Cryptology course packet

Wesley Pegden

Version: January 19, 2010
Chapter 1

Classical Cryptology

1.1 The Caesar cipher and modular arithmetic

More than 2000 years ago, the military secrets of the Roman empire were kept secret with the help of cryptography. The 'Caesar cipher', as it is now called, was used by Julius Caesar to encrypt messages by 'shifting' letters alphabetically.

For example, we could encrypt the message MEET AT TEN by replacing each letter in the message with the letter which comes 3 letters later in the alphabet; M would get replaced by P, the E's would get replaced by H's, and so on. The encrypted message—called the ciphertext—would be PHHW DW WZR.

This kind of encryption can be formalized mathematically by assigning a number to each letter:

| | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

To encrypt a message, we convert its letters to numbers, add 3 to them, and then convert them back into letters:

| M E E T A T T E N | 12 4 4 19 0 19 19 4 13 |
| add 3: | 15 7 7 22 3 22 22 7 16 |
| P H H W D W W H Q |

The person we are sending the message to receives PPHW DW WZR, and has been told they can decrypt it by shifting the letters back by 3. This corresponds to subtracting three when we convert to numbers:

| P H H W D W W H Q |
| subtract 3: | 12 4 4 19 | 0 19 | 19 | 4 13 |
| M E E T A T T E N |

This lets them decrypt the ciphertext and recover the original message (the plaintext).

When Caesar used the cipher, he always shifted by 3, but there's no reason for us to stick with this convention. For example, we could have encrypted the message MEET AT TEN by shifting the letters by 5 instead of 3:

```
| M E E T A T T E N |
| add 5: | 17 9 9 24 5 24 24 9 18 |
| R J J Y F Y Y J S |
```

Now the plaintext is still MEET AT TEN, but the ciphertext is now RJJY FY YJS. We need to tell the person we are sending the message to how much we added in the encryption step (5 in this case) so that they know how much to subtract to recover the original message. This number is called the key. Just like before, they would decrypt RJJY FY YJS by subtracting:

```
| R J J Y F Y Y J S |
| subtract 5: | 12 4 4 19 | 0 19 | 19 | 4 16 |
| M E E T A T T E N |
```

Ex. 1.1.1. Encrypt the message MATH with the Caesar cipher with 4 as the key.

Ex. 1.1.2. Encrypt the message CRYPTO with the Caesar cipher with 6 as the key.

Ex. 1.1.3. The message QIIX PEXIV was encrypted using the Caesar cipher with 4 as the key. Decrypt the message.

Ex. 1.1.4. The message SKKZ NXXX was encrypted using the Caesar cipher with 6 as the key.

There's a subtlety to the Caesar cipher that hasn't come up yet. Let's return to our original example, and but change it just a little bit. We'll try to encode the message MEET AT TWO (note the change) with 5 as a key:

```
| M E E T A T T E N |
| add 5: | 17 9 9 24 5 24 24 9 18 |
| R J J Y F Y Y J S |
```

What should go in the place of the question mark? It doesn't seem like there is a letter corresponding to the number 27. Or is there? Such a letter would be two places 'past' the letter Z. Whenever we are looking for a letter past the letter Z, we simply wrap around, and start back at the beginning of the alphabet again. In this way, the letter two 'past' Z is B; so the encrypted message will be RJJY FY YBT.

Ex. 1.1.5. Decrypt the message QIIX PEXIV with the Caesar cipher with 4 as the key.
Chapter 1. Classical Cryptology

1.1. THE CAESAR CIPHER AND MODULAR ARITHMETIC

This is the same way we add when we’re talking about time: what time will it be 5 hours after 10 o’clock? The answer isn’t 15 o’clock (unless you’re using 24 hour time): it’s 3 o’clock.

Which of the following are true?

Ex. 1.1.6. Which of the following are true?
(a) $6 \equiv 3 \pmod{2}$
(b) $6 \equiv 2 \pmod{3}$
(c) $15 \equiv 3 \pmod{6}$
(d) $6 \equiv -3 \pmod{5}$

Returning to the example of the letter S (corresponding to the number 18) being encrypted by the Caesar cipher using the key 10, we already pointed out that 18 + 10 $\equiv 2 \pmod{26}$, which means that the encryption results in the letter C. If you think about it, though, 18 + 10 $\equiv 54 \pmod{26}$ is also true, since 28 = 54 + (−52), and −52 is a multiple of 26. In fact, its even true that 18 + 10 $\equiv 28 \pmod{26}$, since 28 = 28 + 0, and 0 is a multiple of 26! In fact, there are infinitely many numbers that 28 is congruent to modulo 26. For the purposes of encrypting the letter S, however, we don’t use any of these other congruences, since they don’t give numbers between 0 and 25. In general, given any problem of the form $a \equiv m \pmod{m}$ there is exactly one number which can fill in the blank which lies between 0 and $m − 1$. How can we find this number? This is just the distance between a and the closest multiple of m smaller than a. If we divide a by m, then the remainder of the division problem corresponds to this distance. We say that a reduces to the remainder modulo m. For example, 28 reduces to 2 modulo 26 because 26 | 28 gives a remainder of 2. (Note that 28 is 2 more than 26, which is the closest multiple of 26 smaller than 28.) We use the notation MOD to indicate this reduction modulo m, so $28 \equiv 2 \pmod{26}$. Notice the difference between the problems 28 $\equiv 2 \pmod{26}$ and 28 MOD 26 = 2. The first question has infinitely many correct answers (2, 28, 54, −24, etc.), while the second question has only one correct answer (2).

Ex. 1.1.7. Reduce each integer to the given modulus.
(a) $11 \equiv 5 \pmod{3}$
(b) $13 \equiv 4 \pmod{5}$
(c) $9 \equiv 6 \pmod{5}$
(d) $9 \equiv -6 \pmod{5}$

Ex. 1.1.8. Reduce each integer to the given modulus.
(a) $11 \equiv 5 \pmod{26}$
(b) $59 \equiv 26 \pmod{26}$
(c) $63 \equiv 26 \pmod{26}$
(d) $28 \equiv 26 \pmod{26}$
1.1. THE CAESAR CIPHER AND MODULAR ARITHMETIC

Things seem a bit trickier if we are trying to reduce a negative number, but the meaning of the MOD operation is the same. For example, what is $-32 \text{ MOD } 26$? The closest multiple of 26 less than -32 is -52, and $-32 = -52 + 20$, so $-32 \text{ MOD } 26 = 20$. Long division with negative numbers can seem a bit confusing, but there is an easy way out! Given any number a, you can always find $a \text{ MOD } M$ just by adding or subtracting multiples of m until you have something between 0 and $(m - 1)$.

Ex. 1.1.9. Reduce each integer to the given modulus.

(a) $-6 \text{ MOD } 26 = -$
(b) $-12 \text{ MOD } 26 = -$
(c) $-34 \text{ MOD } 26 = -$
(d) $-55 \text{ MOD } 26 = -$

Ex. 1.1.10. Reduce each integer to the given modulus.

(a) $-10 \text{ MOD } 26 = -$
(b) $-15 \text{ MOD } 26 = -$
(c) $-43 \text{ MOD } 26 = -$
(d) $-62 \text{ MOD } 26 = -$

Armed with this new modular arithmetic, let’s return to the Caesar cipher. Let’s consider encryption of the phrase THEY COME BY SEA using the Caesar cipher with a key of 18. As before, first we translate letters into numbers:

<table>
<thead>
<tr>
<th>T</th>
<th>H</th>
<th>E</th>
<th>Y</th>
<th>C</th>
<th>O</th>
<th>M</th>
<th>E</th>
<th>B</th>
<th>Y</th>
<th>S</th>
<th>E</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>7</td>
<td>4</td>
<td>24</td>
<td>2</td>
<td>14</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>24</td>
<td>18</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Then we add the key (18 in this case) and reduce the results modulo 26:

<table>
<thead>
<tr>
<th>T</th>
<th>H</th>
<th>E</th>
<th>Y</th>
<th>C</th>
<th>O</th>
<th>M</th>
<th>E</th>
<th>B</th>
<th>Y</th>
<th>S</th>
<th>E</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>25</td>
<td>22</td>
<td>42</td>
<td>20</td>
<td>32</td>
<td>30</td>
<td>22</td>
<td>19</td>
<td>42</td>
<td>36</td>
<td>22</td>
<td>18</td>
</tr>
</tbody>
</table>

Finally, we convert back to letters to get the ciphertext:

<table>
<thead>
<tr>
<th>T</th>
<th>Q</th>
<th>Z</th>
<th>F</th>
<th>Y</th>
<th>O</th>
<th>E</th>
<th>S</th>
<th>P</th>
<th>M</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>16</td>
<td>25</td>
<td>5</td>
<td>24</td>
<td>14</td>
<td>4</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>17</td>
</tr>
</tbody>
</table>

1.2 Breaking the Caesar cipher

The normal function of an encryption scheme is that one person (‘Alice’) sends a message to another (‘Bob’). As long as Bob knows the key, he can decrypt the message. But what if a third party (‘Carla’) intercepts the message? Can she figure out what it says, even without knowing the key? Of course, the whole point of encrypting the message is to prevent this!

Consider the intercepted message T QZFYO ESP MLR which was encrypted with the Caesar cipher. Even without knowing the key, we have a lot of information; for example, we know that the message begins with a one-letter word. Assuming the message is in English, the should mean that T was encrypted either from the letter A or the letter I. T corresponds to the number 19, and A to the number 0, which means that for A to get encrypted to T, the key would have to be 19. Based on this guess, we can try decrypting the message as if it was encrypted with 19 as the key:

<table>
<thead>
<tr>
<th>T</th>
<th>Q</th>
<th>Z</th>
<th>F</th>
<th>Y</th>
<th>O</th>
<th>E</th>
<th>S</th>
<th>P</th>
<th>M</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>16</td>
<td>25</td>
<td>5</td>
<td>24</td>
<td>14</td>
<td>4</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>17</td>
</tr>
</tbody>
</table>

Since the beginning doesn’t work out, we don’t even have to bother trying the rest of the message: it seems like 19 is definitely not the key. So what T in the ciphertext corresponds to I in the plaintext (instead of A)? Since T corresponds to 19 and I corresponds to 8, this would mean the encryption key is 11. Let’s try that out:
1.2. BREAKING THE CAESAR CIPHER

<table>
<thead>
<tr>
<th>T</th>
<th>Q</th>
<th>Z</th>
<th>F</th>
<th>Y</th>
<th>O</th>
<th>E</th>
<th>S</th>
<th>P</th>
<th>M</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>16</td>
<td>25</td>
<td>5</td>
<td>24</td>
<td>14</td>
<td>4</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>17</td>
</tr>
</tbody>
</table>

subtract 11:

8 5 14 -6 13 3 -7 7 4 1 0 6

MOD 26

8 5 14 20 13 3 19 7 4 1 0 6

I FOUND THE BAG

And we’ve broken the message. The important thing to notice from this example is that if we can guess just one letter of the plaintext correctly, we can break a whole message encrypted with the Caesar cipher.

Ex. 1.2.1. Break these Caesar ciphers:
(a) PAXG LAHNEW B KXMNK
(b) QUCN ZIL U JBHY WUFF
(c) GUR ENOQVG PENJYRQ BHG BS VGF UBYR (Hint: what three letter words are likely to appear at the beginning of an English sentence?)

It’s clear that the spacing of a message already gives lots of information which can be used to break it. For this reason, encoded messages have traditionally been written without their original spacing so that someone trying to break the code can’t use this information. For example, if we wanted to send the message WHEN WILL YOU RETURN using the Caesar cipher with 10 as a key, we first break the message into groups of 5 letters, ignoring the original spacing:

WHENW ILLYO URETU RN

Now if we encrypted this message with 16 as a key, for example, it would become

LWTCL XAAND JGTIJ GC

and if someone intercepts the message who doesn’t have the key, they would have to try to break it without knowing the lengths of any words. The intended recipient, using the key, can recover the message WHENW ILLYO URETU RN and understand it even without the correct spacing.

Even without word spacing intact, it is still possible to break the cipher! Imagine we have intercepted the following message, encrypted using the Caesar cipher with an unknown key:

THTW CPEFC YLQEP CESCP POLJD

The letters which appear most frequently in this message are C (4 times) and P (4 times). The most common letter in the English language is E, so it is likely that E was encrypted to either C or P. E corresponds to the number 4, and C corresponds to the number 2, so for E to be encrypted to C the key would have to be 24 (since 4 + 24 = 28, and 28 MOD 26 = 2). Decrypting with key 24 gives:

VJVVY ERGHE . . . which is nonsense. Since this didn’t work, we guess instead that E was encrypted to P; in this case, the key would have been 15 – 4 = 11. Decrypting with 11 as the key gives

IWILL RETURN AFTER THREE DAYS

and so the message is ‘I will return after three days’. This technique to break codes is called frequency analysis, since it uses the ordinary frequency of letters in the English language to figure out how a message was encrypted. The table below shows the frequencies of letters in Project Gutenberg’s collection of public-domain English-language books.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>12.58%</td>
</tr>
<tr>
<td>t</td>
<td>9.09%</td>
</tr>
<tr>
<td>a</td>
<td>8.00%</td>
</tr>
<tr>
<td>o</td>
<td>7.59%</td>
</tr>
<tr>
<td>i</td>
<td>6.92%</td>
</tr>
<tr>
<td>n</td>
<td>6.90%</td>
</tr>
<tr>
<td>s</td>
<td>6.34%</td>
</tr>
<tr>
<td>h</td>
<td>6.24%</td>
</tr>
<tr>
<td>r</td>
<td>5.96%</td>
</tr>
<tr>
<td>d</td>
<td>4.32%</td>
</tr>
<tr>
<td>l</td>
<td>4.06%</td>
</tr>
<tr>
<td>u</td>
<td>2.84%</td>
</tr>
<tr>
<td>c</td>
<td>2.58%</td>
</tr>
<tr>
<td>m</td>
<td>2.56%</td>
</tr>
<tr>
<td>f</td>
<td>2.35%</td>
</tr>
<tr>
<td>w</td>
<td>2.22%</td>
</tr>
<tr>
<td>g</td>
<td>1.98%</td>
</tr>
<tr>
<td>y</td>
<td>1.90%</td>
</tr>
<tr>
<td>p</td>
<td>1.80%</td>
</tr>
<tr>
<td>b</td>
<td>1.54%</td>
</tr>
<tr>
<td>v</td>
<td>0.98%</td>
</tr>
<tr>
<td>k</td>
<td>0.74%</td>
</tr>
<tr>
<td>x</td>
<td>0.18%</td>
</tr>
<tr>
<td>j</td>
<td>0.15%</td>
</tr>
<tr>
<td>q</td>
<td>0.12%</td>
</tr>
<tr>
<td>z</td>
<td>0.08%</td>
</tr>
</tbody>
</table>

Table 1.1: Frequencies of letters in English text.

