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Abstract

In this paper, we prove a local limit theorem for the distribution of the number of triangles
in the Erdos-Renyi random graph G(n, p), where p ∈ (0, 1) is a fixed constant. Our proof is
based on bounding the characteristic function ψ(t) of the number of triangles, and uses several
different conditioning arguments for handling different ranges of t.

1 Introduction

We will work with the Erdos-Renyi random graph G(n, p). Recall that G(n, p) is the random
undirected graph G on n vertices sampled by including each of the

(
n
2

)
possible edges into G

independently with probability p. Let Sn be the random variable equal to the number of triangles
in G(n, p). Let µn = E[Sn] = p3

(
n
3

)
and σn =

√
Var[Sn] = Θ(n2) (see the Appendix for an exact

calculation of σn). Our main result (Theorem 2) states that if p is a fixed constant in (0, 1), then
the distribution of Sn is pointwise approximated by a discrete Gaussian distribution:

Pr[Sn = k] =
1√

2πσn
e−((k−µn)/σn)2/2 ± o(1/n2). (1)

Thus, for every k ∈ µn ±O(n2), we determine the probability that G(n, p) has exactly k triangles,
up to a (1 + o(1)) multiplicative factor.

1.1 Central Limit Theorems

The study of random graphs has over 50 years of history, and understanding the distribution of
subgraph counts has long been a central question in the theory. When the edge probability p is a
fixed constant in (0, 1), there is a classical central limit theorem for the triangle count Sn (as well
as for other connected subgraphs). This theorem says that for fixed constants a, b:∣∣∣∣∣∣Pr [a ≤ (Sn − µn)/σn ≤ b]−

b∫
a

1√
2π
e−t

2/2 dt

∣∣∣∣∣∣ = o(1),
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(in other words, (Sn − µn)/σn converges in distribution to the standard Gaussian distribution).
There are several proofs of the central limit theorem for subgraph counts, as well as some vast
generalizations, known today.

The original proofs of the central limit theorem for triangle counts (and general subgraph counts)
used the method of moments. This method is based on the fact for all distributions that are uniquely
determined by their moments, the convergence of the moments of a sequence of random variables
to the moments of the distribution implies convergence in distribution. Application of the moment
method to subgraph statistics goes back to Erdos and Renyi’s original paper [Erd60]. There were
several papers in the 1980’s (see [KR83] and [Kar84]) that used the moment method to understand,
under increasingly general assumptions, when normalized subgraph counts converge in distribution
to the Gaussian distribution. This line of work culminated with a paper by Ruciński [Ruc88] who
completely characterized when normalized subgraph counts converge in distribution to the Gaussian
distribution.

There are several other approaches to the central limit theorem for triangle counts (and general
subgraph counts). Using Stein’s method [Ste71], Barbour, Karoński and Ruciński [BKR89] obtained
strong quantitative bounds on the error in the central limit theorem for subgraph counts. A
technique from the asymptotic theory of statistics, known as U -statistics, was applied by Nowicki
and Wierman [NW88] to obtain a central limit theorem for subgraph counts, although, in a slightly
less general setting than the theorem of Ruciński. Janson [Jan92] used a similar method with several
applications, including central limit theorems for the joint distribution of various graph statistics.
None of these techniques, however, seem to be quantitatively strong enough to estimate the point
probability mass of the triangle/subgraph counts when the edge probability p is a constant.

1.2 Poisson Convergence

When the edge probability p is small enough (for example, p ≈ c/n for triangles), then there are
classical results that give good estimates for Pr[Sn = k]. In this regime, the distribution of the sub-
graph count Sn itself (i.e., without normalization) converges in distribution (and hence pointwise)
to a Poisson random variable. Some of the work dedicated to understanding this probability regime
goes back to the original paper of Erdos and Renyi [Erd60] who studied the distribution of counts
of trees and cycles using the method of moments. Using Chen’s [Che75] generalization of Stein’s
method to the Poisson setting, Barbour [Bar82] showed Poisson convergence for general subgraph
counts. In the Poisson setting, the probability mass is concentrated in an interval of constant size
and thus all results are “local” in the sense that they bound the point probability mass of these
random variables.

For slightly larger p ∈ [n−1, O(n−(1/2))] (this is the range of p where σn = Θ(µn)), Röllin and
Ross [RR10] showed that the probability mass function for triangle counts (Sn) is close in the `∞
and total variation metrics to the probability mass function of a translated Poisson distribution
(and hence a discrete Gaussian distribution), and asked whether a similar local limit law holds for
larger p (See Remark 4.5 of that paper). Our result gives such a law for constant p ∈ (0, 1) for the
`∞ metric.

1.3 Subgraph counts mod q

Some more recent works studied the distribution of subgraph counts mod q. For example, Loebl,
Matousek and Pangrac [LMP04] studied the distribution of Sn mod q in G(n, 1/2). They showed
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that when q ∈ (ω(1), O(log1/3 n)), then for every a ∈ Zq, the probability that Sn ≡ a mod q equals
(1+o(1)) · 1q . Kolaitis and Kopparty [KK13] also studied this problem in G(n, p) for fixed p ∈ (0, 1).
They showed that for every constant q, and every a ∈ Zq, the probability that Sn ≡ a mod q
equals (1+exp(−n)) · 1q . This latter result also generalizes to all connected subgraph counts, and to
multidimensional versions for the joint distribution of all connected subgraph counts simultaneously.
DeMarco, Kahn and Redlich [DKR14] extended these results of [KK13] to determine the distribution
of subgraph counts mod q in G(n, p) for all p. Many of these works use conditioning arguments
that are similar to those used here.

1.4 Our result

The above lines of work:

1. the central limit theorem for triangle counts in G(n, p) with p constant,

2. the Poisson local limit theorem for triangle counts in G(n, p) with p close to n−1,

3. the uniform distribution of triangle counts mod q in G(n, p) with p constant,

all strongly suggest the truth of our main theorem (Theorem 2): there is a local discrete Gaussian
limit law for triangle counts in G(n, p) with p constant.

