5 The Cantor-Bernstein Theorem (continued)

Some applications of the Cantor-Bernstein theorem

Theorem 5.1. \(\mathbb{N} \sim \mathbb{Q} \).

Proof. First define a function \(f : \mathbb{N} \to \mathbb{Q} \) by \(f(n) = n \). Clearly \(f \) is an injection and so \(\mathbb{N} \leq \mathbb{Q} \).

Now define a function \(g : \mathbb{Q} \to \mathbb{N} \) as follows. First suppose that \(0 \neq q \in \mathbb{Q} \). Then we can uniquely express \(q = \frac{\epsilon a}{b} \) where \(\epsilon = \pm 1 \) and \(a, b \in \mathbb{N} \) are positive and relatively prime. Then we define \(g(q) = 2^{\epsilon + 1}3^a5^b \).

Finally define \(g(0) = 7 \). Clearly \(g \) is an injection and so \(\mathbb{Q} \leq \mathbb{N} \).

By Cantor-Bernstein, \(\mathbb{N} \sim \mathbb{Q} \).

Theorem 5.2. \(\mathbb{R} \sim \mathcal{P}(\mathbb{N}) \).

We shall make use of the following result.

Lemma 5.3. \((0, 1) \sim \mathbb{R}\).

Proof of Lemma 5.3. By Calc I, we can define a bijection \(f : (0, 1) \to \mathbb{R} \) by \(f(x) = \tan(\pi x - \pi/2) \).

Proof of Theorem 5.2. By the lemma, it is enough to show that \((0, 1) \sim \mathcal{P}(\mathbb{N}) \). We shall make use of the fact that each \(r \in (0, 1) \) has a unique decimal expansion

\[r = 0.r_1r_2r_3\ldots r_n\ldots \]

so that

1. \(0 \leq r_n < 9 \)

2. the expansion does not terminate with infinitely many 9s. (This is to avoid two expansions such as 0.5000\ldots = 0.4999\ldots)

First we define \(f : (0, 1) \to \mathcal{P}(\mathbb{N}) \) as follows. If

\[r = 0.r_0r_1r_2\ldots r_n\ldots \]

then

\[f(r) = \{2^{r_0+1}, 3^{r_1+1}, \ldots, p_n^{r_n+1}, \ldots\} \]

where \(p_n \) is the \(n \)th prime. Clearly \(f \) is an injection and so \((0, 1) \leq \mathcal{P}(\mathbb{N}) \).

Next we define a function \(g : \mathcal{P}(\mathbb{N}) \to (0, 1) \) as follows: If \(\emptyset \neq S \subseteq \mathbb{N} \) then

\[g(S) = 0.s_0s_1s_2\ldots s_n\ldots \]

where

\[s_n = 0 \text{ if } n \in S \]
\[s_n = 1 \text{ if } n \notin S. \]

Finally, \(g(\emptyset) = 0.5 \). Clearly \(g \) is an injection and so \(\mathcal{P}(\mathbb{N}) \leq (0, 1) \).

By Cantor-Bernstein, \((0, 1) \sim \mathcal{P}(\mathbb{N})\).

\[\square \]
The following result says that “\(\mathbb{N} \) has the smallest infinite size.”

Theorem 5.4. If \(S \subseteq \mathbb{N} \), then either \(S \) is finite or \(\mathbb{N} \sim S \).

Proof. Suppose that \(S \) is infinite. Let
\[s_0, s_1, s_2, \ldots, s_n, \ldots \]
be the increasing enumeration of the elements of \(S \). This list witnesses that \(\mathbb{N} \sim S \). \(\square \)

The **Continuum Hypothesis (CH)** If \(S \subseteq \mathbb{R} \), then either \(S \) is countable or \(\mathbb{R} \sim S \).

Theorem 5.5. (Gödel 1930s, Cohen 1960s) If the axioms of set theory are consistent, then CH can neither be proved nor disproved from these axioms.

Definition 5.6. \(\text{Fin}(\mathbb{N}) \) is the set of all finite subsets of \(\mathbb{N} \).

Theorem 5.7. \(\mathbb{N} \sim \text{Fin}(\mathbb{N}) \).

