7 Binary relations

Definition 7.1. A binary relation on a set A is a subset $R \subseteq A \times A$. We usually write aRb instead of writing $(a, b) \in R$.

Example 7.2. 1. The order relation on \mathbb{N} is given by
\[\{ (n, m) \mid n, m \in \mathbb{N}, \; n < m \} . \]
2. The division relation D on $\mathbb{N}\setminus\{0\}$ is given by
\[D = \{ (n, m) \mid n, m \in \mathbb{N}, \; n \text{ divides } m \} . \]

Observation Thus $\mathcal{P}(\mathbb{N} \times \mathbb{N})$ is the collection of all binary relations on \mathbb{N}. Clearly $\mathcal{P}(\mathbb{N} \times \mathbb{N}) \sim \mathcal{P}(\mathbb{N})$ and so $\mathcal{P}(\mathbb{N} \times \mathbb{N})$ is uncountable.

Definition 7.3. Let R be a binary relation on A.

1. R is reflexive iff xRx for all $x \in A$.
2. R is symmetric iff xRy implies yRx for all $x, y \in A$.
3. R is transitive iff xRy and yRz implies xRz for all $x, y, z \in A$.

R is an equivalence relation iff R is reflexive, symmetric, and transitive.

Example 7.4. Define the relation R on \mathbb{Z} by
\[aRb \text{ iff } 3|a - b. \]

Proposition 7.5. R is an equivalence relation.

Exercise 7.6. Let $A = \{ (a, b) \mid a, b \in \mathbb{Z}, \; b \neq 0 \}$. Define the relation S on A by
\[(a, b)S(c, d) \text{ iff } ad - bc = 0. \]
Prove that S is an equivalence relation.

Definition 7.7. Let R be an equivalence relation on A. For each $x \in A$, the equivalence class of x is
\[[x] = \{ y \in A \mid xRy \} . \]

Example 7.4 Cont. The distinct equivalence classes are
\[[0] = \{ \ldots, -6, -3, 0, 3, 6, \ldots \} \]
\[[1] = \{ \ldots, -5, -2, 1, 4, 7, \ldots \} \]
\[[2] = \{ \ldots, -4, -1, 2, 5, 8, \ldots \} \]

Definition 7.8. Let A be a nonempty set. Then $\{ B_i \mid i \in I \}$ is a partition of A iff the following conditions hold:
1. $\emptyset \neq B_i$ for all $i \in I$.

2. If $i \neq j \in I$, then $B_i \cap B_j = \emptyset$.

3. $A = \bigcup_{i \in I} B_i$.

Theorem 7.9. Let R be an equivalence relation on A.

1. If $a \in A$ then $a \in [a]$.

2. If $a, b \in A$ and $[a] \cap [b] \neq \emptyset$, then $[a] = [b]$.

Hence the set of distinct equivalence classes forms a partition of A.

Proof.

1. Let $a \in A$. Since R is reflexive, aRa and so $a \in [a]$.

2. Suppose that $c \in [a] \cap [b]$. Then aRc and bRc. Since R is symmetric, cRb. Since R is transitive, aRb. We claim that $[b] \subseteq [a]$. To see this, suppose that $d \in [b]$. Then bRd. Since aRb and bRd, it follows that aRd. Thus $d \in [a]$. Similarly, $[a] \subseteq [b]$ and so $[a] = [b]$.

Theorem 7.10. Let $\{B_i \mid i \in I\}$ be a partition of A. Define a binary relation R on A by

$$aRb \text{ iff there exists } i \in I \text{ such that } a, b \in B_i.$$

Then R is an equivalence relation whose equivalence classes are precisely $\{B_i \mid i \in I\}$.

Example 7.11. How many equivalence relations can be defined on $A = \{1, 2, 3\}$?

Sol’n This is the same as asking how many partitions of A exist.

$$\{\{1, 2, 3\}, \{\{1, 2\}, \{3\}\}, \{\{1, 3\}, \{2\}\}, \{\{2, 3\}, \{1\}\}, \{\{1\}, \{2\}, \{3\}\}$$

Hence there are 5 equivalence relations on $\{1, 2, 3\}$.

Exercise 7.12. How many equivalence relations can be defined on $A = \{1, 2, 3, 4\}$?

Challenge Let $\text{EQ}(\mathbb{N})$ be the collection of equivalence relations on \mathbb{N}. Prove that $\text{EQ}(\mathbb{N}) \sim \mathcal{P}(\mathbb{N})$.

2006/02/06
8 Linear orders

Definition 8.1. Let R be a binary relation on A.

1. R is irreflexive iff $\langle a, a \rangle \notin R$ for all $a \in A$.

2. R satisfies the trichotomy property iff for all $a, b \in A$, exactly one of the following holds:

 $$aRb, \quad a = b, \quad bRa.$$

$\langle A, R \rangle$ is a linear order iff R is irreflexive, transitive, and satisfies the trichotomy property.

Example 8.2. Each of the following are linear orders.