The high level structure of our proof follows the basic Fourier analytic strategy behind the clas-
sical local limit theorem for the sums of i.i.d. integer valued random variables. To show that the
distribution of (Sn − µn)/σn is close pointwise to the discrete Gaussian distribution (as in equa-
tion (1)), it suffices to show that their characteristic functions (Fourier transforms) are close in L1

distance. Specifically, if we define ψn(t) = E[eit(Sn−µn)/σn ], we need to show that:∫ πσn

−πσn
|ψn(t)− e−t2/2| dt = o(1).

The central limit theorem for triangle counts can be used to bound the above integral in the range
(−A,A) for any large constant A. By choosing A large enough, we can bound

∫
A<|t|<πσn |e

−t2/2| dt
by an arbitrarily small constant. We are thus reduced to showing that

∫
A<|t|<πσn |ψn(t)| dt = o(1).

We achieve this using two different arguments. For A < |t| < n0.55, we show that |ψn(t)| < 1
t1+δ

using a conditioning argument, where we first reveal the edges in a set F ⊆
(

[n]
2

)
, and count

triangles according to how many edges they have in F . For n0.55 < |t| < πσn, we show that |ψn(t)|
is superpolynomially small in t by another conditioning argument, where we partition the vertex
set [n] into two sets U and V , first expose all the edges within V , and then consider the increase
to the total number of triangles that occurs when we expose the remaining edges.

We conjecture that a similar local discrete Gaussian limit law should hold for the number of copies
of any fixed connected graph H in G(n, p), for any p that lies above the threshold probability for
appearance of H. It would also be interesting to understand the joint distribution of subgraph
counts in G(n, p) for several fixed connected graphs. It seems like there are many interesting
questions here and much to be investigated.
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2 Notation and Preliminaries

Let [n] denote the set {1, 2, . . . , n}. For each positive integer n let Kn be the complete graph on the
vertex set [n]. The Erdos-Renyi random graph G(n, p) is the graph G with vertex set [n], where
for each e ∈

(
[n]
2

)
, the edge e is present in G independently with probability p. For e ∈

(
[n]
2

)
, let Xe

denote the indicator for the event that edge e is present in G. For E ⊆
(

[n]
2

)
, we will let {0, 1}E

denote the set of {0, 1}-vectors indexed by E. Likewise XE ∈ {0, 1}E will be the random vector for
which the value on coordinate e is the random variable Xe.

For the rest of the paper p ∈ (0, 1) will be a universal fixed constant. All asymptotic notation will
hide constants which may depend on p. We will use Sn to denote the number of triangles in G(n, p)
(thus Sn ∈ [0,

(
n
3

)
]). The mean of Sn is p3

(
n
3

)
and the variance (see Appendix) is σ2

n = Θ(n4). We

let Rn denote the normalized triangle count, Rn
def
=

Sn−p3(n3)
σn

.
Fourier inversion formula for lattices: Let Y be a random variable that has support contained

in the (shifted) discrete lattice L def
= 1

b (Z − a) for real numbers a, b. Let ψ(t)
def
= E[eitY ] be the

characteristic function of Y . Then for all y ∈ L it holds that

Pr(Y = y) =
1

2πb

πb∫
−πb

e−ityψ(t) dt. (2)

Throughout the paper, for real numbers x we will use ‖x‖ to denote the distance from x to the
nearest integer. We will often apply the following easy bound.

Lemma 1. Let B be a Bernoulli random variable that is 1 with probability p. Then:

|E
B

[eiθB]| ≤ 1− 8p(1− p) · ‖θ/2π‖2 .

Proof. Without loss of generality, we may assume that θ ∈ [−π, π]. We first state two elementary
inequalities:

cos(t) ≤ 1− 8 · ‖t/2π‖2 (for t ∈ [−π, π]) (3)

and √
1− t ≤ 1− t/2 (for t ≤ 1). (4)

Then we have the following,

|E[eiθb]| = |p+ (1− p)eiθ|

=
√
p2 + (1− p)2 + 2p(1− p) cos(θ)

≤
√
p2 + (1− p)2 + 2p(1− p) (1− 8 · ‖θ/2π‖2) (applying (3))

=
√

1− 16p(1− p)‖θ/2π‖2

≤ 1− 8p(1− p)‖θ/2π‖2 (applying (4)).
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3 Main Result

We now give a formal statement of our main result.

Theorem 2 (Local limit law for triangles in G(n, p)). Let

pn(x) = Pr(Rn = x) for x ∈ Ln =

{
k − p3

(
n
3

)
σn

: k ∈ Z

}

and

N (x) =
1√
2π
e−x

2/2 for x ∈ (−∞,∞).

Then as n→∞,
sup
x∈Ln

|σnpn(x)−N (x)| → 0.

Equivalently, we have that for all n, for all k ∈ Z,

Pr[Sn = k] =
1

σn
· N

(
k − p3 ·

(
n
3

)
σn

)
+ o

(
1

n2

)
,

(where the o(1) term goes to 0 as n→∞, uniformly in k).

Proof. Let ψn(t) = E[eitRn ]. Then the Fourier inversion formula for lattices (equation 2) gives us

σnpn(x) =
1

2π

πσn∫
−πσn

e−itxψn(t) dt.

The standard Fourier inversion formula (for R), along with the well known formula for the Fourier
transform of N , gives us:

N (x) =
1

2π

∞∫
−∞

e−itxe−t
2/2 dt.

Therefore,

|σnpn(x)−N (x)| ≤
πσn∫
−πσn

|ψn(t)− e−t2/2| dt+ 2

∞∫
πσn

e−t
2/2 dt (5)

The second term goes to zero as n tends to infinity. Thus, it suffices to show that

πσn∫
−πσn

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt (6)

tends to 0.
Let A > 0 be a large constant to be determined later. We divide the integral into three regions:

• R1 = (−A,A)
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• R2 = (−n0.55,−A) ∪ (A,n0.55)

• R3 = (−πσn,−n0.55) ∪ (n0.55, πσn)

The following three lemmas will help us bound the integral of
∣∣∣ψn(t)− e−t2/2

∣∣∣ in these three regions.