Notice that the letter C in the ciphertext above corresponded to the letter R in the correctly decoded plaintext; even though C was just as common as P (which turned out to be E) the letter R is only the 9th most common letter in English. With messages as short as the one above, this kind of variation means that there can be a lot of trial and error in the application of frequency analysis.

Ex. 1.2.2. Break the following message (which was encrypted with the Caesar cipher) using frequency analysis.

MAXLX TKXGM MAXWK HBWLR HNKXE HHDBG ZYHK

It appears that, in Caesar’s time, his cipher was never broken, although there is a reference by the writer Aulus Gellius to a “rather ingeniously written treatise by the grammarian Probus” concerning Caesar’s cryptographic techniques.

The earliest surviving account of a work describing how to break the cipher is “A Manuscript on Deciphering Cryptographic Messages”, written in the 9th century by the Arab philosopher, scientist, and mathematician Al-Kindi, which contains the first known description of the technique of frequency analysis.

1.3 Modular multiplication and the affine cipher.

The Caesar cipher worked by ‘adding’ a key to a message. What about doing some other operation instead? Subtracting actually wouldn’t be any different:
1.3. MODULAR MULTIPLICATION AND THE AFFINE CIPHER.

subtracting by a number modulo 26 is always the same as adding some other number modulo 26 (for example, adding 10 (mod 26) is the same as subtracting 16 (mod 26)), so an encryption scheme based on modular subtraction would actually just be the Caesar cipher.

We could try basing an encryption scheme on modular multiplication, however. Let’s try encrypting the message MEETA TTEN (‘meet at ten’, broken into blocks of length 5) by multiplying by 2 (mod 26).

<table>
<thead>
<tr>
<th>M E E T A T T E N</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 4 4 19 0 19 19 4 13</td>
</tr>
<tr>
<td>times 2: 24 8 8 38 0 38 38 8 26</td>
</tr>
<tr>
<td>MOD 26: 24 8 8 12 0 12 12 8 0</td>
</tr>
<tr>
<td>Y I I M A M M I A</td>
</tr>
</tbody>
</table>

There’s a problem here…. Both A and N got encrypted to the same letter (A). And in fact, other letters also have this problem: had it been part of the original message, G would have been encrypted to M, just like T was. Here’s how multiplying by 2 (mod 26) affects the all the letters in the alphabet:

<table>
<thead>
<tr>
<th>A B C D E F G H I J K L M N O P Q R S T U V W X Y Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25</td>
</tr>
<tr>
<td>×2: 0 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24</td>
</tr>
<tr>
<td>A C E G I K M O Q S U W Y A C E G I K M O Q S U W Y</td>
</tr>
</tbody>
</table>

You can see that, for every possible ciphertext letter, there are two different plaintext letters that would get encrypted to it. And, on the other hand, some letters—B, D, F, etc.—never appear as ciphertext letters.

All this means there can’t possibly be some reliable way to decrypt messages that were encrypted like this. Even if we know the key (in this case 2), we can’t necessary figure out what the message was. For example, if we receive the message AAM, encrypted by multiplying by 2, the original message could have been ANT, or NAG, or NAT, etc.

What if we tried multiplying by a different number? Here’s how the alphabet is transformed under multiplication by 3:

<table>
<thead>
<tr>
<th>A B C D E F G H I J K L M N O P Q R S T U V W X Y Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25</td>
</tr>
<tr>
<td>×3: 0 3 6 9 12 15 18 21 24 1 4 7 10 13 16 19 22 25 2 5 8 11 14 17 20 23</td>
</tr>
<tr>
<td>A D G J M P S V Y B E H K N Q T W Z C F I L O R U X</td>
</tr>
</tbody>
</table>

Notice that, here, no two plaintext letters got sent to the same ciphertext letter, meaning that it should be possible to recover a message which was encrypted with multiplication by 3. Why do 2 and 3 behave so differently?

Multiplicative inverses and modular multiplication

The important difference between 2 and 3 from the standpoint of the previous example is that 3 has a multiplicative inverse to the modulus 26. A multiplicative inverse is something you can multiply a number by to get 1. So, 4 is a multiplicative inverse for the number 3, in the usual sense. But for our purposes, we want an integer that when multiplied by 3, gives something which is congruent to 1 (mod 26). 9 is such a number, since $3 \times 9 = 27 \equiv 1 \pmod{26}$.

Just like we decrypted Caesar cipher messages by subtracting the encryption key, we can decrypt a message encrypted under multiplication by multiplying by the multiplicative inverse of the key, since this ‘reverses’ the multiplication operation.

For example, if we encrypt the message MEETA TTEN with the multiplication cipher with the key 3, we get:

<table>
<thead>
<tr>
<th>M E E T A T T E N</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 4 4 19 0 19 19 4 13</td>
</tr>
<tr>
<td>times 3: 10 12 12 5 0 5 5 12 13</td>
</tr>
<tr>
<td>K M M F A F F M N</td>
</tr>
</tbody>
</table>

And now we can decrypt:

<table>
<thead>
<tr>
<th>K M M F A F F M N</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 12 12 5 0 5 5 12 13</td>
</tr>
<tr>
<td>times 9: 12 4 4 19 0 19 19 4 13</td>
</tr>
<tr>
<td>M E E T A T T E N</td>
</tr>
</tbody>
</table>

Here the multiplication and MOD steps are shown as a single step; so, for example, K decrypts to M because $9 \cdot 10 = 90 \equiv 12 \pmod{26}$. Reducing 90 (mod 26) can be done quickest with division: $26|90$ gives a remainder of 12.

We could decrypt the message because we could find a multiplicative inverse for 3 (mod 26). You can check, on the other hand, that there is no such multiplicative inverse for 2: 2 times any number is never congruent to 1 (mod 26), and decryption is not possible for the message YIIMA MMIA given at the beginning of the section.

Carrying out modular multiplication can get a bit tedious, so it’s worthwhile to have a Modulo 26 multiplication table (Table 1.2). With the table, its easy to check which numbers have multiplicative inverses modulo 26: 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, and 25, whose inverses are 1, 9, 21, 15, 3, 19, 7, 23, 11, 5, 17, and 25, respectively. The numbers which have no inverse modulo 26 are 0, 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, and 24. What distinguishes these two sets of numbers? The numbers with inverses are those which are relatively prime to 26 (they have no common factors other than 1 with 26). The numbers without inverses are those which share some divisor other than 1 with 26. Note that this is all of the even numbers (which share the divisor 2 with 26), and 13 (which shares the divisor 13 with 26).
1.3. MODULAR MULTIPLICATION AND THE AFFINE CIPHER.

Theorem 1.3.1. A number \(a \) has a multiplicative inverse modulo some number \(n \) if and only if they are relatively prime. In other words, the congruence \(a \cdot x \equiv 1 \pmod{n} \) has a solution \(x \) if and only if \(\gcd(a, n) = 1 \).

In the above theorem, \(\gcd(a, n) \) stands for the ‘greatest common divisor’ of \(a \) and \(n \), which is the number divisible by all common divisors of \(a \) and \(n \). For example, \(\gcd(30, 75) = 15 \), since the common divisors of 30 and 75 are 1, 3, 5, 15, 15 is divisible by all of these. By convention, \(\gcd(0, x) = x \) (e.g., \(\gcd(0, 3) = 3 \)), since, in a certain sense, 0 is divisible by any number: for any number \(x \), \(x \cdot 0 = 0 \). Notice that \(\gcd(a, n) = 1 \) just means that \(a \) and \(n \) have no common divisors, and so are relatively prime.

Ex. 1.3.1. The ciphertext IASSC GW was encrypted using the multiplication cipher with 4 as the key, and so are relatively prime. In other words, the congruence \(a \cdot x \equiv 1 \pmod{n} \) has a solution \(x \) if and only if \(\gcd(a, n) = 1 \).

In the above theorem, \(\gcd(a, n) \) stands for the ‘greatest common divisor’ of \(a \) and \(n \), which is the number divisible by all common divisors of \(a \) and \(n \). For example, \(\gcd(30, 75) = 15 \), since the common divisors of 30 and 75 are 1, 3, 5, 15, 15 is divisible by all of these. By convention, \(\gcd(0, x) = x \) (e.g., \(\gcd(0, 3) = 3 \)), since, in a certain sense, 0 is divisible by any number: for any number \(x \), \(x \cdot 0 = 0 \). Notice that \(\gcd(a, n) = 1 \) just means that \(a \) and \(n \) have no common divisors, and so are relatively prime.

What we’ve learned in this section is that we can encrypt a message using modular multiplication so long as the key used is relatively prime to 26, in which case the encrypted message can be decrypted by multiplying by the inverse. However, this points out a serious weakness of the multiplication cipher: there are only 12 possible keys, \((1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25) \), and only 11 keys if we discount 1 as a key, since it doesn’t change the message at all. Compared with 26 possible keys for the Caesar cipher (25 which change the message), and the multiplication cipher is actually less secure than the Caesar cipher in terms of how many possible keys there are.

It is possible, however, to combine the operations of the Caesar and Multiplication ciphers into a single cipher which is more secure.

1.4 The Affine Cipher

The affine cipher works through a combination of modular multiplication and modular addition. To encrypt a plaintext letter with a key given by a pair of numbers \((a, b) \), we convert the letter to a number, then multiply it by \(a \) modulo 26, and then add \(b \) to the result modulo 26, and convert the result to a letter. In other words, we take a plaintext letter corresponding to a number \(x \) and turn it into a ciphertext letter corresponding to the number \(y \) with the congruence \(y \equiv a \cdot x + b \pmod{26} \). Let’s see how this works when encrypting the message MEETA TTEN with the affine cipher, using the key \((3, 10)\):

<table>
<thead>
<tr>
<th>x</th>
<th>M</th>
<th>E</th>
<th>E</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>E</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>y \equiv 3x + 10 \pmod{26}</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>19</td>
<td>0</td>
<td>19</td>
<td>19</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>P</td>
<td>W</td>
<td>W</td>
<td>P</td>
<td>P</td>
<td>W</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.2 is a big help when carrying out the multiplications.

How can we decrypt the message? The message was encrypted according to the congruence \(y \equiv 3x + 10 \pmod{26} \). When decrypting the message, we know \(y \) and are trying to figure out \(x \); so let’s solve this congruence for \(x \). First we can subtract 10 from both sides of the congruence:

\[y - 10 \equiv 3x \pmod{26} \]

Note that -10 is congruent to 16 modulo 26, so, if we want, we can make this change:

\[y + 16 \equiv 3x \pmod{26} \]

Finally, to deal with the 3, we can multiply by 9, since that is the multiplicative inverse of 3:

\[9(y + 16) \equiv 9 \cdot 3x \pmod{26} \]

which simplifies to

\[9y + 14 \equiv x \pmod{26} \]
1.4. THE AFFINE CIPHER

<table>
<thead>
<tr>
<th>y</th>
<th>U</th>
<th>W</th>
<th>W</th>
<th>P</th>
<th>K</th>
<th>P</th>
<th>P</th>
<th>W</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>19</td>
<td>0</td>
<td>19</td>
<td>19</td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

Note that to find the decryption congruence, it was necessary to multiply the by inverse of 3. This brings up an important point: for the same reason that the multiplication cipher requires a key which is relatively prime to 26, the number a in a key (a, b) used for the affine cipher must be relatively prime to 26. Otherwise it will not have an inverse and there will be no suitable decryption congruence.

Ex. 1.4.1. Indicate all the key-pairs in the following list which can be used for the affine cipher: $(5,6)$, $(13,17)$, $(5,5)$, and $(6,6)$.

Ex. 1.4.2. Indicate all the key-pairs in the following list which can be used for the affine cipher: $(6,5)$, $(18,19)$, $(17,13)$, and $(17,15)$.

Ex. 1.4.3. Encrypt the message MATHISFUN using the affine cipher with key $(7,11)$.

Ex. 1.4.4. Encrypt the message CRYPT0ISFUN with the affine cipher with $(11,15)$ as a key.

Ex. 1.4.5. Decrypt the message OAAXG XLCSX YD, which was encrypted with the affine cipher using $(5,6)$ as a key.

1.4.1 Breaking the affine cipher

If an eavesdropper’s only approach to breaking an encryption system is to try all possible keys, the affine cipher is already doing much better than the Multiplication or Caesar ciphers (which took 12 and 26 keys, respectively).

Ex. 1.4.6. How many possible keys (a, b) are there for the affine cipher? Remember, a must be relatively prime to 26!

However, just like the Caesar cipher, it is possible to break the affine cipher without having to try all the keys.

Assume we have intercepted the following message, encrypted with the affine cipher:

```
MCOLL IMIPP ISKLNI UHCOGI MCKBI XSUMI IPLKXLRIGW MCXLA MWALV CCDGJ KXYCR
```

We can use frequency analysis to try to break the message. Counting shows that the most common letters in the message are C, I, and L, which occur 9, 7, and 7 times, respectively. Since e is the most common letter in English text, it is natural for us to make the guess that the ciphertext letter C was encrypted from the plaintext letter E.