1. $\langle \mathbb{N}, < \rangle$

2. $\langle \mathbb{N}, > \rangle$

3. $\langle \mathbb{Z}, < \rangle$

4. $\langle \mathbb{Q}, < \rangle$

5. $\langle \mathbb{R}, < \rangle$

Definition 8.3. Let R be a binary relation on A. Then $\langle A, R \rangle$ is a partial order iff R is irreflexive and transitive.

Example 8.4. Each of the follow are partial orders, but not linear orders.

1. Let A be any nonempty set containing at least two elements. Then $\langle \mathcal{P}(A), \subseteq \rangle$ is a partial order.

2. Let D be the divisability relation on $\mathbb{N}^+ = \mathbb{N} \setminus \{0\}$. Then $\langle \mathbb{N}^+, D \rangle$ is a partial order.

Definition 8.5. Let $\langle A, < \rangle$ and $\langle B, < \rangle$ be partial orders. A map $f: A \to B$ is an isomorphism iff the following conditions are satisfied.

1. f is a bijection

2. For all $x, y \in A$, $x < y$ iff $f(x) < f(y)$.

In this case, we say that $\langle A, < \rangle$ and $\langle B, < \rangle$ are isomorphic and write $\langle A, < \rangle \cong \langle B, < \rangle$.

Example 8.6. $\langle \mathbb{Z}, < \rangle \cong \langle \mathbb{Z}, > \rangle$
Proof. Let \(f: \mathbb{Z} \to \mathbb{Z} \) be the map defined by \(f(x) = -x \). Clearly \(f \) is a bijection. Also, if \(x, y \in \mathbb{Z} \), then \(x < y \)
\[\text{iff } -x > -y\]
\[\text{iff } f(x) > f(y).\]
Thus \(f \) is an isomorphism.

Example 8.7. \(\langle \mathbb{N}, < \rangle \not\cong \langle \mathbb{Z}, < \rangle \).

Proof. Suppose that \(f: \mathbb{N} \to \mathbb{Z} \) is an isomorphism. Let \(f(0) = z \). Since \(f \) is a bijection, there exists \(n \in \mathbb{N} \) such that \(f(n) = z - 1 \). But then \(n > 0 \) and \(f(n) < f(0) \), which is a contradiction.

Exercise 8.8. Prove that \(\langle \mathbb{Z}, < \rangle \not\cong \langle \mathbb{Q}, < \rangle \).

Example 8.9. \(\langle \mathbb{Q}, < \rangle \not\cong \langle \mathbb{R}, < \rangle \).

Proof. Since \(\mathbb{Q} \) is countable and \(\mathbb{R} \) is uncountable, there does not exist a bijection \(f: \mathbb{Q} \to \mathbb{R} \). Hence there does not exist an isomorphism \(f: \mathbb{Q} \to \mathbb{R} \).

Example 8.10. \(\langle \mathbb{R}, < \rangle \not\cong \langle \mathbb{R} \setminus \{0\}, < \rangle \).

Proof. Suppose that \(f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \) is an isomorphism. For each \(n \geq 1 \), let \(r_n = f(1/n) \). Then
\[r_1 > r_2 > \ldots > r_n > \ldots > f(-1). \]
Let \(s \) be the greatest lower bound of \(\{r_n \mid n \geq 1\} \). Then there exists \(t \in \mathbb{R} \setminus \{0\} \) such that \(f(t) = s \). Clearly \(t < 0 \). Hence \(f(t/2) > s \). But then there exists \(n \geq 1 \) such that \(r_n < f(t/2) \). But this means that \(t/2 < 1/n \) and \(f(t/2) > f(1/n) \), which is a contradiction.

Question 8.11. Is \(\langle \mathbb{Q}, < \rangle \cong \langle \mathbb{Q} \setminus \{0\}, < \rangle \)?

Definition 8.12. For each prime \(p \),
\[\mathbb{Z}[1/p] = \{ a/p^n \mid a \in \mathbb{Z}, \ n \in \mathbb{N} \}. \]

Question 8.13. Is \(\langle \mathbb{Z}[1/2], < \rangle \cong \langle \mathbb{Z}[1/3], < \rangle \)?

Definition 8.14. A linear order \(\langle D, < \rangle \) is a dense linear order without endpoints or DLO iff the following conditions hold.

1. For all \(a, b \in D \), if \(a < b \), then there exists \(c \in D \) such that \(a < c < b \).
2. For all \(a \in D \), there exists \(b \in D \) such that \(a < b \).
3. For all \(a \in D \), there exists \(b \in D \) such that \(b < a \).

Example 8.15. The following are DLOs.
1. \(\langle \mathbb{Q}, < \rangle \)
2. \(\langle \mathbb{R}, < \rangle \)
3. \(\langle \mathbb{Q} \setminus \{0\}, < \rangle \)
4. \(\langle \mathbb{R} \setminus \{0\}, < \rangle \)

Theorem 8.16. For each prime \(p \), \(\langle \mathbb{Z}/p, < \rangle \) is a DLO.