Lemma 3. Let A be a fixed positive real number. Then

A∫
−A

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt→ 0

as n→∞.

Lemma 4. There exists a sufficiently large constant D = D(p) and δ > 0 such that, for all t with
|t| ∈ (0, n0.55],

|ψn(t)| ≤ D/|t|1+δ.

Lemma 5. There exists a sufficiently large constant D = D(p) such that, for all t with |t| ∈
[n0.55, πσn], it holds that

|ψn(t)| ≤ D/|t|50.

We now proceed to bound (6).
By Lemma 3, ∫

R1

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt→ 0,

for any fixed constant A.
For R2 and R3 we have the following,∫

R2∪R3

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt ≤ ∫

R2∪R3

|ψn(t)| dt+

∫
R2∪R3

∣∣∣e−t2/2∣∣∣ dt
By Lemma 4 and Lemma 5, there exists constants D = D(p), δ > 0 such that, |ψn(t)| ≤ D

t1+δ
for all

n and all t with |t| ∈ (0, πσn]. Therefore,∫
R2∪R3

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt ≤ ∫

R2∪R3

∣∣∣∣ Dt1+δ

∣∣∣∣ dt+

∫
R2∪R3

∣∣∣e−t2/2∣∣∣ dt.
Since D/|t|1+δ and e−t

2/2 both have finite integral over (−∞,−1) ∪ (1,∞), the last line above can
be made smaller than any ε for large enough constant A = A(ε, p).

4 Proof sketch for bounding |ψn(t)|
In this section we sketch with some more detail the strategy used to bound the characteristic
function

ψn(t)
def
= E[eitRn ].
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As a warm up, suppose that Rn was the sum of n i.i.d random variables Xi. Then, by independence,

ψn(t) = E

[
e
it

n∑
i=1

Xi

]
=

n∏
i=1

E
[
eitXi

]
= E

[
eitX1

]n
.

Thus if
∣∣E[eitX1 ]

∣∣ is bounded sufficiently far from 1, it would follow that |ψn(t)| is small. Of course
in our case Rn is the sum of dependent random variables, and one does not immediately have the
expression decompose as a product. The idea that gets around this issue is to first reveal a subset
F of the edges and then, conditioning on the values of the edges in F (assuming some nice event
Λ occurs), show that the expectation is small. For certain choices of F the conditional expectation
does decompose as a product, and thus the estimation becomes easier. If the good event Λ happens
with high enough probability, then one has successfully bounded ψn(t).

We now show an argument that bounds the ψn(t) when n1/2 � |t| � n. For starters, suppose F
was all the edges of

(
[n]
2

)
except for a perfect matching M , and let XF denote the indicator vector

for the edges in F that appear in G. For e = {u, v} ∈ M let Ce denote the number of paths of
length 2 from u to v that appear in G (note any such path must consist of edges in F ). Then
conditioned on the value of XF , the expectation becomes

E
[
e
it(C+

∑
e∈M

CeXe)/σn
]

where C denotes the number of triangles that appear consisting only of edges in F . Note that C
and the Ce are all constants conditioned on the value of XF . Also, each Ce = Ce(XF ) is a binomial
random variable, and thus each is concentrated around np2. Thus for a “typical” value of XF one
has (roughly)

∣∣E[eitRn | XF ]
∣∣ =

∣∣∣∣E[e
it(
∑
e∈M

CeXe)/σn
]

∣∣∣∣
≈

∣∣∣∣∣∏
e∈M

E[eitnp
2Xe/σn]

∣∣∣∣∣
≤

(
1− 8p(1− p)

∥∥∥∥ tnp2

2πσn

∥∥∥∥2
)n/2

(applying Lemma 1)

≈

(
1− 8p(1− p)

(
tnp2

2πσn

)2
)n/2

(since σn = Θ(n2) and |t| � n)

≈
(
1−Θ(t2/n2)

)n/2
≈ e−Θ(t2/n).

Thus if |t| � n1/2 the above will be small.
In Section 6 we push the above analysis to cover the range where t ≤ n.55. There we instead let

M be a bipartite subgraph obtained by taking a disjoint union of k perfect matchings, where k is

chosen to depend on t. As above we first reveal all edges in F
def
=
(

[n]
2

)
−M and then condition on

the value of XF . We then count triangles according to how many edges are in M , letting C, Y , and
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Z denote the number of triangles with 0,1, and 2 edges in M respectively. As before C will be a
constant conditioned on XF , and Y =

∑
e∈M

CeXe is the sum of nk/2 independent random variables.

For k large enough, E[eitY/σn ] will be small conditioned on a “typical” XF , and the analysis
follows just as above because the expectation decomposes as a product. The difficulty now is Z is
a degree 2 polynomial in the variables {Xe : e ∈ M}, and thus E[eit(Y+Z)/σn ] does not decompose
as a product even after conditioning on XF . However, by estimating the variance of Z we will find
that tZ/σn will be tightly concentrated in an interval of size o(1), whereas tY/σn will be roughly
uniform mod 2π. Therefore, although Z has a complicated dependence on Y , t(Y + Z)/σn will
still be roughly uniform mod 2π and |ψn(t)| will be small. It should be noted that we currently
do not know how to prove a stronger bound than |ψn(t)| ≤ 1/t1+δ in this range (for contrast, the
argument with a single perfect matching implies an exponentially small bound). This seems to be
a major obstacle for obtaining a stronger quantitative local limit law.

The above argument is not delicate enough to deal with arbitrary t with |t| � n. In Section 7, we
use a different conditioning argument to bound ψn(t) for all t with |t| ∈ [n.55, πσn]. This argument
is based on partitioning

(
[n]
2

)
into two sets E and F , and then studying the difference between the

number of triangles in the two random graphs (XE , XF ) and (X ′E , XF ) (where X ′E is an independent
copy of the random variable XE).

5 Small |t|
In this section we prove Lemma 3.
Lemma 3 (restated). Let A be a fixed positive real number. Then

A∫
−A

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt→ 0

as n→∞.

The proof essentially follows from the central limit theorem for triangle counts. We provide some
of the details by applying a few standard results from probability theory regarding the method of
moments. We begin with some additional preliminaries that we borrow (with minor changes) from
Durrett’s textbook “Probability: Theory and Examples” [Dur10].