Can we work backwards to break the message now? We know that the message was encrypted using the formula

$$y \equiv ax + b \pmod{26},$$ \hspace{1cm} (1.1)

where the pair (a, b) is the affine cipher key. We guessed that E got encrypted to C; this would mean that for the plaintext $x = 4$, we get the ciphertext $y = 2$. Plugging these values into line (1.1), we get that

$$2 \equiv 4a + b \pmod{26}.$$ \hspace{1cm} (1.2)

Can we solve this congruence to figure out the key (a, b) so that we will be able to decrypt the message? No we can’t! We have only one congruence, but two unknowns! Just like when solving equations, it is necessary to have at least as many congruences as unknowns to find a solution. How can we get another congruence?

We can make another guess based on frequency analysis. For example, referring to Table 1.1, we see that t is the second most common letter in the English language, so it is natural to guess that T in the plaintext was encrypted to either I or L (the most common letters in the ciphertext after C). If we make the guess that T was encrypted to I, this implies that $y = 8$ for $x = 19$. Plugging this into line (1.1) gives that

$$8 \equiv 19a + b \pmod{26},$$ \hspace{1cm} (1.3)

Now, we can solve the system of congruences

$$\begin{cases} 2 \equiv 4a + b \pmod{26} \\ 8 \equiv 19a + b \pmod{26} \end{cases}$$ \hspace{1cm} (1.4)

for a and b. One way to solve a system of congruences or equations is by subtracting multiples of one equation from the other one. In this case, subtracting the second congruence from the first one gives

$$-6 \equiv -15a \pmod{26},$$

which is equivalent to

$$20 \equiv 11a \pmod{26}.$$ \hspace{1cm} (1.4)

Now we can solve for a by multiplying both sides by the multiplicative inverse of 11 (mod 26), which we can see is 19 by looking at Table 1.2. So we get:

$$19 \cdot 20 \equiv 19 \cdot 11a \pmod{26}$$

and so

$$16 \equiv a \pmod{26}.$$ \hspace{1cm} (1.5)
However, we see we have a problem. Recall that a must always be relatively prime to 26 for the affine cipher to work; thus one of our guesses must have been wrong. Let’s still guess that E is encrypted to C, but now let’s guess that T is encrypted to L. Now our system of congruences is

$$\begin{align*}
2 &\equiv 4a + b \pmod{26} \\
11 &\equiv 19a + b \pmod{26}
\end{align*}$$

(1.6)

Subtracting these equations gives

$$-9 \equiv -15a \pmod{26}$$

which is equivalent to

$$17 \equiv 11a \pmod{26}$$

Multiplying both sides by 19 (the inverse of 11 (mod 26)) gives

$$a \equiv 11 \pmod{26}.$$

(1.7)

We can find b now by plugging this into either of the equations from line (1.6). For example, plugging into the first gives

$$2 \equiv 11 \cdot 4 + b \pmod{26}$$

which simplifies to

$$2 \equiv 18 + b \pmod{26},$$

giving us

$$b \equiv 10 \pmod{26}.$$

(1.8)

We have found the key $(11, 10)$. It is still possible (especially since the message was rather short) that we got unlucky with frequency analysis, so we don’t know that this key is actually correct until we’ve actually tried decrypting the message.

To decrypt the message, we need to find the decryption congruence. The encryption congruence is

$$y \equiv 11x + 10 \pmod{26}.$$

Solving this congruence for x gives the decryption congruence:

$$x \equiv 19y + 18 \pmod{26}.$$

And now we can try decrypting the beginning of the message:

\[
\begin{array}{cccccccc}
M & C & C & L & L & I & M & I & P & P \\
12 & 2 & 2 & 11 & 11 & 8 & 12 & 8 & 15 & 15 \\
12 & 4 & 4 & 19 & 19 & 14 & 12 & 14 & 17 & 17 \\
\hline
M & E & E & T & T & O & M & O & R & R \\
\end{array}
\]

And the decryption works out, verifying our frequency analysis guesses. The whole message will decrypt to

MEET OMORR GWATF IVECO MEALO NEIMP ORTAN TDUCU MENTS MUSTS EECH ANGED

When solving systems of congruences, the number of solutions can sometimes be greater than 1 (although still often small). Consider, for example, the situation where we have intercepted the message

B FNPKK D CDI

encrypted with the affine cipher. The original word spacing is still intact, thus it seems natural to guess, for example, that B corresponds to the plaintext letter I and D corresponds to the plaintext letter A. These guesses lead to the system

$$\begin{align*}
1 &\equiv 8a + b \pmod{26} \\
3 &\equiv 0a + b \pmod{26}
\end{align*}$$

(1.9)

which, upon subtracting, give the congruence

$$24 \equiv 8a \pmod{26}.$$

(1.10)

Unlike in the previous example, however, the coefficient of a here does not have an inverse modulo 26. And in fact, examining Table 1.2 shows that $8 \cdot 3 \equiv 24 \pmod{26}$ and $8 \cdot 16 \equiv 24 \pmod{26}$ are both true congruences, thus we need to consider both $a \equiv 3$ and $a \equiv 16$ as possible solutions. Fortunately, in this case, we can immediately rule out the solution $a \equiv 16$, since a must be relatively prime to 26 for the affine cipher to work. Plugging $a \equiv 3$ back into one of the original congruences to solve for b gives $b \equiv 3$, and at this point, the decryption formula can be found and used as in the previous example.

Ex. 1.4.7. Decrypt the message B FNPKK D CDI, encrypted with the affine cipher using the key $(3, 3)$.

Ex. 1.4.8. Solve the following systems of congruences, or state that there is no solution. Be sure to state if there are multiple solutions.

(a) \[
\begin{align*}
6 &\equiv 13a + b \pmod{26} \\
13 &\equiv 4a + b \pmod{26}
\end{align*}
\]

(b) \[
\begin{align*}
14 &\equiv 17a + b \pmod{26} \\
8 &\equiv 7a + b \pmod{26}
\end{align*}
\]

(c) \[
\begin{align*}
1 &\equiv 15a + b \pmod{26} \\
10 &\equiv 9a + b \pmod{26}
\end{align*}
\]

Ex. 1.4.9. Decrypt the message

ZVUKE OGGT HQZIL FVQV GIFTLE UZGLE WUCZZ VVUXE KREJH AODEALU

HIUXK LOQIX LHMAW UUXZ QKTAQ ZAKXZ URHCC GOUQI UGHDU EZ
1.5. THE SUBSTITUTION CIPHER

The Caesar, multiplication, and affine ciphers all have something in common: all three ciphers use the same rules for encoding a letter regardless of its position in the message. For example, if an E in one part of the plaintext gets encrypted to the letter O, then all E's in the plaintext will get encrypted to the letter O. For this reason, these three ciphers are all just special cases of the substitution cipher, which works by specifying an arbitrary substitution for letters in the alphabet. For example, under the following specified substitution:

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
```

the message

```
WHEN ILLYO URETU RN
```

would be encrypted to

```
EJFOE MBBKN PWFYP WO
```

Decryption works by reading the substitution table in reverse.

Ex. 1.5.1. Decrypt the message YNTFN WONYY NTF, which was encrypted using the above substitution table.

A key for the substitution cipher consists of a table like the one given above. There are obviously lots of such tables, and the substitution cipher has far more possible keys than the Caesar or affine ciphers.

Ex. 1.5.2. How many possible keys are there for the substitution cipher? Keep in mind that a letter can’t appear more than once in the bottom of the table; otherwise the substitution can’t be reversed. You don’t need to give the answer as a number, you can leave it as an expression involving some numbers and operations.

The number of possible keys is so great, in fact, that it is practically impossible to break the cipher just by guessing keys. This is not the case for the Caesar cipher of Affine cipher: in those cases, there are few enough keys that even by just by hand it would be possible (though possibly very tedious) to break the cipher just by trying decryption with all possible keys. With the substitution cipher, the number of possible keys is so great that, even using a modern desktop computer, this could take on the order of billions of years. This might lead one to conclude that the substitution cipher is very secure.

In fact, it is actually relatively straightforward to break the substitution cipher—even by hand—so long as the ciphertext is long enough, although this involves a fair amount of guesswork. Consider, for example, the following ciphertext:

```
GAYRI NGQKI CYHHY HCBLC IBOIZ VBYZI ELPQY BBYHC KVTIZ QYQRI ZLHB
IKGHU GHELP TGQYH CHLBT YHCBL ELLHR ILZBN YRIQT ITGEJ IJIE YHBLB
TIKLL UTIZQ YQBIZ NQQZI GEYHC KSBYB TGEHL JYRBS ZIQLZ RLHOI ZQGBY
LHQYH YEBHE NTGBY QBTIS QILPG KLJUB TLSCT BGAYR INYBT LSBJY RBSZI
QLZRL HOIQZ GBYLH
```

We want to apply frequency analysis. Counting letters indicates that the most common letters are B, I, L, Y, and H, occurring 26, 25, 24, 23, and 20 times, respectively. It is reasonable to assume that the plaintext letters T and E correspond to some of these most common letters.

If we assume that E was encrypted to B and T was encrypted to I, we can make the following substitutions:

```
GAYRI NGQKI CYHHY HCBLC IBOIZ VBYZI ELPQY BBYHC KVTIZ QYQRI ZLHB
IKGHU GHELP TGQYH CHLBT YHCBL ELLHR ILZBN YRIQT ITGEJ IJIE YHBLB
TIKLL UTIZQ YQBIZ NQQZI GEYHC KSBYB TGEHL JYRBS ZIQLZ RLHOI ZQGBY
LHQYH YEBHE NTGBY QBTIS QILPG KLJUB TLSCT BGAYR INYBT LSBJY RBSZI
QLZRL HOIQZ GBYLH
t e t e e e e e e e e e e e e e e e e e
```

There is something strange about this substitution, however: nowhere does the pattern T_E appear, which would mean that the word “the” never appears in the passage. While this is possible, it seems perhaps more likely that the substitution should be the other way around. Switching T and E gives the following:

```
GAYRI NGQKI CYHHY HCBLC IBOIZ VBYZI ELPQY BBYHC KVTIZ QYQRI ZLHB
t e t e e e e e e e e e e e e e e e e e
```

The number of possible keys is so great, in fact, that it is practically impossible to break the cipher just by guessing keys. This is not the case for the Caesar cipher of Affine cipher: in those cases, there are few enough keys that even by just by hand it would be possible (though possibly very tedious) to break the cipher just by trying decryption with all possible keys. With the substitution cipher, the number of possible keys is so great that, even using a modern desktop computer, this could take on the order of billions of years. This might lead one to conclude that the substitution cipher is very secure.

In fact, it is actually relatively straightforward to break the substitution cipher—even by hand—so long as the ciphertext is long enough, although this involves a fair amount of guesswork. Consider, for example, the following cipher:

```
GAYRI NGQKI CYHHY HCBLC IBOIZ VBYZI ELPQY BBYHC KVTIZ QYQRI ZLHB
IKGHU GHELP TGQYH CHLBT YHCBL ELLHR ILZBN YRIQT ITGEJ IJIE YHBLB
TIKLL UTIZQ YQBIZ NQQZI GEYHC KSBYB TGEHL JYRBS ZIQLZ RLHOI ZQGBY
LHQYH YEBHE NTGBY QBTIS QILPG KLJUB TLSCT BGAYR INYBT LSBJY RBSZI
QLZRL HOIQZ GBYLH
```

We want to apply frequency analysis. Counting letters indicates that the most common letters are B, I, L, Y, and H, occurring 26, 25, 24, 23, and 20 times, respectively. It is reasonable to assume that the plaintext letters T and E correspond to some of these most common letters.

If we assume that E was encrypted to B and T was encrypted to I, we can make the following substitutions:

```
GAYRI NGQKI CYHHY HCBLC IBOIZ VBYZI ELPQY BBYHC KVTIZ QYQRI ZLHB
t e t e e e e e e e e e e e e e e e e e
```

There is something strange about this substitution, however: nowhere does the pattern T_E appear, which would mean that the word “the” never appears in the passage. While this is possible, it seems perhaps more likely that the substitution should be the other way around. Switching T and E gives the following:

```
GAYRI NGQKI CYHHY HCBLC IBOIZ VBYZI ELPQY BBYHC KVTIZ QYQRI ZLHB
t e t e e e e e e e e e e e e e e e e e
```

There is something strange about this substitution, however: nowhere does the pattern T_E appear, which would mean that the word “the” never appears in the passage. While this is possible, it seems perhaps more likely that the substitution should be the other way around. Switching T and E gives the following:
Chapter 1. Classical Cryptology

1.5. The Substitution Cipher

We can also try frequency analysis on blocks of letters. For example, the three letter block YHC occurs a 5 times in the ciphertext, more than any other triple. The most common English “trigrams” are the, and, and ing. Since our guesses so far rule out the the, it is natural to make the substitutions Y→A, H→N, and C→D:

Gayri nqki cyhhy hcblc iboiz vbyzi elpqy bbyhc kvtiq qvqbi zlhbte

Unfortunately, there are some things to indicate that this last set of substitutions may have been incorrect. For example, in the first line we now have have the blocks edannandto det and nothandto in the plaintext, on the first and second lines respectively. Both of these blocks would seem more reasonable if A and D were replaced with I and G, respectively, suggesting that perhaps the ciphertext triple YHC corresponded with the trigram ING after all. Making these changes gives us:

Gayri nqki cyhhy hcblc iboiz vbyzi elpqy bbyhc kvtiq qvqbi zlhbte

As we would expect, our substitutions have produced several instances of TH in the plaintext, suggesting that we are on the right track. Continuing now with frequency analysis, the most common ciphertext letters we have not yet assigned a substitution for are L, Y, and H. Referring to Table 1.1, the most common English letters after e and t are a, o, and i. Notice however, that the pattern LL occurs three times in the ciphertext: of the letters a, o, and i, only o appears commonly as a double letter in English, so it is natural to assume that L was substituted for O:

Gayri nqki cyhhy hcblc iboiz vbyzi elpqy bbyhc kvtiq qvqbi zlhbte

and now those troublesome blocks have become eginningteto and notingto. At this point, we basically playing hangman. For example, eginningteto seems like it could be beginningteto, suggesting the substitution K→E, while notingtodore could be nothingtode, suggesting the substitution E→D. Making these substitutions gives us:

Gayri nqki cyhhy hcblc iboiz vbyzi elpqy bbyhc kvtiq qvqbi zlhbte

There are now four instances of the pattern LE in the fifth block on the first line (ciphertext B01), straddling the last block of the first line and the first block of the second line (ciphertext B01, and in the fourth block of the fourth line (ciphertext B01). Based on these occurrences, it seems reasonable to assume that T in the ciphertext corresponds to H in the plaintext and that the first instance BO1 was just a coincidence. Filling in this substitution, we get:

Gayri nqki cyhhy hcblc iboiz vbyzi elpqy bbyhc kvtiq qvqbi zlhbte

We can also try frequency analysis on blocks of letters. For example, the three letter block YHC occurs a 5 times in the ciphertext, more than any other triple. The most common English “trigrams” are the, and, and ing. Since our guesses so far rule out the the, it is natural to make the substitutions Y→A, H→N, and C→D:
1.5. THE SUBSTITUTION CIPHER

LHQYH YBGHE NTGBY QBTIS QILPG KLLUB TLSCT BGA YR INYBT LSBJY RBSZI
on ini t nd h t i t h e eo bo th o h t e th o t t e
QLZRL HOIZQ GBYLH

One theory suggests the substitution U → K. In the third line, we have
the plaintext
ING
almost certainly represents the end of a word. It seems clear that the blank must be a vowel, and U seems the most likely
candidate. The substitutions U → K and S → U give us:

GAYRI NGQXI CYHHY HCBLC IBOIZ VBYZI ELPQY BBYHC KV TIZ QYQBI ZLHBT
ie be g inni ngot eg et e tie do i ting b he ite onth
IKGHU GHELP TGQYH CHLBT YHBCL ELLHR ILZBN YRIQT ITGEJ IJJIE YHBLB
ne bk nd o in gnoth ingto doon e o t i e h e h d e ee ed intot
TIKLL UTIZQ YQBIZ NGQXI GEYHC KSBYB TG EHL JYRBS ZIQLZ RLHOI ZQQBY
heeb o khe i te e ding butit h no tu e o o e t
LHQYH YBGHE NTGBY QBTIS QILPG KLLUB TLSCT BGA YR INYBT LSBJY RBSZI
on ini t nd h t i t h e eo bo okht ho h t e th o t t e
QLZRL HOIZQ GBYLH

On the first line, TI EDO ITTING becomes TIREDOFSITTING under the substitutions Z → R, P → F, and Q → S. On the second line, ON EO T I E becomes ONCEORTWICE under the substitutions R → C, Z → R, and N → W. These five substitutions bring us to

GAYRI NGQXI CYHHY HCBLC IBOIZ VBYZI ELPQY BBYHC KV TIZ QYQBI ZLHBT
ice be g inni ngot eg et e tire dofsi tting b her siste ronth
IKGHU GHELP TGQYH CHLBT YHBCL ELLHR ILZBN YRIQT ITGEJ IJJIE YHBLB
eb nk nd f hod in gnoth ingto doonc eortv icesh e d d e ee ed intot
TIKLL UTIZQ YQBIZ NGQXI GEYHC KSBYB TG EHL JYRBS ZIQLZ RLHOI ZQQBY
heeb o khe r sier sre ding butit h no rtu resor co e e rs t
LHQYH YBGHE NTGBY QBTIS QILPG KLLUB TLSCT BGA YR INYBT LSBJY RBSZI
onsi nt nd h t i stheu eo bo okht ho h t e th o t c re
QLZRL HOIZQ GBYLH

At this point, it’s not too hard to figure out the rest. The plaintext is:

ALICE WASBE GINNI NGTOG ETVER YTIRED ODFSIT TING BYHER SISTE RONTH
EBANK ANDOF HAVIN NGOTH INGTO DOONC EORTV ICESHE HADHP EEPED INTOT
HEEBO KHERS ISTER WASRE ADING BUTIT HANDNO PICTU RESOR CONVE RSATI
ONSI NTAND WHATI STHEU SEDFA BOOKH HOUCH TALIC EWITH OUTPI CTURE
SORCO NERSY TION

There is no doubt that applying frequency analysis to the substitution cipher in this way can be tedious. Unlike the Caesar and affine ciphers, it is not enough
to figure out just one or two of the substitutions; each one must be determined separately. But the fact that it is possible at all, with a cipher that has such a large number of possible keys, indicates just how powerful frequency analysis is. Messages are not random jumbles of letters, and frequency analysis allows the cryptographer to take advantage of that fact to break codes.

Ex. 1.5.3. Break the following substitution cipher. This is made substantially easier by the fact that the original word spacing is intact.

LKZB RMLK X JFAKFDEQ ADBXOV TEFIB F MLKABOBA TBXH XKA TBXOV LSOB
JXKV X NRXFKQ XKA ZROFLRP SLIRJB LC CLODLQQK ILOB TEFIB F KLAABA
 KBXOIV KXMMF KD PRAABKIV QEBOB ZXJX X QXMMF KD XC PLJB LKB
DBKQIV OXMMF KD OXMMF KD XQ JV ZEXJYBO ALLO Q FP PLJB SFPFQBO F
JRQWBBA QXMMF KD XQ JV ZEXJYBO ALLO LKIV QEFP XKA KLQEF KD JLOB

1.6 The Permutation Cipher

Substitution ciphers (including the Caesar and Affine ciphers) essentially work by relabeling the letters of the alphabet to disguise the original message. Frequency analysis can be used to figure out the plaintext by discovering how the alphabet was ‘relabeled’. The permutation cipher, on the other hand, does not change the letters per se, but just moves them to different positions. For example, consider the message

MEETATENT HIRTY

We can break the message into blocks of three letters each:

MEE TAT TEN THI RTY

and then ‘rotate’ the letters in each block to the right (moving the right-most letter in each block to the first position):

EME TTA TEN THI RTY

and then regroup the letters into blocks of 5 to get a ciphertext to be transmitted:

EME TT A EN THI RTY
1.6. THE PERMUTATION CIPHER

To decipher the message, the recipient would break the message back into blocks of three, and reverse the permutation of the letters by rotating the letters in each block to the left (moving the left-most letter in each block to the last position).

In this example, encryption was done by rotation in blocks of 3, but the permutation cipher can work on blocks of arbitrary size. In general, the key to the permutation cipher is a permutation. For example,

\[
\begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2
\end{pmatrix}
\]

is the permutation which rotates three objects cyclically ‘to the right’: objects in the order (1 2 3) are permuted so that they are in the order (3 1 2); each element has been moved to the right, and the last element has “wrapped around” to the first position. In the case of the plaintext block MEE, applying this permutation resulted in the ciphertext block EME; TAT was transformed into TTA, while ELE became EEL and VEN became NVE. The key to the permutation cipher is any permutation. For example, the permutation

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 4 & 2 & 1
\end{pmatrix}
\]

acts on blocks of 5 objects. To use it to encipher the message

MEETA TTENT HYRTI

we simply ‘apply’ the permutation to each of the blocks (since it is already grouped into blocks of the right size). The permutation in line (1.11) specifies that the 5th letter will be moved to the first position, the 3rd letter will be in the second position, and 4th letter will be in the 3rd position, the second letter will be in the fourth position, and the first letter will be in the 5th position. Applying the permutation to the block MEETA, then, would give AETEM. The entire ciphertext would be:

AETEM TENTT YRTIH

To decipher the message, we need to find the permutation which “reverses” the permutation from line (1.11). This is called the inverse of the permutation. This would be a permutation that takes objects in the order (5 3 4 2 1) and puts them in the order (1 2 3 4 5). To find the permutation, we first write this first ordering of the objects over the second one:

\[
\begin{pmatrix}
5 & 3 & 4 & 2 & 1 \\
1 & 2 & 3 & 4 & 5
\end{pmatrix}
\]

(1.12)

Now we rearrange columns so that the first row is in the standard increasing order:

Thus the message

AETEM TENTT YRTIH

can be decrypted by applying the inverse permutation

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 2 & 3 & 1
\end{pmatrix}
\]

to each of the blocks of five.

There is one issue we haven’t discussed yet: what if the message cannot be broken into blocks of the appropriate size? Imagine, for example, that we want to encrypt the message

MEETA TTEN

with the permutation

\[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 4 & 2 & 1
\end{pmatrix}
\]

After grouping into blocks of 4:

MEET ATTE N

there is a leftover letter, since the message length was not a multiple of 4. In this case, we can pad the message by adding extra nonsense letters to the end:

MEET ATTE NCTH

This encrypts to

ETEM TETA THCN

or, after regrouping,

ETEM ETATH CN

When the recipient decrypts the message, they will simply discard any nonsense at the end that was added for padding.

Ex. 1.6.1. The message XIMTI LLAPU was encrypted with the permutation cipher with key

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 5 & 4
\end{pmatrix}
\]

. Decrypt it.
1.6. THE PERMUTATION CIPHER

Ex. 1.6.2. Encrypt the message PERMUTATION with the permutation

\[
\begin{pmatrix}
3 & 4 & 2 & 1 \\
3 & 4 & 2 & 1
\end{pmatrix}
\]

How can an eavesdropper break the permutation cipher without knowing the key? Note that, even if we intercepted a very long message, frequency analysis on letters wouldn’t be helpful to break the permutation cipher; in fact, the frequency of letters in the ciphertext is the same as the frequency of letters in the plaintext. Thus frequency analysis of letters will typically just reveal that that E and T are common letters in the ciphertext, and that Z is uncommon, etc. This might be useful in confirming that the original message is English text, for example, but won’t give us any information on the permutation used to encode the message.

On the other hand, knowledge of common pairs and triples of letters in English can be very useful in breaking the permutation cipher. Consider the following message, encrypted with the permutation cipher:

RIBNT HGEES MSGEA TTHOE RODPO IPNRL TH

The ciphertext is 32 characters long; this already gives us important information, since the length of the permutation must divide the length of the message. In this case, the divisors of 32 are 1, 2, 4, 8, 16, 32. Let’s guess that the permutation has length 4, in which case the cipher works by permuting blocks of this length:

RIHN THGE ESMS GEAT HOER DOPO INRL TH

Now we try to find how to permute the letters in the blocks to give rise to English text. Notice, for example, that two of the blocks contain the pattern TH. It seems likely that this pattern arose from occurrences of the word *the* in the plaintext. If this is the case, it tells us that the decryption permutation maps the 1st, 2nd, and 4th letters into consecutive positions; there are two permutations with this property, namely

\[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{pmatrix}
\] \hspace{1cm} \text{(1.13)}

and

\[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{pmatrix}
\] \hspace{1cm} \text{(1.14)}

Under the first of these permutations, the first few blocks of the message decrypt to

RINB THEG ESSM GETA ...

which appears to be nonsense. Decrypting with the second permutation, however, gives

BRIN CTHE MESS AGET OTHE DROP POIN TRLH

so the message was “bring the message to the drop point”, padded with RLH to bring the plaintext to a multiple of 4.

Ex. 1.6.3. Decrypt the message **HTESE RCHTE SAEEB PMNRE TUTDE**, encrypted with an unknown permutation of length 5.

1.7 The Vigenère cipher

Consider a message to be encrypted, for example:

There is no possibility of thinking of anything at all in the world, or even out of it, which can be regarded as good without qualification, except a good will. Intelligence, wit, judgment, and whatever talents of the mind one might want to name are doubtless in many respects good and desirable, as are such qualities of temperament as courage, resolution, perseverance. But they can also become extremely bad and harmful if the will, which is to make use of these gifts of nature and which in its special constitution is called character, is not good.