Proof. First define \(f : \mathbb{N} \to \text{Fin}(\mathbb{N}) \) by \(f(n) = \{ n \} \). Clearly \(f \) is an injection and so \(\mathbb{N} \leq \text{Fin}(\mathbb{N}) \). Now define \(g : \text{Fin}(\mathbb{N}) \to \mathbb{N} \) as follows. If \(s = \{ s_0, s_1, s_2, \ldots, s_n \} \) where \(s_0 < s_1 < \ldots < s_n \), then
\[g(S) = 2^{s_0+1}3^{s_1+1}\cdots p_{s_n+1}^{s_n} \]
where \(p_i \) is the \(i \)th prime. Also we define \(g(\emptyset) = 1 \). Clearly \(g \) is an injection and so \(\text{Fin}(\mathbb{N}) \leq \mathbb{N} \).

By Cantor-Bernstein, \(\mathbb{N} \sim \text{Fin}(\mathbb{N}) \). \(\square \)

Exercise 5.8. If \(a < b \) are reals, then \((a, b) \sim (0, 1) \).

Exercise 5.9. If \(a < b \) are reals, then \([a, b] \sim (0, 1) \).

Exercise 5.10. \(\mathbb{N} \sim \mathbb{N} \times \mathbb{N} \).

Exercise 5.11. If \(A \sim B \) and \(C \sim D \), then \(A \times C \sim B \times D \).

Definition 5.12. If \(A \) and \(B \) are sets, then
\[B^A = \{ f \mid f : A \to B \} \]

Theorem 5.13. \(\mathcal{P}(\mathbb{N}) \sim \mathbb{N}^\mathbb{N} \).

Proof. For each \(S \subseteq \mathbb{N} \) we define the corresponding characteristic function \(\chi_S : \mathbb{N} \to \{0, 1\} \) by
\[\chi_S(n) = 1 \text{ if } n \in S \]
\[\chi_S(n) = 0 \text{ if } n \notin S \]
Let \(f : \mathcal{P}(\mathbb{N}) \to \mathbb{N}^\mathbb{N} \) be the function defined by \(f(S) = \chi_S \). Clearly \(f \) is an injection and so \(\mathcal{P}(\mathbb{N}) \leq \mathbb{N}^\mathbb{N} \).

Now we define a function \(g : \mathbb{N}^\mathbb{N} \to \mathcal{P}(\mathbb{N}) \) by
\[g(\pi) = \{ 2^{\pi(0)+1}, 3^{\pi(1)+1}, \ldots, p_n^{\pi(n)+1}, \ldots \} \]
\(\square \)

2006/01/30
where \(p_n \) is the \(n \)th prime. Clearly \(g \) is an injection. Hence \(\mathbb{N}^\mathbb{N} \preceq \mathcal{P}(\mathbb{N}) \).

By Cantor-Bernstein, \(\mathcal{P}(\mathbb{N}) \sim \mathbb{N}^\mathbb{N} \).

Heuristic Principle Let \(S \) be an infinite set.

1. If each \(s \in S \) is determined by a *finite* amount of data, then \(S \) is countable.
2. If each \(s \in S \) is determined by *infinitely many independent* pieces of data, then \(S \) is uncountable.

Definition 5.14. A function \(f : \mathbb{N} \rightarrow \mathbb{N} \) is *eventually constant* iff there exists \(a, b \in \mathbb{N} \) such that

\[
f(n) = b \quad \text{for all } n \geq a.
\]

\(\text{EC}(\mathbb{N}) = \{ f \in \mathbb{N}^\mathbb{N} \mid f \text{ is eventually constant} \} \).

Theorem 5.15. \(\mathbb{N} \sim \text{EC}(\mathbb{N}) \).

Proof. For each \(n \in \mathbb{N} \), let \(c_n : \mathbb{N} \rightarrow \mathbb{N} \) be the function defined by

\[
c_n(t) = n \quad \text{for all } t \in \mathbb{N}.
\]

Then we can define an injection \(f : \mathbb{N} \rightarrow \text{EC}(\mathbb{N}) \) by \(f(n) = c_n \). Hence \(\mathbb{N} \preceq \text{EC}(\mathbb{N}) \).