For a random variable X, its distribution function is the function F (x)
def
= Pr[X ≤ x]. A sequence

of distribution functions is said to converge weakly to a limit F if Fn(x)→ F (x) for all x that are
continuity points of F . A sequence of random variables Xn is said to converge in distribution to a

limit X∞ (written Xn
d−→ X∞) if their distribution functions converge weakly.

The moment method gives a useful sufficient condition for when a sequence of random variables
converge in distribution.

Theorem 6. Let Xn be a sequence of random variables. Suppose that E[Xk] has a limit µk for
each k and

lim sup
k→∞

µ
1/2k
2k /2k <∞;

then Xn
d−→ X∞ where X∞ is the unique distribution with the moments µk.
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In the Appendix we provide the standard calculation that E[Rkn]→ µk for all k, where

µk
def
=

{
(k − 1)!! if k is even
0 if k is odd

are the moments of N(0, 1). It is easy to check that these moments do not grow too quickly and
thus the theorem implies the well known central limit theorem for triangle counts:

Rn
d−→ N(0, 1). (7)

Durrett also provides a theorem that relates convergence in distribution to pointwise convergence
of characteristic functions.

Theorem 7. Continuity Theorem. Let Xn, 1 ≤ n ≤ ∞, be random variables with characteristic

functions φn. If Xn
d−→ X∞, then φn(t)→ φ∞(t) for all t.

Applying this with (7), we conclude that ψn(t) → e−t
2/2 for all t. To finish the proof of Lemma

3 we apply the dominated convergence theorem to conclude, for any fixed A, that

A∫
−A

∣∣∣ψn(t)− e−t2/2
∣∣∣ dt→ 0

as n→∞.

6 Intermediate |t|
In this section, we prove Lemma 4.
Lemma 4 (restated). There exists a sufficiently large constant D = D(p) and δ > 0 such that,
for all t with |t| ∈ (0, n0.55],

|ψn(t)| = |E[eitRn ]| = |E[eitSn/σn ]| ≤ D/|t|1+δ.

Note that trivially |ψn(t)| ≤ 1, and thus the lemma already holds for constant sized t. Thus we
will assume that t and n are both bigger than a sufficiently large constant D(p). To make the
exposition simpler, we will assume n is even (however, the same argument can be easily seen to
apply when n is odd).

We simplify notation by denoting Rn by R, Sn by S, and σn by σ. Partition [n] into sets U, V
both of size n/2 and let P ⊆

(
[n]
2

)
be the complete bipartite graph between vertex sets U, V . Let

k < n
1010

be a positive integer to be determined later. Let M1, · · · ,Mk ⊆ P be pairwise disjoint

perfect matchings between U and V . Let E = M1 ∪M2 ∪ · · · ∪Mk, and let F =
(

[n]
2

)
\ E.

Recall that for the random graph G ∈ G(n, p), we use Xe to denote the indicator for whether edge
e appears in G. We also use XE and XF to denote the {0, 1}E-valued random variable (Xe)e∈E and
the {0, 1}F -valued random variable (Xe)e∈F respectively. Let C(XF ), Y (XE , XF ) and Z(XE , XF )
be random variables that count the number of triangles in G(n, p) which have 0,1, and 2 edges in
E respectively (note that, by construction of E, no triangle may have all 3 edges in E). Thus we
have S = C(XF ) + Y (XE , XF ) + Z(XE , XF ).

9



We define:
ζ = E

XE ,XF
[Z(XE , XF )].

We now work towards bounding
∣∣E[eitS/σ|]

∣∣:∣∣∣E[eitS/σ]
∣∣∣ =

∣∣∣∣ E
XE ,XF

[eit(C(XF )+Y (XE ,XF )+Z(XE ,XF ))/σ]

∣∣∣∣
=

∣∣∣∣ E
XE ,XF

[eit(C(XF )+Y (XE ,XF )+ζ)/σ + eit(C(XF )+Y (XE ,XF )+Z(XE ,XF ))/σ − eit(C(XF )+Y (XE ,XF )+ζ)/σ]

∣∣∣∣
≤
∣∣∣∣ E
XE ,XF

[eit(C(XF )+Y (XE ,XF )+ζ)/σ]

∣∣∣∣+ E
XE ,XF

[∣∣∣eit(Z(XE ,XF ))/σ − eitζ/σ
∣∣∣]

We bound each of the two terms separately in the following two lemmas. We will then use these
lemmas to conclude the proof of Lemma 4.

Lemma 8. ∣∣∣∣ E
XE ,XF

[eit(C(XF )+Y (XE ,XF )+ζ)/σ]

∣∣∣∣ ≤ e−Θ(t2k/n).

Proof. We bound the above expectation by revealing the edges in two stages. We first reveal XF ,
and show that with high probability over the choice of XF , some good event occurs. We then show
that whenever this good event occurs, the value of the above expectation over the random choice
of XE is small.

Formally, using the triangle inequality we get:∣∣∣∣ E
XE ,XF

[eit(C(XF )+Y (XE ,XF )+ζ)/σ]

∣∣∣∣ =

∣∣∣∣ EXF
[
eit(C(XF )+ζ)/σ · E

XE
[eit(Y (XE ,XF ))/σ]

]∣∣∣∣ (8)

≤ E
XF

[∣∣∣∣ EXE[eit(Y (XE ,XF ))/σ]

∣∣∣∣] . (9)

For e = {u, v} ∈ E and a vector xF ∈ {0, 1}F , we let Ye(xF ) denote the number of paths of length
2 from u to v consisting entirely of edges f ∈ F for which (xF )f = 1 1. In this way, for a given xF ,
the random variable Y (XE , xF ) equals

∑
e∈E

Ye(xF )Xe.

Define
L = {xF ∈ {0, 1}F | for some e ∈ E, Ye(xF ) < np2/2}.

Let Λ denote the (bad) event that XF ∈ L.

Claim 9.
Pr
XF

[Λ] ≤ e−Θ(n).

