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Abstract

Recently, [3] studied the universal capacity of a set of channels where each channel in the set communicates a random
source to within a distortion levelD, when the transmitter and receiver have access tocommon randomness. In this paper, we
study the universal capacity for this channel set in the casewhen there is no access to common randomness. We show that when
the distortion levelD is positive, the universal capacity is0.

1 Introduction

For a given distortion levelD, letC be the set of channels which directly transmit a given sourceX such that

lim
n→∞

Pr

[

1

n

n
∑

i=1

d(Xn(i), Y n(i)) > D

]

= 0 (1)

The above is a probabilistic criterion. See figure.

ci.i.d. X sourceXn Y n

limn→∞ Pr
[

1
n

∑n
i=1 d(Xn(i), Y n(i)) > D

]

= 0

Channelc ∈ C

In [3], the problem of finding the univeral capacity ofC was considered. They showed that, when the transmitter and receiver
have access to common randomness, the universal capacity ofC is precisely the rate-distortion functionRX(D). The main idea
of that result is that the common randomness can be used to generate a random code which is independent of the channel, and
the transmitter and receiver can then communicate using this code.

In Shannon’s random-coding argument, the existence of a random code for reliable communication implies the existence of
deterministic code for reliable communication. This is true because there is onlyonechannel, not a set of channels. In general,
when asking the question of universal capacity of a set of channels, the existence of a random code does not imply the existence
of a deterministic/individually stochastic code for the entire set of channels, unless there is common randomness at transmitter
and receiver. We would use the phrases “random code”, “common randomness,”, and “stochastic-coupled encoder-decoder”
(Section 3) interchangeably.

In this paper we consider the case when there is no common randomness (although the transmitter and receiver can be indepen-
dently stochastic). Our main result is that in the case of no common randomness, if the rate-distortion levelD is > 0, then the
universal capacity ofC is zero.

The main motivation for this question comes from the the universal source-channel separation theorem for rate-distortion proved
in [4]. We briefly recall the statement of this separation theorem:

LetA be a set of channels. If there is common randomness at transmitter, in order to universally communicate i.i.d.
X source to within a distortion levelD in the sense of Equation 1 overA, it is sufficient to consider architectures
which consist of rate-distortion source-coding i.i.d.X source to within a distortion level in the sense of Equation
1 followed by universal reliable communication overA.
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The proof uses the fact that the universal capacity ofC with common randomness isRX(D). Our result shows that without
common randomness, ifD > 0 the universal capacity ofC is is zero, even thoughRX(D) > 0. As a corollary, the universal
source-channel separation theorem is false when there is nocommon randomness at transmitter and receiver.

Our proof uses some combinatorial ideas along with a powerful inequality due to Bonami and Beckner [5]. This inequality,
which is a cornerstone of the modern study of boolean functions, was first applied to combinatorial situations by the highly
influential paper of Kahn, Kalai and Linial [6]. We believe that these techniques could have applications to a wide range of
information theoretic problems.

For simplicity of exposition, in this version of the paper weonly consider the case of binary alphabets with Hamming distortion.
The same ideas can also be used for the general case.

2 Past Work

Shannon had considered the same question of communication over channels which communicate i.i.d.X source within a
distortionD [1]. Shannon considered just one channel, and instead of the“probabilistic criterion”, considered an expectation
criterion. The questions of universal channel capacity when there is no common randomness exist in literature. There are
examples in literature where random codes perform much better than deterministic codes example [8, 9].

3 Notation and Definitions

Sets, random variables, and distortion measure:

X : finite set: channel input space

Y: finite set: channel output space

Y: finite set: channel output space.

X : random variable onX .

pX : probability distribution ofX . Xn: iid X sequence of random variables of lengthn

d : X ×Y → R is a non-negative valued function. Think ofd(x, y) as the distortion incurred whenx ∈ X is decoded asy ∈ Y

. For sequences of lengthn, xn ∈ Xn, yn ∈ Yn, the average distortion measure
1

n

n
∑

i=1

d(xn(i), yn(i)). is used.

Notation 3.1 (superscriptn) A superscriptn will denote a variable when sequence length(or block length) is n.

Channel model: A channel is a sequence of transition probability matrices
〈

cn
xy

〉∞

1
. This channel will be denoted by〈cn〉∞1 .

It’s operation ’ should be thought of, as follows:

when the length of the input sequence isn, the channel input space isXn, the channel output space isYn, and the channel
acts ascn: cn

xy denotes the probability that the channel output isy ∈ Yn when the channel input isx ∈ Xn. No causality or
nestedness assumptions are assumed on〈cn〉∞1 .

x ∈ Xn y ∈ Yn, with probabilitycn
xy

n = 1

∞
cn

This channel model is the same as the channel model in the paper of Verdu and Han [2].

Example 3.2 (Binary Symmetric Channel, BSC(D))X = Y = {0, 1}. c1
0,0 = c0

1,1 = 1 − D. c1
0,1 = c0

1,0 = D. The channel
flips a bit with probabilityD. cn

ij is the product of matricesc1: the channel acts independently at each time.
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Example 3.3 (Random walk channel, RWC(D))The set{0, 1}n can be thought of as the vertices of a hypercube. RWC is a
random walk on the hypercube. Each point (sequencex) hasn neighbors,r1, . . . , rn: the sequences which are at a hamming
distance 1 from the point. At the next time, the random walk jumps to one of these neighbors, each with probability1

n . This
continues fornD jumps.