To encrypt this message with the Caesar cipher, we would shift each letter by some fixed amount. This encryption could be easily broken, since it is easily subjected to frequency analysis, and correctly figuring out one letter is enough to break the entire message. (On top of all of this, the Caesar cipher admits only 26 distinct keys—25 not counting the key which does nothing—so all the keys could be tried in the worst case.)

Straightforward frequency analysis can even be used to break a general substitution cipher, as we saw in Section 1.5; since letters are encrypted the same way throughout an entire message (i.e., with the same substitution table), the decryption for each letter could be determined one at a time using frequency and other clues.

The Vigenère cipher, first invented in 1553 by Giovan Battista Bellaso and subsequently rediscovered by Blaise de Vigenère in 1586, addresses these issues by shifting letters at different places in the message by different amounts. Suppose, for example, we have agreed on a keyword **MORALS**. To encrypt the above message, we first write the keyword, repeated, underneath the plaintext, and then ‘add’ corresponding plaintext and key letters. For example, T corresponds to the number 19, while M corresponds to the number 12. Thus the first ciphertext letter will correspond to \(\equiv 19 + 12 \mod 26 \), giving the letter F.

Similarly, the second letter will be given by \(7 + 14 \), which gives the letter V. The rest of the encryption is shown below:

THERE IS NOP OSSILITY OF THINKING OF ANY THING AT ALL IN THE WORLD MORAL SMORA LSMOR ALSMOR ALMOR ALMOR ALMOR ALMOR FVVRP AEBFP ZKEWS IWAFM FFEZU BBIYY ATRNJ LTWEG LLMZC IYLTS NOCDP CREVE NOUTO FITWI ICHCA NBRE GARDE DASDO ODWIT HOUTQ UALIF ICATI
1.7. THE VIGENERE CIPHER

ORALS MORAL SMORA LSMOR ALSMO RALSM ORALS MORAL SMORA LSRM ORALS
CIEGW ZCLTZ XUNHN TUNTQ NNDS XACVQ RRSRG ARNIE ZAIKQ FSXWW INSFW

ONEXC EPTAG ODDWI LLINT ELLIG ENCEW ITJUD GMENT ANDWH ATEVE RTALE
RALSM ORALS MORAL SMORA LSRM ORALS RALSM ORALS MORAL SMORA LSRM
FNNPO SGTLY ACUWT DXWET PDXWX EYUQK ZTUMP UDEYL MBUWS SFSME CLMZV

NTSF THEMH NDOONE MIGHT WANTT ONAME AREDO UBTLE SSINM ANYRE SPECT
LSMOR ALSMO RALSM ORALS MORAL SMORA LSRM ORALS RALSM ORALS MORAL
NEKAT KIPEU BUOUY YXNHG QMBKT ZFMAV ACWPC LBEQD GJIIYE MBFRP KBSTT

SGOOD ANDDE SIRAB LEASA RESUC HQUAL ITIES OFTEM PERAM ENTAS COURA
LSMOR ALSMO RALSM ORALS MORAL SMORA LSRM ORALS RALSM ORALS MORAL
DYACU AYVPB JCSN ZVADS DJSJN ZCIRL TLUSJ QQLQA GECSY SETLK OCLRL

GERES GLUTI ONPER SEVER ANCCE UTTHE YCANA LSOBE COMEE XTREM ELYBA
SMORA LSRM ORALS RALSM ORALS MORAL SMORA LSRM ORALS RALSM ORALS
YQFVS ZDGHZ DYNFQ JEGWD DECPB GKHQP QGDEA WKAFV CSEQG OTCWY SNTMS

DANDH ARMFU LIFTH EWILL WHICH ISTOM AKEUS EDFTH ESEGJ FTSSF NATUR
MORAL SMORA LSRM ORALS RALSM ORALS MORAL SMORA LSRM ORALS RALSM
POEDS SDAMU WARHY EHAZX HNTUWT WJTZED MYVUD WATKH PKQZK FEKAT EAEML

EANDW HCHI NITSS PECA LOONS TITUT IGNIS CALLE DCHAR ACTER ISNOT
ORALS MORAL SMORA LSRM ORALS RALSM ORALS MORAL SMORA LSRM
SRNNO TWHTH FUHJS AWOWR LNOZG KIEMF WNTK OOLRP VOVDR LUFPI IDFAH

GOOD
XOZV
RALS

To decrypt the message, the recipient would write the keyword repeated
under the ciphertext and subtract.

Ex. 1.7.1. Encrypt the message FOLLOW WTHEY ELOW BRICK ROAD with the
keyword OZ.

Ex. 1.7.2. Decrypt the message LOSVW AZBSC DHQID ARSLG EL, encrypted
with the Vigenère cipher using SHOES as a key.

1.7.1 Analysis of the Vigenère cipher

The Vigenère cipher is designed to be resistant to frequency analysis. Consider
the following graph of the frequencies of letters in the original plaintext from
above:

We can see that the plaintext has the typical signatures of English text: common
e’s and t’s, uncommon z’s, etc.

If we had encrypted the message with the Caesar cipher—or even with any
substitution cipher—then the same frequencies would occur in the distribution,
but for different letters. For example, here is the distribution of the message
after encryption by the Caesar cipher with a key of 5:

And frequency analysis would be possible because we can guess now that
that common letters in the ciphertext correspond to common English letters (e,
t, etc.). In contrast, the following graph shows the distribution of letters in the
ciphertext found above by encrypting the plaintext with the Vigenère cipher
(with ‘MORALS’ as the key).

This distribution is quite different than the frequency distribution of the
plaintext—it has been ‘smoothed out’ by the process of encryption. And the
resulting distribution is much less useful to someone trying to break the code.
For example, given a common letter like W in the ciphertext, there does not
appear to be a simple way to decide whether it is common because one of its
Corresponding plaintext letters was ‘very common’, or because several of them
were ‘fairly common’. In short, there is no clear way for an eavesdropper to use
this frequency distribution to make guesses about the key used for encryption. This feature of the Vigenère cipher makes it seem like it may be impossible to break (and the cipher was actually known for a time as ‘the unbreakable cipher’), and no practical attack on the cipher was known until 300 years after its introduction.

Imagine, however, that an eavesdropper somehow knows the length of the keyword that was used—in the case of the current example, that length is 6. The eavesdropper can then break the message into 6 groups which each consist of letters which were all shifted by the same amount in the encryption process. For example, for the current ciphertext

FVVRP AEBFP ZKEWS IWAFU FFEZU BBIYY ATRNJ LTWEG LLMZC YLTS NOCDP CIEWG ZCLTZ XUHNH TUTFR NMDDS XACVQ RRSRG ARNIE ZAIKQ FSXWW INSFW FNFPQ SGTLY ACUWT DXWET PDXWZ EUYUK ZTUMP UDEYL MBUWS SFSME CLMZV NEKAT KHPEU BUOYW YNXHE OMBKT ZFMVA CACWC LBEDQ GJIYE MBPRP KBSTT DYCUC AYVPS JICSN ZVADS DSJUN ZCIRL TLUSJ QQLQA GECSSY SETLK OCLRL YQFPS ZDGHZ OYQHF JEGWD DECP TGHKP QQDEA WKAPV CZEQS GTQYW SCYNS POEDS SDAWU WARHY EHAIW NHUTT WJTZE MYVUD WATKH PKQZQ FEKAT EAEMD SRRQQ TWTHT FUHJS AWOWR LNGZG KIEMF WFTXU OQCLP VOVRR LUFSE IDFAH XOVZ

the first group of letters would be $F, E, E, F, \text{ etc.}$ (every 6th letter starting with the first one). The second group would be $V, B, W, M, \text{ etc.}$ (every 6th letter starting with the second), and so on. The letters in each of these groups were encrypted the same way, since the keyword lines up the same way for each of them (all letters in the first group were encrypted by adding the letter M, etc.). The important thing to notice is that this means that frequency analysis should work on each group of letters when the groups are considered separately! Even though the all the letters of the message were not encrypted in a consistent way, resulting in a frequency distribution that it is not useful for breaking the code, each of the groups of letters was encrypted by a simple shift, and each has a frequency distribution revealing information about that shift.

Shown below are the frequency distributions for each of these 6 groups:

Each of these distributions offers information on the shift used for the respective groups of letters. For example, the fact that Q is common in the distribution for Group 1 corresponds to the fact that E is common in the plaintext and corresponds to the letter Q under a shift by 12 (which corresponds to M, the first letter of the keyword). Similarly, S is common in the distribution for group 2 because it is the shift of E by 14 (corresponding to O, the second letter of the keyword); V is common in group 3 because it is the shift of E by 17 (R); E and T are common in group 4 because it was not shifted at all (a shift of 0 corresponds to A in the keyword); the common letter P in group 5 corresponds to E under a shift of 11 (L); and the common letter W in group 6 corresponds to E under a shift of 18 (S).

Ex. 1.7.3. Explain in your own words how the Vigenère cipher can be broken if the keyword length is known.

All of this analysis, however, is predicated on the assumption that the eavesdropper can somehow figure out the length of the keyword. Of course, an eavesdropper with enough time could simply try lots of possible keyword lengths, until one worked out. There is, however, a much better way of efficiently determining the keyword length, called the Kasiski test, named after Friedrich Kasiski who published the first attack on the Vigenère cipher in 1863.

1.7.2 The Kasiski test

The Kasiski test works to determine the length of the keyword used for encryption with the Vigenère cipher by taking advantage of repetitions in the ciphertext. For example, an observant cryptanalyst might notice that the strings ATKHP and NHTUT both appear twice in the ciphertext:

1. Charles Babbage had independently developed the same technique 10 or 15 years earlier, although he never published it.
1.7. THE VIGENÈRE CIPHER

For such a short passage, the following ciphertext contains many long repeated strings. Use the Kasiski test to determine the length of the Vigenère keyword used to encrypt the following message. (You should find enough repetitions that you can get a distance GCD of 10 or less.)

Ex. 1.7.4. For such a short passage, the following ciphertext contains many long repeated strings. Use the Kasiski test to determine the length of the Vigenère keyword used to encrypt the following message. (You should find enough repetitions that you can get a distance GCD of 10 or less.)

The first step is to identify some long repeated strings in the ciphertext so that we can apply the Kasiski test. The strings KTPCZ, HLNL, CCBPDBEL, VOGYYQVBND are all repeated, at the positions underlined above.

There are also many repeated strings of length three. All repetitions of length at least three are shown below on the left, along with their separating distances. Note that it is not necessary to find all repetitions to apply the Kasiski test, in fact, typically 3 or 4 repetitions will be plenty, and in some cases 2 repeated pairs may even be enough to give a reasonably small gcd.

In spite of the fact that the Kasiski test tells us that the keyword length should be a divisor of the distances between repeated strings, the distances in the table to the left actually don’t have any common divisors bigger than 1! Notice, for example, that 47 is prime and has no divisors other than 1 and itself. This can happen because it is possible for some strings to be repeated just by chance, and not because they correspond to a repeated plaintext word for which the keyword has lined up in a consistent way.
1.7. THE VIGNÈRE CIPHER

This is particularly true for short repeated strings which are only repeated once. On the other hand, we should be confident that the repetitions of the strings CCBPDBEL, VOGYVQBND, KTPCZ, HLNL, and VOG are not just coincidences, since all of these examples are either longer than three characters, or are repeated several times (in the case of VOG). The greatest common divisor of the distances separating the instances of these sets of repeated strings is 5, so we will guess that is the length of the key used for encryption.

Since the Kasiski test gives a keyword length of 5, the next step is to consider the ciphertext as 5 groups of letters, according to how each one lines up with the (as of yet unknown) keyword, and do frequency analysis on each group separately. For example, the first group consists of the letters K,N,V,V,.., (the first letter from each group of 5), the second consists of the letters T,O,F,.., (the second from each group of 5), and so on. We just need to count the frequency of letters from each of these groups. This has been done in the table below:

group	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
1	1	0	6	1	4	1	8	1	0	3	8	1	0	6	0	5	3	3	0	1	5	9	2	0	3	0
2	1	0	6	1	4	1	8	1	0	3	8	1	0	6	0	5	3	3	0	1	5	9	2	0	3	0
3	1	0	6	1	4	1	8	1	0	3	8	1	0	6	0	5	3	3	0	1	5	9	2	0	3	0
4	1	0	6	1	4	1	8	1	0	3	8	1	0	6	0	5	3	3	0	1	5	9	2	0	3	0
5	1	0	6	1	4	1	8	1	0	3	8	1	0	6	0	5	3	3	0	1	5	9	2	0	3	0

So, this table means that the ciphertext letter A lines up with the first letter of the keyword 1 time, the second letter of the keyword 4 times, and so on.

We begin with frequency analysis on the first group. The most common letters in this group are V, G, and K, occurring 9, 8, and 8 times, respectively. A first guess would be that V corresponds to the plaintext letter E. If this is the case, than this group was encrypted by a shift of 17. To check if this is reasonable, we can examine what this would mean for the frequency of other letters. For example, we expect T would be common in the plaintext, and under a shift of 17 this corresponds to the letter K, which occurs 8 times as a ciphertext letter in this group, which seems reasonable. We can also check an uncommon letter: Z would be encrypted to the letter Q under encryption by 17, which occurs 3 times in the first ciphertext group, which is quite often for this letter. While not impossible, this is perhaps enough to suggest that 17 is not the correct shift, prompting us try try some other possibilities. If we instead assume that the plaintext E corresponds to the ciphertext G, this would mean that this group was encrypted by a shift of 2. This seems to check out okay: T would be encrypted to V, which is common (occurring 9 times), Z would be encrypted to E, which doesn’t occur at all, A would be encrypted to C, which is relatively common, and so on. Thus it seems we have successfully determined the first letter of the keyword: C (the keyword letter which would give a shift of 2).

For the second group, the most common letters are T, E, and R. Actually, these are relatively common letters in English text overall, and a quick glance at group 2’s row in the plaintext shows that common English letters are common in this group, while uncommon English letters are uncommon. Thus it seems that this group was not shifted at all, meaning that the second letter of the keyword should be A.