Proof. Observe that for any given e ∈ E, the distribution of Ye(XF ) equals Bin(me, p
2), where me

equals the number of paths of length 2 joining the endpoints of e, and consisting entirely of edges
in F . Also note that we have me ≥ n− 2k ≥ n(1− 1/109).

1This differs from the exposition in Section 4 (where E is a single perfect matching), in that some length-2 paths
between u and v here may contain edges in E. We do not want to count those paths in Ye(xF ).
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By the Chernoff bound, we have:

Pr[Bin(me, p
2) < np2/2] ≤ e−np2(1−p2)/200.

Taking a union bound over all e ∈ E, we get the claim.

Next, we show that if we condition on Λ not occurring, then the desired expectation is small.

Claim 10. For every xF ∈ {0, 1}F \ L,∣∣∣∣ E
XE∈{0,1}E

[
eitY (XE ,xF )/σ

]∣∣∣∣ ≤ e−Θ(t2k/n).

Proof. Recall that Y (XE , xF ) =
∑
e∈E

Ye(xF )Xe. Thus we have:∣∣∣∣ EXE
[
eitY (XE ,xF )/σ

]∣∣∣∣ =

∣∣∣∣ EXE
[
e
it(
∑
e∈E

Ye(xF )Xe)/σ
]∣∣∣∣

=

∣∣∣∣∣∏
e∈E

E
[
eitYe(xF )Xe/σ

]∣∣∣∣∣ by the mutual independence of (Xe)e∈E

≤
∏
e∈E

(
1− 8p(1− p)

∥∥∥∥ tYe(xF )

2πσ

∥∥∥∥2
)

(applying Lemma 1)

=
∏
e∈E

(
1− 8p(1− p) ·

(
tYe(xF )

2πσ

)2
)

(since t ≤ n0.55, Ye(xF ) ≤ n, and σ = Θ(n2))

≤

(
1− 8p(1− p) ·

(
tnp2

4πσ

)2
)nk/2

(since xF ∈ L).

Recall that σ =

√
n(n−1)(n−2)(n−3)D

2 for some constant D ≤ 1. Thus tnp2

4πσ ≥
tp2

4πn . Therefore we may
further bound the above expression by:

≤

(
1− 8p(1− p)

(
tp2

4πn

)2
)nk/2

≤ e−
t2p5(1−p)k

π2n

= e−Θ(t2k/n)

Going back to equation (9) we have∣∣∣∣ E
XE ,XF

[eit(C(XF )+Y (XE ,XF )+ζ)/σ]

∣∣∣∣ ≤ E
XF

[∣∣∣∣ EXE[eit(Y (XE ,XF ))/σ]

∣∣∣∣]
≤ Pr

XF
[XF ∈ L] + max

xF∈{0,1}F \L

∣∣∣∣ EXE[eit(Y (XE ,xF ))/σ]

∣∣∣∣
≤ e−Θ(n) + e−Θ(t2k/n) (applying claims 9 and 10)

≤ e−Θ(t2k/n).
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Lemma 11.

E
XE ,XF

[∣∣∣eit(Z(XE ,XF ))/σ − eitζ/σ
∣∣∣] ≤ O(t3/2+δ/2

(
k

n

)3/2
)

+O
(

1/t1+δ
)

Proof. Simplifying the expression we want to bound, we get:

E
XE ,XF

[∣∣∣eit(Z(XE ,XF ))/σ − eitζ/σ
∣∣∣] = E

XE ,XF

[∣∣∣eit(Z(XE ,XF )−ζ)/σ − 1
∣∣∣] .

Thus proving the lemma reduces to proving a concentration bound: namely that Z(XE , XF ) is
close to ζ with high probability. We will bound VarXE ,XF [Z(XE , XF )] and apply the Chebyshev
inequality. This will give the desired concentration.

Let ∆′ denote the set of triangles in Kn that have exactly 2 edges in E. For each r ∈ ∆′, let
Tr(XE , XF ) be the indicator for the triangle r appearing in G. For two triangles r, s ∈ ∆′, write
r ∼ s if r and s share an edge. Note for any r ∈ ∆′ there are at most 6k triangles s ∈ ∆′ for which
r ∼ s.

We have:

VarXE ,XF [Z(XE , XF )] =
∑
r∈∆′

∑
s∈∆′

CovXE ,XF [Tr(XE , XF ), Ts(XE , XF )]

=
∑
r∈∆′

∑
s∼r

CovXE ,XF [Tr(XE , XF ), Ts(XE , XF )] (using independence)

≤ |∆′| · |6k|
≤ 6nk3 (since |∆′| = n

(
k
2

)
)

Applying Chebyshev’s inequality with λ =
√

6 · n1/2 · t1/2+δ/2 · k3/2 we have

Pr
XE ,XF

[|Z(XE , XF )− ζ| > λ] <
VarXE ,XF [Z(XE , XF )]

λ2

< 1/t1+δ

Recall that ‖x‖ denotes the distance from real number x to the nearest integer. Let Λ be the (bad)
event that |Z(XE , XF ) − ζ| ≥ λ. Using the fact that for any real number θ, |eiθ − 1| ≤ 2π · ‖ θ2π‖,
we have

E
XE ,XF

[∣∣∣eit(Z(XE ,XF )−ζ)/σ − 1
∣∣∣] ≤ 2π E

XE ,XF

[∥∥∥∥ t(Z(XE , XF )− ζ)

2πσ

∥∥∥∥]
≤ 2π · Pr[Λc] · tλ

2πσ
+ 2π · Pr[Λ] · 1

2

≤ tλ

σ
+ π · Pr[Λ]

≤
√

6 · t3/2+δ/2 · k
3/2 · n1/2

σ
+

π

t1+δ

≤ O

(
t3/2+δ/2 ·

(
k

n

)3/2
)

+O

(
1

t1+δ

)
. (since σ = Θ(n2))

This concludes the proof of Lemma 11.
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To conclude the proof of Lemma 4, we apply Lemma 8 and Lemma 11 to get the bound

|E[eitS/σ]| ≤ e−Θ(t2k/1000n) +O

(
t3/2+δ/2 ·

(
k

n

)3/2
)

+O
(

1/t1+δ
)

(10)

It only remains to check that k may be chosen as to make the right hand side of equation (10)
bounded by O(1/t1+δ). Set δ = 0.01, and observe that for Ω(1) < t < n0.55, we have the following
two relations:

n log2(t)

t2
= O

( n

t5/3+δ

)
,

n

t5/3+δ
= ω(1).