Next we define a function \(g : \text{EC}(\mathbb{N}) \rightarrow \mathbb{N} \) as follows. Let \(\pi \in \text{EC}(\mathbb{N}) \). Let \(a, b \in \mathbb{N} \) be chosen so that:

1. \(\pi(n) = b \) for all \(n \geq a \)
2. \(a \) is the least such integer.

Then

\[
g(\pi) = 2^{\pi(0)+1}3^{\pi(1)+1}\ldots p_a^{\pi(a)+1}
\]

where \(p_i \) is the \(i \)th prime. Clearly \(g \) is an injection. Thus \(\text{EC}(\mathbb{N}) \preceq \mathbb{N} \).

By Cantor-Bernstein, \(\mathbb{N} \sim \text{EC}(\mathbb{N}) \). \(\square \)

6 The proof of Cantor-Bernstein

Next we turn to the proof of the Cantor-Bernstein Theorem. We shall make use of the following result.

Definition 6.1. If \(f : A \rightarrow B \) and \(C \subseteq A \), then

\[
f[C] = \{ f(c) \mid c \in C \}.
\]

Lemma 6.2. If \(f : A \rightarrow B \) is an injection and \(C \subseteq A \), then

\[
f[A \setminus C] = f[A] \setminus f[C].
\]
Proof. Suppose that \(x \in f[A \setminus C] \). Then there exists \(a \in A \setminus C \) such that \(f(a) = x \). In particular \(x \in f[A] \). Suppose that \(x \in f[C] \). Then there exists \(c \in C \) such that \(f(c) = x \). But \(a \neq c \) and so this contradicts the fact that \(f \) is an injection. Hence \(x \notin f[C] \) and so \(x \in f[A] \setminus f[C] \).

Conversely suppose that \(x \in f[A] \setminus f[C] \). Since \(x \in f[A] \), there exists \(a \in A \) such that \(f(a) = x \). Since \(x \notin f[C] \), it follows that \(a \notin C \). Thus \(a \in A \setminus C \) and \(x = f(a) \in f[A \setminus C] \).

Theorem 6.3. (Cantor-Bernstein) If \(A \not\preceq B \) and \(B \not\preceq A \), then \(A \sim B \).

Proof. Since \(A \not\preceq B \) and \(B \not\preceq A \), there exists injections \(f : A \to B \) and \(g : B \to A \). Let \(C = g[B] = \{ g(b) \mid b \in B \} \).

Claim 6.4. \(B \sim C \).

Proof of Claim 6.4. The map \(b \mapsto g(b) \) is a bijection from \(B \) to \(C \).

Thus it is enough to prove that \(A \sim C \). For then, \(A \sim C \) and \(C \sim B \), which implies that \(A \sim B \).

Let \(h = g \circ f : A \to C \). Then \(h \) is an injection.

Define by induction on \(n \geq 0 \).

\[
\begin{align*}
A_0 &= A \\
A_{n+1} &= h[A_n] \\
C_0 &= C \\
C_{n+1} &= h[C_n]
\end{align*}
\]

Define \(k : A \to C \) by \(k(x) = h(x) \) if \(x \in A_n \setminus C_n \) for some \(n \)

\[
= x \text{ otherwise}
\]

Claim 6.5. \(k \) is an injection.

Proof of Claim 6.5. Suppose that \(x \neq x' \) are distinct elements of \(A \). We consider three cases.

Case 1:

Suppose that \(x \in A_n \setminus C_n \) and \(x' \in A_m \setminus C_m \) for some \(n, m \). Since \(h \) is an injection, \(k(x) = h(x) = x \neq x' = h(x) = k(x) \).

Case 2:

Suppose that \(x \notin A_n \setminus C_n \) for all \(n \) and that \(x' \notin A_n \setminus C_n \) for all \(n \). Then \(k(x) = x \neq x' = k(x) \).

Case 3:

Suppose that \(x \notin A_n \setminus C_n \) and \(x' \notin A_m \setminus C_m \) for all \(m \). Then \(k(x) = h(x) \in h[A_n \setminus C_n] \)

and \(h[A_n \setminus C_n] = h[A_n] \setminus h[C_n] = A_{n+1} \setminus C_{n+1} \).
Hence \(k(x) = h(x) \neq x' = k(x') \).