Definition 3.4 (CX,D) Consider a channel〈cn〉∞1 . If the input to the channel is i.i.d.X sourceXn, the channel acts ascn. The
channel output is a random variableY n onYn. A channel is said to belong toCX,D if, under the joint distributionpXnY n on
the input-output space,

Pr

(

n
∑

i=1

1

n
d(Xn(i), Y n(i)) > D

)

→ 0 asn → ∞ (2)

See figure in the beginning of Section 1.

Note 3.5 Y n need not be i.i.d. Recall Notation 3.1.

The i.i.d. X sequenceXi is just a tool in the definition of the channel setCX,D. It does not mean that one is trying to
communicate i.i.d. X source over the channel.

CX,D is a set of channels. Intuitively, one can think of a channel in CX,D as follows: apX -typical sequence of lengthn suffers
a distortion< nD after passing through the channel with high probability, for mostpX typical sequences.

nD

pX typicalx ∈ Xn

arbitraryy ∈ Yn

x is distorted to within the green circle

Red squares:pX typical sequences∈ Xn

Gold circles: arbitrary sequence∈ Yn

Process of Communication and Universal channel capacity

Communication will be done using block codes. For block length n,

Channel input spaceXn, is the cartesian product ofX , n times..Xn = {x1, x2, . . . , x|X |n}.

Channel output spaceYn, is the cartesian product ofYn, n times.Yn = {y1, y2, . . . , y|X |n}.

Suppose we want to communicate at rateR.

Message setMn = {m1, m2, . . . , m2nR}. Message reproduction set is denoted byM̂n. The elements ofM̂n are the same as
that ofMn.

A deterministic encoder is a mape : Mn → Xn. A deterministic decoder is a mapd : Yn → M̂n. Deterministic encoder-
decoder will be denoted as d-encoder-decoder.

A Stochastic-decoupled encoder-decoderis a pair of stochastic matrices:

• The encoderis a stochastic matrix,pn
mx, m ∈ Mn, x ∈ Xn. This should be interpreted as: messagem is encoded to

sequencex with probabilitypn
mx.

• The decoderis a stochastic matrixqn
ym̂, y ∈ Yn, m̂ ∈ M̂n This should be interpreted as: channel outputy is decoded to

messagem with probabilityqn
ym̂

The pair is called stochastic-decoupled encoder-decoder.This is because the encoder and decoder are individually stochastic
and act independently of each other. These will be denoted bysd-encoder-decoder.sd-encoder-decoder are the consideration
in this paper.
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A stochastic-coupled encoder-decoderis the same as a random code. The encoder comes from a family ofcodes and the
decoder has access to the realization of the encoder. One wayin which encoder-decoder can generate a random code is through
common randomness. Common randomness is defined as the encoder and decoder having access to the realizations of a
continuous valued random variable. These realizations canthen be used to generate random codes.Stochastically coupled
encoder-decoder were considered in [3]. They arenot under consideration in this paper.

Encoders and decoders are sequences,〈en, dn〉∞1 , wheren is the block length.

Universal Channel CapacityConsider a uniform distributionMn onMn. Thus,pMn(m) = 1
2nR ∀m ∈ Mn. The composi-

tion of theMn, encoder, channel and decoder results in an output random variableM̂n onM̂. This induces a joint probability
distributionpMnM̂n on the message-message reproduction spaceMn×M̂n. RateR is universally achievable overCX,D under
the average block error probability criterion if there exist encoder-decoder pair such that under this joint probability distribu-
tion, Pr(M̂n 6= Mn) → 0 asn → ∞ for each channel inCX,D. Encoder-decoder should be independent of the channel.
Supremum of achievable rates is called the universal channel capacity of CX,D.

2nR messagesMn. Uniform distributionMn onMn M̂ncn ∈ CX,Den dn

rateR reliably achievable iffPr(M̂n 6= M̂n) → 0 asn → ∞∀c ∈ CX,D

Universal capacity can analogously be defined for any setA.

The channel set can be interpreted as an adversary against reliable communication. First, the encoder and decoder are chosen
and then, channel set acts on the output of the encoder. Thus,the channel set can choose the “worst” channel corresponding to
this encoder-decoder.

ThePr(M̂n 6= Mn) → 0 asn → ∞ is the average block error probability criterion. Other criteria exist. They will not be
considered in this paper.

Definition 3.6 (Cd, Csd, Csc) : When encoder-decoder are required to be deterministic, universal capacity ofCX,D will be
denoted byCd. Csd andCsc are defined analogously.

4 The main theorem

As mentioned in the introduction, here we will only deal withbinary alphabets and Hamming distortion. We now fix some
notation for binary channels and describeCX,D in this case:

• X = Y = {0, 1}.