Thus we may choose k to be an integer satisfying:

k = Ω(n log2(t)/t2) and k = O(n/t5/3+δ).

For such a k we have
e−Θ(t2k/n) ≤ O(1/t1+δ)

and

t3/2+δ/2

(
k

n

)3/2

= O(1/t1+δ).

This concludes the proof of Lemma 4.

7 Big |t|
In this section we prove Lemma 5.
Lemma 5 (restated). There exists a sufficiently large constant D = D(p) such that, for all t with
|t| ∈ [n0.55, πσn], it holds that

|E[eitRn ]| = |E[eitSn/σn ]| ≤ D/|t|50.

The choice of 50 here is arbitrary, in fact the lemma will hold for any fixed constant in place of
50 (as long as D(p) is chosen large enough). We only choose a large number here to remind the
reader that the obstacle to a better quantitative local limit law lies in bounding ψn(t) for |t| in the
range (0, n.55].

As in the previous section, since n is fixed we simplify notation by denoting Sn as S and σn as σ.
We will break down the proof into two different cases. Both cases will use a common framework,

which we now set up.

Let [n] = U ∪ V be a partition of the vertices. Define XU = (Xe)e∈(U2). For every xU ∈ {0, 1}(
U
2),

we will show that:

E[eitS/σ|XU = xU ] ≤ O
(

1

t50

)
.

This will imply the desired bound.
From now on, we condition on XU = xU .
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Let EU ⊆
(
U
2

)
be the induced graph on U :

EU =

{
{u, u∗} ∈

(
U

2

)
| x{u,u∗} = 1

}
.

Note that EU is determined by xU and is thus fixed.
For u ∈ U , let Au ∈ {0, 1}V denote the vector indicating the neighbors of u in V . Thus Au =

(X{u,v})v∈V .

Let B ∈ {0, 1}(
V
2) denote the adjacency vector of G|V . Thus B = {Xe}e∈(V2).

Note that all the entries of the Au’s and B are independent p-biased Bernoulli random variables.
We will now express the number of triangles in G in terms of the Au’s and B (here 〈·, ·〉 denotes
the standard inner product over R) :

• Let SU denote the number of triangles in G with all three vertices in U (note that SU is
determined by xU and is thus fixed).

• The expression
∑

{u,u∗}∈EU
〈Au, Au∗〉 counts the number of triangles in G that have exactly two

vertices in U .

• Let P : {0, 1}V → {0, 1}(
V
2) denote the map defined by:

P (r){u,v} = ru · rv.

Then
∑
u∈U
〈P (Au), B〉 counts the number of triangles in G that have exactly two vertices in V .

• Let Q : {0, 1}(
V
2) → N denote the map that sends an adjacency vector b to the number of

triangles in the graph represented by b (that is the triangles whose vertices are contained in
V ).

Thus Q(B) counts the number of triangles in G with all three vertices in V .

Then we have the following expression for S in terms of the Au’s and B.

S = SU +
∑
u∈U
〈P (Au), B〉+

∑
{u,u∗}∈EU

〈Au, Au∗〉+Q(B).
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We now bound E[eitS/σ].

|E[eitS/σ]|2 =

∣∣∣∣ E
(Au)u∈U ,B

[
e
it(SU+

∑
u∈U 〈P (Au),B〉+

∑
{u,u∗}∈EU

〈Au,Au∗ 〉+Q(B))/σ
]∣∣∣∣2

≤ E
B

[∣∣∣∣eitQ(B)/σ · E
(Au)u∈U

[
e
it(〈
∑
u∈U P (Au),B〉+

∑
{u,u∗}∈EU

〈Au,Au∗ 〉)/σ
]∣∣∣∣2
]

≤ E
B

[∣∣∣∣ E
(Au)u∈U

[
e
it(〈
∑
u P (Au),B〉+

∑
{u,u∗}∈EU

〈Au,Au∗ 〉)/σ
]∣∣∣∣2
]

= E
B

E
(Au)u∈U

E
(A′u)u∈U

[
e
it(〈
∑
u P (Au)−P (A′u),B〉+

∑
{u,u∗}∈EU

〈Au,Au∗ 〉−
∑
{u,u∗}∈EU

〈A′u,A′u∗ 〉)/σ
]

(Where for each u ∈ U , A′u is an independent copy of Au)

= E
(Au)u∈U

E
(A′u)u∈U

[
e
it(
∑
{u,u∗}∈EU

〈Au,Au∗ 〉−
∑
{u,u∗}∈EU

〈A′u,A′u∗ 〉)/σ · E
B

[
eit〈

∑
u P (Au)−P (A′u),B〉/σ

]]
= E

(Au)u∈U
E

(A′u)u∈U

[
e
it(
∑
{u,u∗}∈EU

〈Au,Au∗ 〉−
∑
{u,u∗}∈EU

〈A′u,A′u∗ 〉)/σ · E
B

[
eit〈hA,A′ ,B〉/σ

]]
.

where A = (Au)u∈U , A′ = (A′u)u∈U , and where hA,A′ ∈ Z(V2) is given by:

hA,A′ =
∑
u∈U

(P (Au)− P (A′u)).

Observe that for each e ∈
(
V
2

)
, (hA,A′)e is distributed as the difference of two binomials of the form

B(|U |, p2) (but the different coordinates of hA,A′ are not independent).
Our goal is to show that with high probability over the choice of A,A′, we have that:

C
def
=

∣∣∣∣EB [eit〈hA,A′ ,B〉/σ]
∣∣∣∣

is small in absolute value. This will imply that E[eitS/σ] is small, as desired.
We now achieve this goal for |t| > n0.55 using two different arguments (to cover two different

ranges of |t|), instantiating the above framework with different settings of |U |.