Claim 6.6. \(k \) is a surjection.

Proof of Claim 6.6. Let \(x \in C \). There are two cases to consider.

Case 1:
Suppose that \(x \notin A_n \setminus C_n \) for all \(n \). Then \(k(x) = x \).

Case 2:
Suppose that \(x \in A_n \setminus C_n \). Since \(x \in C \), we must have that \(n = m + 1 \) for some \(m \). Since
\[
h[A_m \setminus C_m] = A_n \setminus C_n,
\]
there exists \(y \in A_m \setminus C_m \) such that \(k(y) = h(y) = x \).

This completes the proof of the Cantor-Bernstein Theorem.

Theorem 6.7. \(\mathbb{R} \sim \mathbb{R} \times \mathbb{R} \)

Proof. Since \((0, 1) \sim \mathbb{R} \), it follows that \((0, 1) \times (0, 1) \sim \mathbb{R} \times \mathbb{R} \). Hence it is enough to prove that \((0, 1) \sim (0, 1) \times (0, 1) \).

First define \(f : (0, 1) \rightarrow (0, 1) \times (0, 1) \) by \(f(r) = \langle r, r \rangle \). Clearly \(f \) is an injection and so \((0, 1) \sim (0, 1) \times (0, 1) \).

Next define \(g : (0, 1) \times (0, 1) \rightarrow (0, 1) \) as follows. Suppose that \(r, s \in (0, 1) \) have decimal expansions
\[
r = 0.r_0r_1\ldots r_n\ldots
\]
\[
s = 0.s_0s_1\ldots s_n\ldots
\]
Then
\[
g(\langle r, s \rangle) = 0.r_0s_0r_1s_1\ldots r_ns_n\ldots
\]
Clearly \(g \) is an injection and so \((0, 1) \times (0, 1) \sim (0, 1) \).

By Cantor-Bernstein, \((0, 1) \sim (0, 1) \times (0, 1) \).

Exercise 6.8. \(\mathbb{R} \setminus \mathbb{N} \sim \mathbb{R} \)

Exercise 6.9. \(\mathbb{R} \setminus \mathbb{Q} \sim \mathbb{R} \)

Exercise 6.10. Let \(\text{Sym}(\mathbb{N}) = \{ f \mid f : \mathbb{N} \rightarrow \mathbb{N} \text{ is a bijection} \} \). Prove that \(\mathcal{P}(\mathbb{N}) \sim \text{Sym}(\mathbb{N}) \).

Definition 6.11. Let \(A \) be any set. Then a *finite sequence* of elements of \(A \) is an object \(\langle a_0, a_1, \ldots, a_n \rangle, \ n \geq 0 \) so that each \(a_i \in A \), chosen so that \(\langle a_0, a_1, \ldots, a_n \rangle = \langle b_0, b_1, \ldots, b_n \rangle \) iff \(n = m \) and \(a_i = b_i \) for \(0 \leq i \leq n \).

\(\text{FinSeq}(A) \) is the set of all finite sequences of elements of \(A \).
Theorem 6.12. If A is a nonempty countable set, then $\mathbb{N} \sim \text{FinSeq}(A)$.

Proof. First we prove that $\mathbb{N} \leq \text{FinSeq}(A)$. Fix some $a \in A$. Then we define $f : \mathbb{N} \to \text{FinSeq}(A)$ by

$$f(n) = \langle a, a, a, a, \ldots, a \rangle_{n + 1 \text{ times}}.$$

Clearly f is an injection and so $\mathbb{N} \leq \text{FinSeq}(A)$.

Next we prove that $\text{FinSeq}(A) \leq \mathbb{N}$. Since A is countable, there exists an injection $e : A \to \mathbb{N}$. Define $g : \text{FinSeq}(A) \to \mathbb{N}$ by

$$g(\langle a_0, a_1, \ldots, a_n \rangle) = 2^{e(a_0)+1} \cdots p_{e(a_n)+1}^{e(a_n)+1}$$

where p_i is the i^{th} prime. Clearly g is an injection. Hence $\text{FinSeq}(A) \leq \mathbb{N}$.

By Cantor-Bernstein, $\mathbb{N} \sim \text{FinSeq}(A)$. \qed