1. Matrix Exponentials:
 (a) defined using power series
 \[e^{tA} = I + tA + \frac{(tA)^2}{2!} + \frac{(tA)^3}{3!} + \cdots \]
 we may compute \(e^{tA} \) this way, but only for very simple examples

 (b) shortcut to compute \(e^{tA} \):
 Write \(A = S \Lambda S^{-1} \).
 Then observe that \(e^{tA} = S e^{t\Lambda} S^{-1} \).
 This works well, for instance, if \(A \) has distinct eigenvalues \(\lambda_1, \ldots, \lambda_n \) with respective eigenvectors \(v_1, \ldots, v_n \).

In this case, we take \(S = (v_1, \ldots, v_n) \)

\[
\begin{pmatrix}
\lambda_1 & 0 & 0 & \cdots & 0 \\
0 & \lambda_2 & 0 & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
\vdots & 0 & 0 & \ddots & 0 \\
0 & \cdots & 0 & 0 & \lambda_n \\
\end{pmatrix}
\]

\[
e^{t\Lambda} = \begin{pmatrix}
 e^{t\lambda_1} & 0 & 0 & \cdots & 0 \\
 0 & e^{t\lambda_2} & 0 & \cdots & 0 \\
 0 & 0 & \ddots & 0 \\
 \vdots & 0 & 0 & \ddots & 0 \\
 0 & \cdots & 0 & 0 & e^{t\lambda_n} \\
\end{pmatrix}
\]

* The point of matrix exponentials is that the solution of \(Y' = AY, Y(0) = Y_0 \) (IVP) is \(Y(t) = e^{tA}Y_0 \), and also provides theoretical understanding.
(IVP = Initial Value Problem)

* If we only want to compute the solution of IVP, there are shortcuts

Important Side Remark:

The \(S \Lambda S^{-1} \) trick is useful for many other applications than solving differential equations i.e.: Since \(A^k = S \Lambda^k S^{-1} \)
We can solve difference equations \(Y(k+1) = AY(k) \) with initial condition \(Y(0) = Y_0 \), solution is \(Y(k) = A^kY_0 \)
Solving IVP (3.2)

Case of \(\lambda_1 \neq \lambda_2 \) real eigenvalues.
Find eigenvectors \(v_1, v_2 \) for \(\lambda_1, \lambda_2 \), respectively. General solution of \(Y' = AY \) is \((k_1 e^{\lambda_1 t} v_1) + (k_2 e^{\lambda_2 t} v_2)\) where \(k_1 \) and \(k_2 \) are scalar constants (to be fit to initial conditions)

Case of pair of complex conjugate eigenvalues:
\(\lambda_1, \lambda_2 = a \pm ib \) (\(b \neq 0 \))
write \(e^{\lambda_1 t} v_1 = \) real + imaginary parts (vectors)
\[= Y_1 + iY_2(t) \]
general solution in "real form" is \(k_1 Y_1(t) + k_2 Y_2(t). \)
[we can ignore \(\lambda_2 \) and \(v_2 \) since they are conjugates of \(\lambda_1 \) and \(v_1 \) and don’t give any new information]

* we call \(\frac{2\pi}{b} \) the natural period of the solution and \(\frac{b}{2\pi} \) the natural frequency.
* \(b \) is related to the oscillation frequency and \(a \) tells you if the oscillation is increasing or decreasing.

\[e^{\lambda t} = e^{(a+ib)t} = e^{at} e^{ibt} = e^{at} (\cos bt + i \sin bt) = e^{at} (\cos bt + i e^{int} (\sin bt) \]

POSSIBLE PHASE PLANES (3.3 & 3.4)

Case of distinct real eigenvalues \(\lambda_1 \neq \lambda_2, \ v_1, v_2 \) eigenvectors.

1. both \(\lambda_1, \lambda_2 \) are negative: sink
 all trajectories approach the origin tangent to the direction of the eigenvector corresponding to the eigenvalue which is closer to zero.

2. both \(\lambda_1, \lambda_2 \) are positive: source
 all trajectories go away from the origin tangent to the direction of the eigenvector corresponding to the eigenvalue which is closer to zero.

3. \(\lambda_1, \lambda_2 \) have opposite signs: saddle
 - let \(\lambda_1 > 0 \): \(v_1 \) is a line with a positive slope through the origin and the origin is a source.
 - let \(\lambda_2 < 0 \): \(v_2 \) is a line with a negative slope through the origin and the origin is a sink.
4. λ_1, λ_2 are complex: $a \pm ib, \ (b \neq 0)$

 (i) $a = 0$ (center)
 - solutions look like ellipses (or circles)
 - to decide if they move clockwise or counterclockwise, just pick one point in the plane and see which direction Ax points to.
 - the plots of $x(t)$ and $y(t)$ vs. time look similar to the graph of cosine.

 (ii) $a < 0$ (spiral sink – stable)
 - trajectories go toward the origin while spiraling around it.
 - the plots of $x(t)$ and $y(t)$ vs. time look similar to the graph of cosine with a damped oscillation

 (iii) $a > 0$ (spiral source – unstable)
 - trajectories go away from the origin while spiraling around it
 - the plots of $x(t)$ and $y(t)$ vs. time look similar to the graph of cosine with an increasing oscillation.