7.1 Case 1: n1.001 ≤ |t| < πσ

Suppose n1.001 < |t| < πσ. For this argument, we choose |U | = 1.
In this case, the coordinates of hA,A′ have the following joint distribution: Let J ⊆ V be a random

subset where each v ∈ V appears independently with probability p. Let J ′ be an independent copy
of J (think of J and J ′ as two independently chosen neighborhoods of the vertex u). Then the e
coordinate of hA,A′ is 1 if e ⊆ J − J ′, 0 if e ⊆ J ∩ J ′ or e ⊆ Jc ∩ (J ′)c, and −1 if e ⊆ J ′ − J . A
Chernoff bound implies that with probability at least 1− e−Θ(n) the symmetric difference of J and
J ′ will have size at least np(1− p)/2. In such a case hA,A′ will have

(
np(1−p)/2

2

)
= Θ(n2) non-zero

coordinates. From now on we assume that A,A′ are such that this event occurs (and we call such
an A,A′ “good”).
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Then we have:

C =

∣∣∣∣EB [eit〈∑u hA,A′ ,B〉/σ
]∣∣∣∣

=

∣∣∣∣∣∣∣EB
 ∏
e∈(V2)

eit(hA,A′ )eBe/σ


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣EB
 ∏
e∈(V2),(hA,A′ )e 6=0

eit(hA,A′ )eBe/σ


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∏

e∈(V2),(hA,A′ )e 6=0

E
Be

[
eit(hA,A′ )eBe/σ

]∣∣∣∣∣∣∣
≤

∏
e∈(V2),(hA,A′ )e 6=0

(
1− 8p(1− p) ·

∥∥∥∥ t · |(hA,A′)e|2πσ

∥∥∥∥2
)

(by Lemma 1)

≤
∏

e∈(V2),(hA,A′ )e 6=0

(
1− 8p(1− p) ·

(
t

2πσ

)2
)

(since |(hA,A′)e| ∈ {0,±1} and |t| < πσ)

≤ e−
2p(1−p)t2

π2σ2
·Θ(n2) since A,A′ is good

≤ e−Θ(t2/n2) (since σ = Θ(n2)).

Now we use the fact that t ≥ n1.001 to conclude that D ≤ exp(−Θ(n0.002)).
Taking into account the probability of A,A′ being good, we get:

|E[eitS/σ]|2 < e−Θ(n) + e−Θ(n0.002) � 1

t100
,

as desired.

7.2 Case 2: n0.55 ≤ t < n1.01

Suppose n0.55 < t < n1.01. For this argument, we choose |U | = n/2.
As before, we have:

C =

∣∣∣∣∣∣∣EB
 ∏
e∈(V2)

eit(hA,A′ )eBe/σ


∣∣∣∣∣∣∣

Now for each e ∈
(
V
2

)
, the distribution of (hA,A′)e is the difference of two binomials of the form

Bin(|U |, p2). Thus, we will typically have (hA,A′)e around
√
|U | in magnitude.

For each e ∈
(
V
2

)
, let Λe be the following bad event (depending on A,A′): |(hA,A′)e| 6∈ (|U |0.49, |U |0.51).

Let γ = Pr[Λe]. By standard concentration and anti-concentration estimates for Binomial distri-
butions, we have that γ ≤ 0.1 (provided n is sufficiently large, depending on p).

Let Λ be the bad event that for more than |V |2/4 choices of e ∈
(
V
2

)
, the event Λe occurs.
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Lemma 12. There is a constant A such that for every k:

Pr[Λ] <
kAk

|V |k
.

Proof. Let Ze be the indicator variable for the event Λe. For each e, we have E[Ze] = γ ≤ 0.1.
Note that if e1, . . . , ek are pairwise disjoint, then Ze1 , . . . , Zek are mutually independent.
Let Z =

∑
e∈(V2)(Ze − γ). Note that E[Z] = 0. We will show that E[Z2k] ≤ kO(k) · |V |3k. This

implies that

Pr[Λ] ≤ Pr[Z > |V |2/8] ≤ Pr[Z2k > (|V |2/8)2k] ≤ E[Z2k]

(|V |2/8)2k
≤ kO(k) 1

|V |k
,

as desired.
It remains to show the claimed bound on E[Z2k]. We have:

E[Z2k] =
∑

e1,...,e2k∈(V2)

E[
2k∏
j=1

(Zej − γ)].

We call a tuple (e1, . . . , e2k) ∈
(
V
2

)2k
intersecting if for every i ∈ [2k], there exists j 6= i with ej∩ei 6=

∅. The key observation is the following: if (e1, . . . , e2k) is not intersecting, then E[
∏2k
j=1(Zej−γ)] = 0.

To see this, suppose (e1, . . . , e2k) is not intersecting because ei does not intersect any other ej . Then
we have:

E[
2k∏
j=1

(Zej − γ)] = E[Zei − γ] · E[
∏
j 6=i

(Zej − γ)] = 0,

where the first equality follows from the independence property of the Ze mentioned above.
Thus, E[Z2k] ≤

∑
(e1,...,e2k) intersecting 1. We conclude the proof by counting the number of

intersecting tuples (e1, . . . , e2k). Note that for every intersecting tuple (e1, . . . , e2k), we have∣∣∣⋃2k
j=1 ej

∣∣∣ ≤ 3k. The number of intersecting tuples where every edge intersects exactly one other

edge is kΘ(k)n3k. Notice that every intersecting tuple that is not of this form has
∣∣∣⋃2k

j=1 ej

∣∣∣ ≤ 3k−1.