Ex. 1.7.5. Determine the remaining 3 keyword letters, and decrypt the beginning of the ciphertext (at least 20 characters).

Ex. 1.7.6. Use frequency analysis to recover the message from Exercise 1.7.4, whose keyword length you determined in that problem. The ciphertext from that problem was:

KBPYU BACDM LRQNM GOMLG VETQV PXUQZ LRQNM GOMLG VETQV PXYIM HDOYL
BQUBR YILRJ MTEGW YDQWE GUPGC UABRY ILRJM XNQKA MHXJX KMYGV ETQVP
XCRWV FQNBL EZXBW TBRAQ MUCAM FGAXY UWQMH TBEJB BRYIL RJMLC CAHLQ
NWYTS GCUAB RYILR JMLHT QGEQH AMRMB RYILR JMGPG BXQPN WCUXT GT

Note that for a passage as short (and unusual) as this one, the most common English letters may not be all that common in the some of the plaintext positions, depending on how our luck goes. In cases like this, it is good to pay close attention to how the uncommon English letters line up. The plaintext in this case contains no j’s, q’s, x’s, or z’s at all.

1.8 The Hill Cipher

The Hill cipher was invented by Letser Hill in 1929. What distinguishes it from other ciphers we have covered so far is that it encrypts a message block by block, rather than one letter at a time. This is kind of true for the Vigenère cipher, if we think of the message as broken into blocks of the same length as the keyword. But in that case, the way a letter gets encrypted will depend on all the letters in the letter’s block, rather than just the letter itself. To do this, Hill’s cipher makes use of matricies and matrix operations. Before describing the cipher, let’s quickly review basic matrix arithmetic.

1.8.1 Matrix Review

A matrix is just an array of numbers. For example,

\[
\begin{pmatrix}
7 & 2.3 & \sqrt{2} \\
-50 & \pi & 0
\end{pmatrix}
\]

This is a 2 × 3 matrix. Any matrices of the same dimensions can be added in just the way you would expect. For example:

\[
\begin{pmatrix}
7 & 2.3 & \sqrt{2} \\
-50 & \pi & 0
\end{pmatrix} + \begin{pmatrix}
3.7 & -1 & 5 \\
\frac{1}{\sqrt{2}} & 3\pi & 2
\end{pmatrix} = \begin{pmatrix}
10.7 & 2.3 & 5 + \sqrt{2} \\
-50 + \frac{1}{\sqrt{2}} & 4\pi & 2
\end{pmatrix}
\]

This is kind of true for the Vigenère cipher, if we think of the message as broken into blocks of the same length as the keyword. But in that case, the way a letter gets encrypted only depends on its position in the block. For the Hill cipher, what the other letters are in blocks will matter as well.
1.8. THE HILL CIPHER

Matrix multiplication, however, is a bit different, and is what makes matrices different from just listings of numbers. We can multiply one matrix by another one whenever the number of columns in the first matrix matches the number of rows in the second matrix. The product matrix then has as many rows as the first matrix, and as many columns as the second matrix. The element of the product matrix in the ith row and jth column is computed as the product of the ith row of the first matrix times the jth column of the second matrix. To see what this means, consider the following example:

\[
\begin{pmatrix}
3 & -2 & 11 \\
-5 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 4 \\
0 & 3 \\
2 & 1
\end{pmatrix}
= \begin{pmatrix}
3 \cdot 1 - 2 \cdot 0 + 11 \cdot 2 & 3 \cdot 4 - 2 \cdot 1 + 11 \cdot 1 \\
-5 \cdot 1 + 1 \cdot 0 + 1 \cdot 2 & -5 \cdot 4 + 1 \cdot 3 + 1 \cdot 1
\end{pmatrix}
= \begin{pmatrix}
25 & 17 \\
-3 & -16
\end{pmatrix}
\]

Thus, for example, element in the first row and first column of the product matrix is 25, since this is $3 \cdot 1 - 2 \cdot 0 + 11 \cdot 2$, which is the first row of the first matrix $(3, -2, 11)$ times the first column of the second matrix $(1, 0, 2)$. The product of two matrices will have as many rows as the first matrix, and as many columns as the second.

Notice that there is something which might seem rather unusual about matrix multiplication: order matters. For example, we have

\[
\begin{pmatrix}
1 & 2 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
3 & 2 \\
-1 & 2
\end{pmatrix}
= \begin{pmatrix} 1 & 6 \\
1 & -2 \end{pmatrix}
\]

but if we multiply them the other way, we get

\[
\begin{pmatrix}
3 & 2 \\
-1 & 2
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
0 & -1
\end{pmatrix}
= \begin{pmatrix}
3 & 4 \\
-1 & -4
\end{pmatrix}
\]

In fact, in many cases (like line (1.15)) reversing the order gives a problem which is not possible because the dimensions do not line up correctly.

The identity matrix is the matrix with 1s on the main diagonal and 0s everywhere else. For example,

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

is the 2×2 identity matrix. Such a matrix is called the identity matrix because multiplying it always gives back the same matrix. For example:

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
13 & 5 & 22 \\
-20 & 3 & -30 \\
15 & 13 & 15
\end{pmatrix}
= \begin{pmatrix}
13 & 5 & 22 \\
-20 & 3 & -30 \\
15 & 13 & 15
\end{pmatrix}
\]

(Notice that this works even if the order of the multiplied matrices was reversed.)

The inverse of a matrix is the matrix which gives the identity matrix when multiplied by the original matrix. For example, \[
\begin{pmatrix}
-1 & -3 \\
1 & 2
\end{pmatrix}
\]

is the inverse of \[
\begin{pmatrix}
2 & 3 \\
-1 & -1
\end{pmatrix}
\] since

\[
\begin{pmatrix}
-1 & -3 \\
1 & 2
\end{pmatrix}
\begin{pmatrix}
2 & 3 \\
-1 & -1
\end{pmatrix}
= \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

Not all matrices have inverses, however. For example, it’s not too hard to check that the matrix

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\]

can not be multiplied by any matrix to give the identity.

The determinant of a 2×2 matrix \[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]

is defined as $ad - bc$. Thus, the determinant of the 2×2 matrix in line (1.15) is $25 \cdot (-16) - 17 \cdot (-3) = -349$. Whenever the determinant of a 2×2 matrix is nonzero, the inverse is given by the formula

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}
\]

(1.16)

Note that if the determinant is 0, this definition involves division by 0; in this case the matrix has no inverse.

Just like arithmetic with numbers, it is possible to carry out matrix arithmetic modulo 26. For example,

\[
\begin{pmatrix}
3 & 2 \\
10 & 2
\end{pmatrix}
\begin{pmatrix}
13 & 20 \\
0 & 12
\end{pmatrix}
= \begin{pmatrix}
39 & 84 \\
130 & 224
\end{pmatrix}
\equiv \begin{pmatrix}
13 & 6 \\
0 & 16
\end{pmatrix}
\pmod{26}
\]

Modulo 26 there is no division, so to adapt formula (1.16) for the inverse to matrices modulo 26, we replace division by $(ad - bc)$ with multiplication by the modulo 26 inverse of $(ad - bc)$:

\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}^{-1} \equiv (ad - bc)^{-1} \begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix} \pmod{26}
\]

(1.17)

For the inverse of a matrix to exist modulo 26, it is not enough for the determinant to be nonzero. It must be relatively prime to 26, otherwise the inverse of the determinant does not exist modulo 26 and the formula in (1.17) cannot be applied.

Ex. 1.8.1. Carry out the following matrix multiplications modulo 26

(a) \[
\begin{pmatrix}
3 & 2 \\
0 & 15
\end{pmatrix}
\begin{pmatrix}
13 & 2 \\
8 & 22
\end{pmatrix}
\equiv
\]

(b) \[
\begin{pmatrix}
5 & 11 \\
2 & 3
\end{pmatrix}
\begin{pmatrix}
22 & 8 \\
4 & 19
\end{pmatrix}
\equiv
\]
Ex. 1.8.2. Carry out the following matrix multiplications modulo 26

(a) \[
\begin{pmatrix}
11 & 3 \\
2 & 5
\end{pmatrix}
\cdot
\begin{pmatrix}
19 & 2 \\
3 & 2
\end{pmatrix}
\equiv
\begin{pmatrix}
\ast & \ast \\
\ast & \ast
\end{pmatrix}
\]

(b) \[
\begin{pmatrix}
0 & 5 \\
25 & 15
\end{pmatrix}
\cdot
\begin{pmatrix}
13 & 3 \\
4 & 4
\end{pmatrix}
\equiv
\begin{pmatrix}
\ast & \ast \\
\ast & \ast
\end{pmatrix}
\]

Ex. 1.8.3. Find the inverses of the following matrices (or indicate ‘no inverse’ when there is none). When you find an inverse, check it by multiplying by the original matrix to get the identity.

\[
\begin{pmatrix}
11 & 3 \\
2 & 5
\end{pmatrix}^{-1}
\equiv
\begin{pmatrix}
\ast & \ast \\
\ast & \ast
\end{pmatrix}
\]

\[
\begin{pmatrix}
19 & 2 \\
3 & 2
\end{pmatrix}^{-1}
\equiv
\begin{pmatrix}
\ast & \ast \\
\ast & \ast
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 5 \\
25 & 15
\end{pmatrix}^{-1}
\equiv
\begin{pmatrix}
\ast & \ast \\
\ast & \ast
\end{pmatrix}
\]

\[
\begin{pmatrix}
13 & 3 \\
4 & 4
\end{pmatrix}^{-1}
\equiv
\begin{pmatrix}
\ast & \ast \\
\ast & \ast
\end{pmatrix}
\]

Ex. 1.8.4. Check that the formula given for the inverse of a 2×2 is correct by carrying out following matrix multiplication (you should get the identity matrix).

\[
\frac{1}{ad-be}
\begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}
\cdot
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]

1.8.2 Hill cipher encryption and decryption

When encrypting a message with the Hill cipher, the key is a square matrix modulo 26 (a square matrix is one where the number of rows and columns is the same). We will only deal with 2×2 matrices as keys, since we have not covered determinants and inverses of larger matrices.

Let’s see how to encrypt the message

ETPHO NEHOM E

using the matrix

\[
\begin{pmatrix}
3 & 6 \\
1 & 3
\end{pmatrix}
\]

(1.18)

as a key. The message is first split into blocks of 2, since this is the number of rows (and columns) in the matrix:

ET PH ON EH OM ET

We had to pad the last block since the message had an odd number of letters. Next, each block of 2 letters is treated as a 2×1 matrix of numbers modulo 26; for example, since E corresponds to the number 4 and T corresponds to the number 19, the first block corresponds to the matrix \[
\begin{pmatrix}
4 \\
19
\end{pmatrix}
\]. After converting the rest of the blocks in this way, we see that the message corresponds to the following list of matrices:

\[
\begin{pmatrix}
4 \\
19
\end{pmatrix},
\begin{pmatrix}
15 \\
7
\end{pmatrix},
\begin{pmatrix}
1413 \\
47
\end{pmatrix},
\begin{pmatrix}
12412 \\
4
\end{pmatrix},
\begin{pmatrix}
4 \\
19
\end{pmatrix}
\]

(1.19)

To get the ciphertext we simply convert back to letters:

WJ JK QB CZ KY WJ

and regroup:

WJ JK QBS CZ KY WJ

Decryption works by multiplying by the inverse of the encryption matrix. The inverse of the encryption matrix from line (1.18) is

\[
\begin{pmatrix}
3 & 6 \\
1 & 3
\end{pmatrix}^{-1}
\equiv
\begin{pmatrix}
3^{-1} & -6 \\
-1 & 3^{-1}
\end{pmatrix}
\equiv
\begin{pmatrix}
9 & 3 \\
25 & 3
\end{pmatrix}
\equiv
\begin{pmatrix}
1 & 24 \\
17 & 1
\end{pmatrix}
\] (mod 26)

(1.19)

Thus to decrypt the first block WJ, we multiply the decryption matrix by the corresponding vector:

\[
\begin{pmatrix}
1 & 24 \\
17 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
22 \\
9
\end{pmatrix}
\equiv
\begin{pmatrix}
4 \\
19
\end{pmatrix}
\] (mod 26)

and we’ve recovered the first plaintext vector, corresponding to the first two plaintext letters ET.

Note that decryption works because multiplying by the inverse matrix reverses the original multiplication. For example, in the case just covered, we have

\[
\begin{pmatrix}
1 & 24 \\
17 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
22 \\
9
\end{pmatrix}
\equiv
\begin{pmatrix}
1 & 24 \\
17 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
3 & 6 \\
1 & 3
\end{pmatrix}
\cdot
\begin{pmatrix}
4 \\
19
\end{pmatrix}
\equiv
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
4 \\
19
\end{pmatrix}
\equiv
\begin{pmatrix}
4 \\
19
\end{pmatrix}
\] (mod 26).
1.9 Breaking the Hill Cipher

Since the Hill cipher encrypts letters in blocks, frequency analysis on individual letters is not really useful for breaking the cipher. Recall that, for the example in the previous section, the message

\[\text{ET PH ON EH OM ET} \]

was encrypted to

\[\text{WJ JK QB CZ KY WJ} \]

Like the Vigenère cipher, individual letters are not always encrypted the same way: the first \(E \) became a \(W \) under encryption, while the second became a \(C \). Unlike the with Vigenère cipher, with which letters were encrypted the same way if when they lined up the same way with the keyword, letters can be encrypted differently with the Hill cipher even if they occur at the same place in a block, as is the case with the \(E \)'s just mentioned. For the Hill cipher, encryption of each letter in each block depends on every other letter in the block, and so there is no direct correspondence between individual letters.

To break the cipher, then, we have to do frequency analysis on blocks of letters rather than individual letters. Consider the following message, which was encrypted with the Hill cipher using a \(2 \times 2 \) matrix as the key:

\[
\begin{pmatrix}
FRAQR & TFRLZ & KEFPZ & KXYWS & XYGZX & YZZZF & WHPHM & ... \\
DZPCG & BHBZK & OKBLC & ZDDKN & CWTOT & XGZLZ & IZWKN & PUSCC & HSCXZ & KMMKP & KOUNR & DUCCL & ...
\end{pmatrix}
\]

The most common bigrams (pairs of letters) which would be common if this ciphertext were split up into blocks of two (as was done for encryption). The most common blocks of length 2 in this message are \(GZ \) and \(ZK \), each occurring 35 times in the ciphertext. (The next most common digram, \(ZZ \), is significantly more rare, occurring only 22 times.) To make use of this information, we can make use of the list of common bigrams from Table 1.3. We might guess, for example, that the block \(GZ \) corresponds to the plaintext block \(TH \). We can express this as an equation by writing

\[
\begin{pmatrix}
6 & 25 \\
19 & 7 \\
\end{pmatrix} \equiv \begin{pmatrix}
6a + 25b & 6c + 25d \\
19 & 7 \\
\end{pmatrix} \pmod{26},
\]

where here the matrix \(\begin{pmatrix}
a & b \\
c & d \\
