 14.5. Where does the compactness argument break down?

Theorem 14.6 (Infinite Hall’s Theorem). Let S be any set and let (S, | n € NT) be
an indexed collection of finite subsets of S. Then a necessary and sufficient condition
for the existence of a system of distinct representatives is:

(H*) For every k € Nt and choice of k distinct indices iy,...,ix € N, we have
1S, UL US| > k.

Proof. We work with the propositional language with sentence symbols
Cpnz neNT z €S,
Let X be the following set of wffs:
(a) 2(CraNCiy) for n £#m e Ntz € S, N S,,.
(b) =(CoAChy) for n e Ntz #£y € S, NS,
(¢) (CpazyV...VCpy,) for n € Nt where S, = {z1,..., 21}
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Claim 14.7. Suppose that v is a truth assignment which satisfies ¥. Then we can
define a system of distinct representatives by

rxels, iff v(Ch.)=T.

Proof. By (b) and (c), each S,, gets assigned a unique representative. By (a), distinct
sets S, # S get assigned distinct representatives. O

Next we prove that ¥ is finitely satisfiable. So let ¥y C ¥ be any finite subset. Let
{i1,... .4} be the indices that are mentioned in ¥y. Then {S;,,...S; } satisfies condition
(H). By Hall’'s Theorem, there exists a set of distinct representatives for {S;,,...S;};
say, z, € 5;,. Let vy be the truth assignment such that for 1 <r <land z € 5;,,

v(Ci, ) =T iff z=uz,.

Clearly vy satisfies .
By the Compactness Theorem, Y is satisfiable. Hence there exists a system of distinct
representatives. (]

15 Proof of compactness

Theorem 15.1 (The Compactness Theorem). If ¥ is a finitely satisfiable set of
wffs, then ¥ is satisfiable.

Basic idea Imagine that for each sentence symbol A,, either A, € ¥ or -A, € X.
Then there is only one possibility for a truth assignment v which satisfies >: namely,

v(A,) =T iff A, eX.

Presumably this v works...
In the general case, we extend ¥ to a finitely satisfiable set A as above. For technical
reasons, we construct A so that for every wif a, either a € A or —a € A.

Lemma 15.2. Suppose that 3 is a finitely satisfiable set of wffs. If a is any wff, then
either ¥ U {a} is finitely satisfiable or X U {—a} is finitely satisfiable.

Proof. Suppose that ¥ U {a} isn’t finitely satisfiable. Then there exists a finite subset
Yo C ¥ such that ¥y U {a} isn’t satisfiable. Thus ¥ = —a. We claim that ¥ U -« is
fintely satisfiable. Let A C X U{—a} be any finite subset. If A C ¥ then A is satisfiable.
Hence we can suppose that A = Ay U {—a} for some finite subset Ay C ¥. Since X
is finitely satisfiable, ther exists a truth assignment v which satisfies ¥y N Ay. Since
Yo | —a, it follows that 0(—a) = T. Hence v satisfies Ay U {—a}. O
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Proof of the Compactness Theorem. Let ¥ be a finitely satisfiable set of wifs. Let
A1, 9, ..., 0p, ... TLZ 1

be an enumeration of all the wifs & € £. We shall inductively define an increasing
sequence of finitely satisfiable sets of wifs

AgCA C...CA,C...
First let Ag = >. Suppose inductively that A,, has been defined. Then

Apy1r = A, U{a,11}, if this is finitely satisfiable
A, U{(—an41)}, otherwise.

By the lemma, A, ;1 is also finitely satisfiable. Finally define

A:UAW

Claim 15.3. A is finitely satisfiable.

Proof. Suppose that ® C A is a finite subset. Then there exists an n such that ® C A,,.
Since A, is finitely satisfiable, ® is satisfiable. O

Claim 15.4. If « is any wff, then either o € A or (—a) € A.

Proof. There exists an n > 1 such that o = «v,,. By construction, either o, € A, or
(mav,) € Apyq; and A,y C AL O

Define a truth assignment v: £ — {T, F'} by
o(A) =T iff A €A.
Claim 15.5. For every wif o, v(a) =T iff a € A.

Proof. We argue by induction on the length m of the wif a. First suppose that m = 1.
Then « is a sentence symbol; say, a = A;. By definition

’D(Al) = ’U(Al) =T iff A € A.

Now suppose that m > 1. Then « has the form

(_'6)7 (6/\7)7 (6\/7>7 (ﬂ—)fy), (6<_>7)

for some shorter wifs 3, ~.
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Case 1 Suppose that a = (=3). Then

o(a)=T iff ©(pB)=F
ifft  G¢A by induction hypothesis
iff (=) € A by Claim 154
it aeA

Case 2 Suppose that a is (8V7). First suppose that (o) = T. Then 0(8) = T or
0(y) = T. By induction hypothesis, 5 € A or v € A. Since A is finitely satisfiable,

0. (=(8v7))} € A and {v, (=(8v7))} € A. Hence (=(5v7))¢A and so (3V7) € A.
Conversely suppose that (8Vy) € A. Since A is finitely satisfiable, {(=5), (=), (6VI')} €

A. Hence (—5)¢A or (—y)¢A; and so f € A or v € A. By induction hypothesis,
0(B) =T or v(y) =T. Hence v(fVy) =T.

Exercise 15.6. Write out the details for the other cases.

Thus v satisfies A. Since X C A, it follows that v satisfies >.
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