Thus the number of such intersecting tuples is at most
((3k)2

k

)
· n3k−1 = kO(k) · n3k−1. Thus E[Z2k]

is at most kO(k) · n3k, as desired.
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Now suppose Λ does not occur. Then we can bound C as follows:

C =

∣∣∣∣∣∣∣EB
 ∏
e∈(V2)

eit(hA,A′ )eBe/σ


∣∣∣∣∣∣∣

=
∏
e∈(V2)

∣∣∣∣EBe
[
eit(hA,A′ )eBe/σ

]∣∣∣∣
≤
∏
e∈(V2)

∣∣∣∣∣
(

1− 8p(1− p) ·
∥∥∥∥ t(hA,A′)e2πσ

∥∥∥∥2
)∣∣∣∣∣ (by Lemma 1)

≤
∏

e∈(V2)|¬Λe

∣∣∣∣∣
(

1− 8p(1− p) ·
∥∥∥∥ t(hA,A′)e2πσ

∥∥∥∥2
)∣∣∣∣∣

=
∏

e∈(V2)|¬Λe

∣∣∣∣∣
(

1− 8p(1− p) ·
(
t(hA,A′)e

2πσ

)2
)∣∣∣∣∣ (since t < n1.001, |(hA,A′)e| < |U |0.51, |U | < n and σ = Ω(n2))

≤
∏

e∈(V2)|¬Λe

∣∣∣∣∣
(

1− 8p(1− p) ·
(
t|U |0.49

2πσ

)2
)∣∣∣∣∣ (since |(hA,A′)e| ≥ |U |0.49)

≤ e
− |V |

2

8
·8p(1−p)·

(
t|U|0.49

2πσ

)2

. (since Λ did not occur)

Now we use the fact that |U | = |V | = n/2, that σ = Θ(n2) and that n0.55 < t.
Thus C ≤ e−Θ(n0.08).
Thus, taking into account the probability of the bad event Λ, we get:

|E[eitS/σ]|2 ≤ O

(
kO(k)

nk

)
+ e−Θ(n0.08) � 1

t100
,

(choosing k = 200), as desired.

8 Appendix

In this section we compute the moments of the random variable Zn
def
= Sn − p3

(
n
3

)
.

Let ∆ denote the set of
(
n
3

)
triangles in Kn. For each t ∈ ∆ denote Xt to be the indicator of the

event that all edges in t appear. We write t ∼ t′ if triangles t and t′ share an edge. Note that if
triangles t and t′ do not share any edges, the random variables Xt and Xt′ are independent and

E[(Xt − p3)(Xt′ − p3)] = 0.

Lemma 13. Let k be a positive integer. Let C = C(p) be the constant C(p)
def
= E[(Xt−p3)(Xt′−p3)]

where t and t′ are any two triangles that share exactly one edge. Then if k is odd

E[Zkn] = O(n2k−1)
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and if k is even

E[Zkn] =
(n)2kC

k/2(k − 1)!!

2k/2
+O(n2k−1).

Proof. We start with

E[Zkn] =
∑
t1∈∆

· · ·
∑
tk∈∆

E

[
k∏
i=1

(Xti − p3)

]
.

We say an ordered tuple (t1, · · · , tk) of triangles is intersecting if for every i there is a j 6= i for
which ti ∼ tj . Note that if (t1, · · · , tk) is not intersecting then there is an i for which the random
variable Xti is independent with Xtj for all j 6= i. Furthermore, for such a tuple

E

[
k∏
i=i

(Xti − p3)

]
= 0.

We now split into cases based on the parity of k.

Case k is even:
Given an intersecting tuple we define its skeleton to be the subgraph of Kn obtained by taking

the union of the triangles ti. Let H be a graph on 2k vertices that consists of k/2 connected
components, each component being the union of two triangles sharing a single edge (although there
are many such graphs H, note they are all isomorphic). We say a tuple (t1, · · · , tk) is fully paired
if its skeleton is isomorphic to H. We first count the number of fully paired tuples by counting the
number of copies of H that appear in Kn times the number of fully paired tuples whose skeleton is
H.

To count the copies of H, first note that(
n

4

)(
n− 4

4

)
· · ·
(
n− 2k + 4

4

)
· 1

(k/2)!
=

(n)2k

24k/2(k/2)!

counts the number of ways to choose the k/2 connected components. Within each component there
are 6 choices of the shared edge of the two triangles, after which the two triangles are determined.
Thus there are

(n)2k6
k/2

24k/2(k/2)!
=

(n)2k

2k(k/2)!

copies. For each copy there are k! tuples whose skeleton is that copy. Thus the number of fully
paired tuples is

(n)2kk!

2k(k/2)!
=

(n)2k(k − 1)!!

2k/2
.

For a fully paired tuples, the expression E
[
k∏
i=1

(Xti − p3)

]
splits as a product of the expectation

of each connected component (which are pairwise independent). Thus,

E

[
k∏
i=1

(Xti − p3)

]
= Ck/2. (11)
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We now quickly argue that the number of intersecting tuples that are not fully paired is O(n2k−1).
This follows because if a tuple is intersecting but not fully paired, than its skeleton consists of at
most 2k − 1 vertices. There are O(1) graphs on a given set of vertices, and given such a graph,
there are O(1) tuples whose skeleton is isomorphic to it (k is a constant). Thus there are

2k−1∑
i=3

O(1)

(
n

i

)
= O(n2k−1) (12)

such intersecting graphs.
We then have the following calculation. Let P denote the set of fully paired tuples and Q denote

the set of tuples that are intersecting but not fully paired.

E(Zkn) =
∑

(t1,··· ,tk)

E

[
k∏
i=1

(Xti − p3)

]

=
∑

(t1,··· ,tk)∈P

E

[
k∏
i=1

(Xti − p3)

]
+

∑
(t1,··· ,tk)∈Q

E

[
k∏
i=1

(Xti − p3)

]

=
(n)2kC

k/2(k − 1)!!

2k/2
+O(n2k−1).

Case k is odd:
Let Q denote the set of intersecting tuples. Note that if k is odd then there are no fully paired

tuples of k triangles. Therefore |Q| = O(n2k−1) and we have the following:

E(Zkn) =
∑

(t1,··· ,tk)

E

[
k∏
i=1

(Xti − p3)

]

=
∑

(t1,··· ,tk)∈Q

E

[
k∏
i=1

(Xti − p3)

]
= O(n2k−1).

Corollary 14. Let σ2
n

def
= Var[Sn] and let Rn

def
= (Sn−p3

(
n
3

)
)/σn. Then E[Rkn]→ µk for all k fixed,

where

µk =

{
(k − 1)!! if k is even
0 if k is odd

.
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