\end{pmatrix} \) is the (as-of-yet unknown) decryption matrix (and the inverse to the matrix used for encryption). If we find this matrix, we can use it to decrypt the rest of the message. By carrying out the multiplication in line (1.22) symbolically, we get the following matrix congruence:

\[
\begin{pmatrix}
6a + 25b & 6c + 25d \\
19 & 7 \\
\end{pmatrix} \equiv \begin{pmatrix}
19 & 7 \\
\end{pmatrix} \pmod{26},
\]

which gives the system of congruences

\[
\begin{align*}
6a + 25b & \equiv 19 \pmod{26} \\
6c + 25d & \equiv 7 \pmod{26}
\end{align*}
\]

This system cannot yet be solved, however, since we have four unknowns and only two congruences. We can get another pair of congruences, however, by making another guess about a bigram encryption: if we guess that \(ZK \) (the second most common bigram in the ciphertext) corresponds to \(HE \) in the plaintext (the second most common bigram in English according to Table 1.3), this implies that

\[
\begin{pmatrix}
a & b \\
c & d \\
\end{pmatrix} \equiv \begin{pmatrix}
19 & 7 \\
\end{pmatrix} \pmod{26},
\]

This system can yet be solved, however, since we have four unknowns and only two congruences. We can get another pair of congruences, however, by making another guess about a bigram encryption: if we guess that \(ZK \) (the other most common bigram in the ciphertext) corresponds to \(HE \) in the plaintext (the second most common bigram in English according to Table 1.3), this implies that

\[
\begin{pmatrix}
a & b \\
c & d \\
\end{pmatrix} \equiv \begin{pmatrix}
19 & 7 \\
\end{pmatrix} \pmod{26},
\]

Note that not all occurrences of these strings in the ciphertext count towards this total; for example, the instance of \(ZK \) starting at the 9th character of the ciphertext would span two different blocks if the message were split into blocks of length 2, and so must just be a coincidence.
1.9. BREAKING THE HILL CIPHER

<table>
<thead>
<tr>
<th>common bigrams</th>
<th>common trigrams</th>
</tr>
</thead>
<tbody>
<tr>
<td>th 3.88%</td>
<td>the 3.50%</td>
</tr>
<tr>
<td>he 3.68%</td>
<td>and 1.59%</td>
</tr>
<tr>
<td>in 2.28%</td>
<td>ing 1.14%</td>
</tr>
<tr>
<td>er 2.17%</td>
<td>her 0.82%</td>
</tr>
<tr>
<td>an 2.14%</td>
<td>hat 0.65%</td>
</tr>
<tr>
<td>re 1.74%</td>
<td>his 0.59%</td>
</tr>
<tr>
<td>nd 1.57%</td>
<td>tha 0.59%</td>
</tr>
<tr>
<td>on 1.41%</td>
<td>ere 0.56%</td>
</tr>
<tr>
<td>en 1.38%</td>
<td>for 0.46%</td>
</tr>
<tr>
<td>at 1.33%</td>
<td>ent 0.53%</td>
</tr>
<tr>
<td>ou 1.28%</td>
<td>ion 0.50%</td>
</tr>
<tr>
<td>ed 1.27%</td>
<td>ter 0.46%</td>
</tr>
<tr>
<td>ha 1.27%</td>
<td>was 0.46%</td>
</tr>
<tr>
<td>to 1.16%</td>
<td>you 0.43%</td>
</tr>
<tr>
<td>or 1.15%</td>
<td>ith 0.43%</td>
</tr>
<tr>
<td>it 1.13%</td>
<td>ver 0.43%</td>
</tr>
<tr>
<td>is 1.10%</td>
<td>all 0.42%</td>
</tr>
<tr>
<td>hi 1.09%</td>
<td>wit 0.39%</td>
</tr>
<tr>
<td>es 1.09%</td>
<td>thi 0.39%</td>
</tr>
<tr>
<td>ng 1.05%</td>
<td>tio 0.37%</td>
</tr>
</tbody>
</table>

Table 1.3: Common English bigrams and trigrams, useful for breaking the 2- and 3-dimensional Hill ciphers, respectively.

which gives that

\[
\begin{pmatrix}
25a + 10b \\
25c + 10d
\end{pmatrix} \equiv \begin{pmatrix}
7 \\
4
\end{pmatrix} \pmod{26}. \tag{1.26}
\]

Combining the two resulting congruences from those in line (1.24) gives us the system

\[
\begin{align*}
6a + 25b & \equiv 19 \pmod{26} \\
25a + 10b & \equiv 7 \pmod{26} \\
6c + 25d & \equiv 7 \pmod{26} \\
25c + 10d & \equiv 4 \pmod{26}
\end{align*} \tag{1.27}
\]

Notice that the system can be grouped into two pairs of congruences on two variables each. We’ll begin by solving the pair

\[
\begin{align*}
6a + 25b & \equiv 19 \pmod{26} \\
25a + 10b & \equiv 7 \pmod{26}
\end{align*} \tag{1.28}
\]

by subtracting congruences. To eliminate the \(b\) term in each congruence, we multiply each by the coefficient of \(b\) in the other and subtract:

\[
\begin{align*}
-25(25a + 10b) & \equiv -25(7) \pmod{26} \\
10(6a + 25b) & \equiv 10(19) \pmod{26}
\end{align*} \tag{1.29}
\]

which, after simplification and subtraction, gives:

\[
\begin{align*}
8a + 16b & \equiv 7 \pmod{26} \\
-25(25a) - 10b & \equiv -25(7) \pmod{26}
\end{align*} \tag{1.30}
\]

Since 7 has an inverse modulo 26 (namely, 15), we can solve for \(a\) by multiplying both sides by the inverse of 19:

\[
a \equiv 15 \cdot 15 \equiv 17 \pmod{26}. \tag{1.31}
\]

And now we can find \(b\) by plugging this back into one of the congruences from line (1.28). For example, plugging into the second one gives

\[
25 \cdot 17 + 10b \equiv 7 \pmod{26}. \tag{1.32}
\]

Simplifying gives

\[
10b \equiv 24 \pmod{26}. \tag{1.33}
\]

Unfortunately, since 10 is not relatively prime to 26, it has no multiplicative inverse, and this congruence does not have a unique solution. By looking Table 1.2 (page 13) we can see that 10 \cdot 5 \equiv 24 \pmod{26} and 10 \cdot 18 \equiv 24 \pmod{26} both are true congruences. Thus we have only determined that \(b \equiv 5 \text{ or } 18 \pmod{26}\).

In some cases this might be the best we could do without further guesswork, in which case we might have to try both possibilities in the final decryption matrix to see which works out (by decrypting the ciphertext to something recognizable). In our case, however, plugging \(a \equiv 17 \pmod{26}\) into the first congruence from line (1.28) instead of the second gives

\[
6 \cdot 17 + 25b \equiv 7 \pmod{26}, \tag{1.34}
\]

which simplifies to

\[
25b \equiv 21 \pmod{26}. \tag{1.35}
\]

and can be solved to give \(b \equiv 5\) since 25 has an inverse modulo 26.

We’ll solve the remaining two congruences for \(c\) and \(d\) by substitution, so that both methods of solving congruences have been demonstrated. Beginning with the system

\[
\begin{align*}
6c + 25d & \equiv 7 \pmod{26} \\
25c + 10d & \equiv 4 \pmod{26}
\end{align*} \tag{1.36}
\]

solving the second congruence \(^5\) for \(c\) gives

\[
c \equiv 10d + 22 \pmod{26}.
\]

\(^5\)note that, since 6 has no inverse modulo 26, the first congruence cannot be uniquely solved for \(c\). Sometimes both congruences have this problem, in which case subtraction of congruences is easier to apply than substitution, although the final result will still involve multiple solutions which will have to be tried independently.
Plugging into the second congruence gives
\[6(10d + 22) + 25d \equiv 7 \pmod{26}, \]
which simplifies to
\[7d \equiv 5 \pmod{26}. \]
Multiplying by 15 (the inverse of 7) gives
\[d \equiv 23 \pmod{26}. \]
Plugging this back into the second of the congruences from line (1.36) gives that
\[25c + 10 \cdot 23 \equiv 4 \pmod{26}, \]
which gives that
\[c \equiv 18 \pmod{26}. \]
Thus we have found that the decryption matrix is
\[
\begin{pmatrix}
17 & 5 \\
18 & 23
\end{pmatrix}
\] (1.37)

We can now try to use the decryption matrix to decode the ciphertext. The beginning of the ciphertext \textsc{FrAQRTFRLEFPZK}... corresponds to the matrices
\[
\begin{pmatrix}
5 & 17 \\
16 & 19
\end{pmatrix}, \begin{pmatrix}
5 & 11 \\
17 & 25
\end{pmatrix}, \begin{pmatrix}
5 & 15 \\
16 & 10
\end{pmatrix}, \ldots
\]
which, upon multiplication by the decryption matrix in line (1.37), give
\[
\begin{pmatrix}
14 & 2 \\
13 & 4
\end{pmatrix}, \begin{pmatrix}
14 & 0 \\
13 & 19
\end{pmatrix}, \begin{pmatrix}
14 & 8 \\
13 & 12
\end{pmatrix}, \begin{pmatrix}
14 & 7 \\
13 & 4
\end{pmatrix}, \ldots
\]
To recover the plaintext \textsc{onceuponatime...}

And it appears the encrypted message is a fairy tale.

\textbf{Ex. 1.9.1.} Decrypt some more of the message; enough to identify which fairy tale it is.

\textbf{Ex. 1.9.2.} The following ciphertext was encrypted with a 2 \times 2 Hill cipher:
\[\text{HODYNH BKGVX KJBDH KDKOM TMIJN FBCPY TRAW SCTCK XE2MH APUCT NGYKS MTMCT CETQF ZTDJC YNVFW PPBM MGUUG PGPSX OZDHN MWYQJQPC CMDBH GOEXX TCQID QPPPP QBBGK AZEYP HDOWE BEKXW HDDUW XKBAP MIMRI JMTLT UEYPM GI11L IDWEZ INHKE HQXW} \]
A quick count shows that the most common bigrams occurring in this ciphertext are \textsc{HD} (occurring 10 times), \textsc{PP} (occurring 4 times), and \textsc{NT} (occurring 4 times). Break the cipher.

\section*{Running Key ciphers, One-time pads, and perfect secrecy}

Suppose I encrypt the message
\textsc{WENIL LINFI LTRAT ETHEI RTREE HOUSE ATDAW N}
with the Vigenè`re cipher using the key:
\textsc{THISISTHESUPERSECRETPASSWORDTHATHEYDON'TKNOW}

The encryption is shown below:

\textsc{PLEAT DBUJA FIVRL IYYIB GTJWA VFXXL AMWHA L}

If an eavesdropper intercepted the encrypted message \textsc{PLEAT DBUJA FIVRL IYYIB GTJWA VFXXL AMWHA Q}, they would have a very difficult time breaking it. Even if they were told the length of the keyword, breaking the message into groups on which to do frequency analysis would result in groups of 1 letter each, which would be quite useless! In fact, it might seem that whoever the password used for the Vigenè`re cipher is at least as long as the message, the cipher is unbreakable.

The running key cipher

When the Vigenè`re cipher is used as above with a keyword as long as the message to be encrypted, it is called the Running Key cipher. Although at first glance it seems such a system would be unbreakable, the cipher can be broken by hand. Though the cipher is indeed substantially more secure than the Vigenè`re cipher, its weakness is the fact that the keyword is not typically random letters, but meaningful text. This bias can be exploited to find the original message.

For example, suppose the attacker simply subtracts \textsc{E} from every letter in the ciphertext:
\textsc{PLEAT DBUJA FIVRL IYYIB GTJWA VFXXL AMWHA L}

The same idea is much more powerful, however, when applied to blocks of letters. For example, \textit{that} is a very common English word, thus the attacker...
1.10. RUNNING KEY CIPHERS, ONE-TIME PADS, AND PERFECT SECRECY

could try guessing that it appears at some point in the keystream. By subtracting \textit{that} from each possible position in the ciphertext, the attacker can decide which partial decryptions make the most sense. For example, the first few subtractions would be:

\begin{verbatim}
PLEA LEAT EATD ATDB TDBU DBUJ BUJA UJAF
THAT THAT THAT THAT THAT THAT THAT THAT
WEEH SXAA LTTK HMDI AWBB KUUQ INJH BCAM
\end{verbatim}

and the complete list of four letter blocks which result from subtracting \textit{that} from different positions of the ciphertext is

\begin{verbatim}
WEEH, SXAA, LTTK, HMDI, AWBB, KUUQ, INJH, BCAM, QORS, CKLP, YEIC, SBVY, PORS, CTKP, JCEI, BWJL, JACI, CQPO, DTVM, HOFE, CVXS, MQLS, EELH, SEAT, STMD, HFWO, TPHH, DAAS.
\end{verbatim}

Of these, most seem like they would not be likely to arise in any English message. Some exceptions in this list are \textit{BCAM} (e.g., \textit{Bob, Camera please}), \textit{PORS} (e.g., \textit{soup or salad}), and of course, \textit{SEAT} (not only \textit{seat}, but also, as in the case of our plaintext, \textit{house at}).

The diligent attacker would then have to build on these discoveries with further guesswork. For example, if she decides that \textit{SEAT} is likely to actually occur in the plaintext, she has decided on the partial decryption

\begin{verbatim}
PLEAT DBUJA FIVRL IVYIB GTJWA VFXLL AMWA L
\hline
TH AT
SE AT
\end{verbatim}

At this point, she could try subtracting some other common words from other parts of the message. If she tried subtracting \textit{THE} from different parts of the message, for example, she might find that

\begin{verbatim}
PLEAT DBUJA FIVRL IVYIB GTJWA VFXLL AMWA L
\hline
TH AT THE
SE ATDAW
\end{verbatim}

was a likely decryption, (especially since the word \textit{that} is often followed by \textit{the}). At this point, lucky guessing might lead her to

\begin{verbatim}
PLEAT DBUJA FIVRL IVYIB GTJWA VFXLL AMWA L
\hline
TH AT THE
SE ATDAW N
\end{verbatim}

and then to

\begin{verbatim}
PLEAT DBUJA FIVRL IVYIB GTJWA VFXLL AMWA L
\hline
WO BDTH ATHE Y
EHouse ATDAW N
\end{verbatim}

and she is well on her way. It should be emphasized, of course, that this kind of attack requires a lot of trial and error, and cracking running key ciphers by hand is very labor intensive and dependent on luck. Computers can do quite well when programmed to take advantage of more sophisticated information about the language of the message and keystream (which words are likely to come after which other words, etc), and there is sophisticated software which can be used to break running key ciphers.

One-time pads

The weakness of running-key ciphers is that information about the likely properties of keystreams (for example, that they are likely to contain common words like \textit{that}) can be used to deduce likely decryptions of the ciphertext. The one-time pad is a slight modification of the running-key cipher, which simply requires that the keystream be a random stream of letters. For example, assume we again want to encrypt the message

\begin{verbatim}
WEWIL LINFI LTRAT ETHEI RTREE HOUSE ATDAW N
\end{verbatim}

The one-time pad demands that we generate a random keystream—for example, by drawing letters out of a hat (replacing them each time for the next draw). The letter sequence YYIVFQUBVCKPDGJDSWFRTSGOMDXWXXVHR was generated ‘randomly’ with the help of a computer. We can use it as the key for a one-time pad to encrypt our message:

\begin{verbatim}
WEWIL LINFI LTRAT ETHEI RTREE HOUSE ATDAW N
+YYIVFQUBVCKPDGJDSWFRTSGOMDXWXXVHR
\end{verbatim}

Note that none of the techniques discussed for the running-key cipher would help an eavesdropper break the one-time pad if they intercepted our message, since there are no letters or blocks of letters which are more likely than others to appear in the keystream—since it was generated randomly, \textit{THE} is exactly as likely to appear in the keystream as are \textit{ZZZZ} and \textit{MQPX}.