Proof. Clearly \(\langle \mathbb{Z}/p, < \rangle \) linear order without endpoints. Hence it is enough to show that \(\mathbb{Z}/p \) is dense. Suppose that \(a, b \in \mathbb{Z}/p \). Then there exists \(c, d \in \mathbb{Z} \) and \(n \in \mathbb{N} \) such that \(a = c/p^n \) and \(b = d/p^n \). Clearly \(a < a + (1/p^n) \leq b \). Consider

\[
 r = \frac{c}{p^n} + \frac{1}{p^n} = \frac{cp^n + 1}{p^n} \in \mathbb{Z}/p.
\]

Then \(a < r < b \). □

Theorem 8.17. If \(\langle A, < \rangle \) and \(\langle B, < \rangle \) are countable DLOs then \(\langle A, < \rangle \cong \langle B, < \rangle \).

Corollary 8.18. \(\langle \mathbb{Q}, < \rangle \cong \langle \mathbb{Q} \setminus \{0\}, < \rangle \). □

Corollary 8.19. \(\langle \mathbb{Z}/2, < \rangle \cong \langle \mathbb{Z}/3, < \rangle \). □

Corollary 8.20. If \(p \) is any prime, then \(\langle \mathbb{Z}/p, < \rangle \cong \langle \mathbb{Q}, < \rangle \). □

Proof of Theorem 8.17. Let \(A = \{a_n \mid n \in \mathbb{N}\} \) and \(B = \{b_n \mid n \in \mathbb{N}\} \). First define \(A_0 = \{a_0\} \) and \(B_0 = \{b_0\} \) and let \(f_0 : A_0 \rightarrow B_0 \) be the map defined by \(f_0(a_0) = b_0 \).

Now suppose inductively that we have defined a function \(f_n : A_n \rightarrow B_n \) such that the following conditions are satisfied.

1. \(\{a_0, \ldots, a_n\} \subseteq A_n \subseteq A \).
2. \(\{b_0, \ldots, b_n\} \subseteq B_n \subseteq B \).
3. \(f_n : A_n \rightarrow B_n \) is an order preserving bijection.

We now extend \(f_n \) to a suitable function \(f_{n+1} \).

Step 1 If \(a_{n+1} \in A_n \), then let \(A'_n = A_n \setminus \{a_{n+1}\} \), \(B'_n = B_n \), and \(f'_n = f_n \). Otherwise, suppose for example that

\[
c_0 < c_1 < \ldots < c_i < a_{n+1} < c_{i+1} < \ldots < c_m
\]

where \(A_n = \{c_0, \ldots, c_m\} \). Choose some element \(b \in B \) such that \(f_n(c_i) < b < f_n(c_{i+1}) \) and define

\[
 A'_n = A_n \cup \{a_{n+1}\} \\
 B'_n = B_n \cup \{b\} \\
 f'_n = f_n \cup \{(a_{n+1}, b)\}
\]
Step 2 If $b_{n+1} \in B'_n$, then let $A_{n+1} = A'_n$, $B_{n+1} = B'_n$, and $f_{n+1} = f'_n$. Otherwise, suppose for example that

$$d_0 < d_1 < \ldots < d_j < b_{n+1} < d_{j+1} < \ldots < d_t$$

where $B'_n = \{d_0, \ldots, d_t\}$. Choose some element $a \in A$ such that $(f'_n)^{-1}(d_j) < a < (f'_n)^{-1}(d_{j+1})$ and define

$$A_{n+1} = A'_n \cup \{a\}$$
$$B_{n+1} = B'_n \cup \{b_{n+1}\}$$
$$f_{n+1} = f'_n \cup \{(a, b_{n+1})\}.$$

Finally, let $f = \bigcup_{n \geq 0} f_n$. Then $f : A \to B$ is an isomorphism.

9 Extensions

Definition 9.1. Suppose that R, S are binary relations on A. Then S extends R iff $R \subseteq S$.

Example 9.2. Consider the binary relations R, S on \mathbb{N} defined by

$$R = \{(n, m) \mid n < m\}$$
$$S = \{(n, m) \mid n \leq m\}$$

Then S extends R.

Example 9.3. Consider the partial order \prec on $\{a, b, c, d, e\}$ which is

$$\{(d, b), (d, a), (d, e), (d, c), (a, b), (e, b), (c, b)\}.$$

Then we can extend \prec to the linear order $<$ defined by the transitive closure of

$$d < e < c < a < b.$$

Exercise 9.4. If $\langle A, \prec \rangle$ is a finite partial order, then we can extend \prec to a linear ordering $<$ of A.

Question 9.5. Does the analogous result hold if $\langle A, \prec \rangle$ is a infinite partial order?

Definition 9.6. If A is a set and $n \geq 1$, then

$$A^n = \{(a_1, \ldots, a_n) \mid a_1, \ldots, a_n \in A\}.$$

An n-ary relation on A is a subset $R \subseteq A^n$.

An n-ary operation on A is a function $f : A^n \to A$.

2006/02/06