Indeed, the one-time pad cannot be broken, because the randomness of the key used for one-time pad encryption means that any plaintext can give rise to any ciphertext with equal probability. For example, even though our message \textit{WELIL LINFI LTRAT ETHEI RTREE HOUSE ATDAW N} was encrypted to the ciphertext \textit{UCEDQ BXGDV VGVKW KRQHA NYIXW NCGVBW WQAVD E}, the plaintext \textit{THEPE 0PLEI NTHET REEHG USEAR EQURF RIEND S} could be just as easily be encrypted to the same ciphertext with a random key:

\begin{verbatim}
THEPE 0PLEI NTHET REEHG USEAR EQURF RIEND S
+BVQAM NIWCV ICZGD TNNMA TGEFX JOMEW FIWIA M
\end{verbatim}

In fact, if a message was intercepted with a one-time pad and someone claimed to know the message’s contents, we could not even verify their claim! By subtracting their claimed message from the ciphertext we could get the keystream
that would have been used for encryption. If the running-key cipher had been used, than we could verify their claim by verifying that the keystream used was English text. But for the one time pad, all keystreams are equally likely to occur, and no inference about the plaintext can be made from ciphertext, even with very lucky guessing. Because of this, the one-time pad is said to have perfect security, which means that the ciphertext gives the cryptanalyst no information at all about the plaintext, since any plaintext gives rise to any ciphertext with equal probability.

For the one-time pad to secure, it is fundamentally important that a keystream can never be reused. Suppose the keystream YYIVFQUBV... used earlier to encrypt the message WEWIL LINFI LTRAT ETHEI RTREE HOUSE ATDAN W was also used to encrypt the message BEGIN PREPA RATIO NSIMM EDIAT ELY:

\[
\begin{align*}
\text{BEGIN} & \text{ PREPA RATIO NSIMM EDIAT ELY} \\
\text{YYIVF} & \text{ QUBV KC} \text{F}D \text{K} Y \text{YDS} \text{ WERTS} \text{ GOM} \\
\end{align*}
\]

If an eavesdropper has intercepted the ciphertexts from both of these encryptions, they can subtract them from each other:

\[
\begin{align*}
\text{BEGIN} & \text{ PREPA...} \text{+ YYIVF} \text{ QUBV...} \\
\text{ } & \text{= (BEGIN} \text{ PREPA...} \text{− WENIL} \text{ LINFI...)} \\
\end{align*}
\]

thus it is the difference (subtraction) of the two plaintexts. This means that the result is essentially a running-key cipher, using one of the plaintexts as a keystream to encrypt the other, and using subtraction instead of addition! Breaking this running-key cipher (which is quite possible) will reveal both original messages.

One final issue of fundamental importance with respect to the one-time pad is the issue of randomness. How can we generate a random keystream? Consider the following ‘random’ sequence of letters, which was generated by the author by banging on a keyboard haphazardly, and then removing nonletters and grouping into blocks of 5:

\[
\begin{align*}
\text{LKAJS} & \text{ DPOFU} \text{ UZEBP} \text{ UIOYQ} \text{ WERMN} \text{ YBREW} \text{ TXYVT} \text{ YIWEH} \text{ BKNXV} \text{ MNBZX} \text{ LKANS} \text{ DIOFY} \\
\text{QWNB} & \text{ YTCVX} \text{ IOPAJ} \text{ KHADS} \text{ BNZXV} \text{ MBASJ} \text{ KLHAI} \text{ DPHLQ} \text{ WEPLO} \text{ UYQTA} \text{ JKLSF} \text{ DZEXH} \\
\text{ZXCVB} & \text{ NsDLA FHFVH ASDFP QWNER IOPER JKHAS KLKVY} \text{ ZCJLXJ JASDP QWEY} \text{ YZRTV} \\
\text{EPUJO HVBAS DFUOL KQETU IOQWR EYPAJ KJSDF BZGOL ASDFP UIYQW ERKLX JASDF} \\
\text{MBCHZ XOAK JSJAD ASIOU} \text{ YQWNL ROJHA MBCLY KJASJ DPOFU} \text{ YQWER HFVJO KasOJ} \\
\text{UQNE KHAJM ZXEXX CBKXL IHASO YIUQW EKLTH SWNXX BVALK JARDI OPOQW UIYQW} \\
\text{WERQY LASDF} & \text{ PIDQW ERUDY XTVBP BVME VEBS} \text{ WCQHJ LKVRQ EPOQW REUQI PEUDU} \\
\text{QPASD} & \text{ FZFCX MBASD FUYOC WREHL AGUYA SPDQF WREYI OAFAS FDBMZ VXCLA SPOQD} \\
\text{ETQWR} & \text{ EIAAS DNZVX GJASF DQWRE OYIAS FGAAS DZXYC ASPDF GQFQW REQWE UIQOW} \\
\text{EUPOD FZCXX KLASF DHASP DXEXZ VRJHB FDBMS RQDRE ETQWR EZQWH IQQFW ZXHLA} \\
\text{SDJHA SPQOD ZXCXZ VXAMU CMASD FJHLQ WEUIQ PDQRE ASDFP QWREP UIOJK} \\
\end{align*}
\]

It is instructive to sit at a keyboard and type some of these strings out—they feel very ‘natural’ and easy to type, and never require a finger to change position in the middle of a block. It is perhaps not surprising that blocks like this appear frequently when one tries to generate random streams using a keyboard.

In spite of my best efforts, this letter stream is very far from random. For starters, here is the letter distribution:

\[
\begin{align*}
\text{A} & \text{ B} \text{ C} \text{ D} \text{ E} \text{ F} \text{ G} \text{ H} \text{ I} \text{ J} \text{ K} \text{ L} \text{ M} \text{ N} \text{ O} \text{ P} \text{ Q} \text{ R} \text{ S} \text{ T} \text{ U} \text{ V} \text{ W} \text{ X} \text{ Y} \text{ Z} \\
\end{align*}
\]

The distribution is quite nonuniform. For example, letters accessible from “home position” on the keyboard (a, s, d, f, j, k, l) appear to be among the more common letters. While not quite as nonuniform as English text (see the graph on page 30), there is still substantial bias which might be exploited by an attacker. For example, if an attacker aware of the bias in my method of choosing random numbers is simply trying to decide whether an intercepted message YES or NO was used, which consists of letters which are commonly produced by my ‘random’ letter generation, and suggesting that this plaintext is likely, while the plaintext NO would imply a keystream beginning with LI, consisting of relatively less common letters.

There is even greater bias in my ‘random’ stream in terms of long blocks. The stream has several long repeated blocks: for example, the blocks "JKHASD, HJASF, UYQwer, WREPQI, UYQwe, KLJHAS, ASOTUQV, DIUYQW, YQWERN, IOQPE, ASDFZX, QWEUO, UIOPQW" are all repeated in the ‘random’ stream, and some several times. An attacker who knows these biases in the generation of our key material could use it very effectively to break a ‘one-time pad’ which used this keystream: the same techniques discussed in the section on running-key ciphers (now using common strings like UYQWER in place of common words like THAT) would be quite effective.

To emphasize the bias of our key generation, we compare it to a more truly ‘random’ stream of letters, generated with the help of a computer:

\[
\begin{align*}
\text{BRAO} & \text{ ZQMDH TWXXH LVPQW CTHFX SYXNL GYQDF GDJDC PKFWE RDOOH QIGEP} \\
\text{ZAPFTX} & \text{ FBGDR WQGTX KTOOH FADQO DPJBR CZQGP XAHAO SXZS RENR JDLJ TINTI} \\
\text{FCXFR} & \text{ BFTYX VYNLQ PQFQW KSISJ CATRJ ZAILH GOFWX YTCCD DZNJX HYLMA MJLWF} \\
\text{CDLXS} & \text{ IOGNN ZDOPF FISPM LEZSN EJKXR OMULJ EZXWP AOPPE ZECDK AZZIV JXDKV} \\
\text{AUXXX} & \text{ GQYTR WATLV XYKIS MNYX WNBIX WPJRI XKQAD UVELA NARFP SJSEH} \\
\text{FSQML} & \text{ KISJN BLAKD RYVBD VPXZY ZDOMI JGOMS ZBUPJ DYVAR KDFPS TQGOV JBBKV} \\
\text{TVKX} & \text{ INFBY QCWAF QRQWY JQWHR QISCEQ DSCIT NHXBZ ISALB BWWCN QSCQP} \\
\text{EIOUR} & \text{ EHZQE VATIX DSHDR PRODC IMYQZ DOQZQ JPQUD PLXKP YXJYJ TQZSH} \\
\text{WDEUV} & \text{ FADQO LKDXR FTVQJ KKJXI KBZEE OIFDIS HOMID FLYWV EXZKR ZSKKZ LTU} \\
\end{align*}
\]

It is instructive to sit at a keyboard and type some of these strings out—they feel very ‘natural’ and easy to type, and never require a finger to change position in the middle of a block. It is perhaps not surprising that blocks like this appear frequently when one tries to generate random streams using a keyboard.
1.10. RUNNING KEY CIPHERS, ONE-TIME PADS, AND PERFECT SECRECY

Note that the distribution of letters, shown above, is noticeably more uniform (as we produced more random key material, it would flatten out even more). Even more striking is the data on repeated strings. The above block of random text contains no repeated strings of length 7, 6, 5 or even 4. And it contains just 10 repeated strings of length 3, all of which occur just twice in the text. Compare this with the stream generated by banging on the keyboard, which contains 79 repeated blocks of length 3, many of which occur 10 or more times.

The issue of random letter (and number) generation is actually a very deep one. How can one program a computer to produce ‘random’ numbers? Computers and some calculators have functions to generate a random number, for example. This function does not actually generate a truly ‘random’ number, but carries out deterministic operations which should nevertheless produce sequences which have the properties of a random sequence. Designing good functions for this purpose can actually be quite difficult, and many software random number generators have weaknesses which would make them unsuitable to use for the generation of one-time pad key material.

The one-time pad has some significant drawbacks for practical use. Apart from the problem of generating truly random keys, the key used has to be at least as long as the message to be sent, and can never be reused. This means that parties wishing to exchange messages need to arrange for the secure exchange of key material, and need to exchange key material which is at least as long as the total length of messages to be sent. Of course, if it is possible to securely exchange so much key material, it seems like it might make more sense to securely exchange unencrypted messages, and avoid encryption altogether.

The one-time pad found real practical use by spies, however. In the past, spies obtained key material (books of random letters to be used for encryption) from their intelligence agencies before departing on their assignments. The pages from the books would be used to encrypt messages, and then destroyed so that they would not be discovered, and never be used again (key material was sometimes printed on special highly flammable paper to make it easy to burn them without a trace). When the key material was sufficiently random, this provided complete cryptographic security through a method which was easy to carry out by hand with nothing more than pencil and paper. For most modern applications, however, (for example, encrypting an email), there is no practical way for parties to securely exchange enough key material in advance for the one-time pad to be practical. In the next chapter, we will discuss modern encryption schemes, which attempt to provide excellent security in a practice, without requiring huge amounts of key material.

1.11 Known-Plaintext attacks

For every encryption scheme we covered in this chapter (other than the one-time pad), we learned how to break the cipher ‘from scratch’, i.e., without anything other than the ciphertext we are trying to read. This kind of attack on a cipher is called a ciphertext-only attack, because the cryptanalyst only has access to the ciphertext. These kinds of attacks typically rely on statistical information about likely messages (letter or bigram frequencies in the underlying language, for example). Obviously, the fact that the classical ciphers we have covered are vulnerable to ciphertext-only attacks is a serious flaw, and one which is to be addressed by the modern ciphers covered in the next chapter.

There is also another kind of attack on a cipher, called a known-plaintext attack. In this situation, the attacker has a ciphertext she wants to decrypt, but also has some ciphertext (which was encrypted with the same key) for which she knows the correct decryption. It is not surprising that in this case, the cryptanalyst can break the ciphers we have discussed!

For example, suppose we intercepted a message NOKBT YRXCO XNSDC YYX, encrypted with the Caesar cipher. If we know that the first word of the plaintext is DEAR, we can mount a known-plaintext attack: this tells us that D was encrypted to N, and so the shift is 10. This allows us to decrypt the message to recover the plaintext, which reads DEARJ OHNSE NDITS OUN.

Other than the one-time pad (when used correctly, never reusing key material), every cipher we have covered in this chapter is extremely vulnerable to this kind of attack: even a small amount of known plaintext can allow one to completely break the classical ciphers.

Ex. 1.11.1. The ciphertext HQGDJ GTQEL HGVQL BQGMQ was encrypted with the affine cipher. Find the original message, which begins with the word DEAR.

Ex. 1.11.2. The ciphertext UENZH ZIMPW EPEVZ PETJR NI was encrypted with the Vigenère cipher. Find the original message, which begins with JANEDOE.

Ex. 1.11.3. The ciphertext GENMA NCMNJ WQHF was encrypted with the 2×2 Hill cipher. Find the original message, which begins with the name KARLA.

In fact, it is perhaps difficult to imagine how an encryption scheme could possibly be resistant to a known-plaintext attack. Intuition might suggest that if one knows a plaintext and the corresponding ciphertext and the encryption method being used, that the key which would transform the given plaintext into the given ciphertext can be ‘figured out’ in some way.

It turns out, however, that it is possible to develop encryption schemes that are resistant to attack even in this situation. And it’s a good thing too, because,
1.11. KNOWN-PLAINTEXT ATTACKS

actually, opportunities for plaintext attacks arise in all sorts of situations in modern cryptography. If someone encrypts a computer file, for example, then the type of file they are encrypting may have standard identifying information that occurs regardless of the actual file content. For example, if someone wants to encrypt a webpage for transmission, the file source will start with tags like \texttt{\<DOCTYPE\ldots\> and \<HTML\>} that come at the beginning of html format pages, regardless of the webpage. (If you use the 'view source' option in your web browser, you can see that even completely different web pages share lots of structure in common). For this reason, it is of paramount importance for modern cryptographic needs to have encryption systems which are secure even against known-plaintext attacks. Such systems are the subject of the next chapter.