• d: Hamming distortion metric; i.e.,d(0, 0) = d(1, 1) = 0 andd(0, 1) = d(1, 0) = 1

• X : a uniformly random bit:pX(0) = pX(1) = 1
2

• D ≥ 0: distortion level.

• CX,D: The definition from Equation ((2)), with the above choices forX ,Y, d, X .

Roughly, for a channel inCX,D, the number of bit errors in ann length bit sequence is< nD with high probability for
most bit sequences.

In what follows, CX,D will refer to this example. Cd, Csd, and Csc will refer to the channel capacity for this particular
CX,D.

We can now state our main theorem.

Theorem 4.1 (Main) LetD ∈ [0, 1] and letC = CX,D, Cd, Csd, Csc be as above. Then:

1. (a) If D = 0, rate1 is achievable for d-encoder-decoder, whereas rates0 < R < 1 are not achievable.

(b) If D = 0, Csd = 1.

2. If D > 0, Csd = 0 (and thus,Cd = 0).
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5 Intuition

Intuition for Theorem 4.1, (1)

CX,0 (Note,CX,0, notCX,D: this isCX,D with D = 0) consists of channels where most bit sequences are, with high probabil-
ity, perfectly received.

Csd ≤ 1 (and hence,Cd ≤ 1)because there are only2n possible sequences in the input spaceXn.

Intuition for Theorem 4.1 (1a)

To transmit at rateR = 1, there are2n messages. The encoder encodes each message to a bit sequence(both message set and
channel input space have cardinality2n). The decoder decodes a received sequence to the corresponding message. This results
in reliable communication. Thus, rate 1 is achievable with dencoder-decoder.

In what follows, a codeword is “killed” would mean that the output produced by the channel is the all zero sequence. Thus,
there is no information transmission.

Suppose one tries to transmit at rateR < 1 with d-encoder. Thus, each of the2nR messages is mapped to some bit sequence in
Xn = {0, 1}n. Consider the following channel: the channel “kills” each of these sequences which are codewords whereas rest
of the sequences are transmitted perfectly. This channel∈ CX,0. There is no information transmission. Thus, rates< 1 are not
achievable.

The question of capacity, thus, does not make sense for d-encoder-decoder. However, it does for sd encoder-decoder. Also, d and
sd encoder-decoderare similar in the sense that encoder anddecoder do not need to share any knowledge during communication.

Intuition for Theorem 4.1 (1b)

As said before,Csd ≤ 1. One can achieve rateR ≤ 1 with sd-encoder-decoder in the following way: DivideXn into 2nR

disjoint setsAi, 1 ≤ i ≤ 2nR of cardinality2n(1−R) each. See figure.

each red square is a bit sequence∈ Xn

Xn

Ai

codeword corresponding to messagei
is chosen uniformly from these sequences

Each of the2nR messages is mapped to one of these2nR sets. Letmi be mapped to the setAi. When transmittingmi, transmit
x ∈ Ai with probability2−n(1−R). If y is received, decode it to themi such thaty ∈ Ai. It is easy to see that this results in
reliable communication at rateR.

Definition 5.1 (HE encoder) The above encoder will be called HE encoder.

Think of HE as “high entropy.” In some sense, a deterministicencoder has zero entropy. HE encoder has high entropy. Roughly,
it is the opposite of a deterministic encoder and induces a high amount of randomness.

Intuition for Theorem 4.1 (2)

WhenD > 0, a “bad” channel can “inflate” any set because output can be atany distance< nD from the input.

For a deterministic encoder, as in Theorem 4.1 (1a), the channel can “kill” all the codewords and transmit rest of the sequences
perfectly. Reliable communication will not be possible.

Now, consider the encoder HE (Definition 5.1). This encoder “uses the whole set of2n sequences as codewords.” In some
sense, it is the opposite of a deterministic encoder.

Let HE be used as the encoder. A channel inCX,D can distort a sequence bynD. Thus, a “bad” channel will roughly, inflate
each setAi by radiusnD. Call this inflated setBi. The setAi has2n(1−R) elements. The setBi will have2n(1−R+λ), λ > 0
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elements (this is made rigorous in the next section). The setsBi will “overlap significantly” since there are now2nR sets, each
with cardinality2n(1−R+λ), and reliable communication is not possible. See figure

Ai

Inflated setBi caused by
inflating setAi by radiusnD

The two extreme cases: d-encoder and HE-encoder provide allthe intuition for proving Theorem 4.1 (2). In general, when
the encoder lies somewhere “between” these two extreme encoders, a “bad” channel can be constructed such that it will “kill”
some of the codewords which occur with high probability, and“inflate” others. One way of inflating a codeword byD is to
“pass” the codeword through BSC(D). Another way is to “pass”it through RWC(D). There are others.

6 Rigorous proofs

Rigorous proof for Theorem 4.1 (1):Rigorous proof is omitted because it is easy to make the intuition of the previous section
precise.

Rigorous proof for Theorem 4.1, 2:

Suppose an sd encoder-decoder has been fixed for communication. We will construct a channel∈ CX,D over which reliable
communication is not possible at any rateR > 0 for this encoder-decoder. This will prove that whenD > 0, Csd = 0.

The proof will consist of 2 parts in line with the intuition ofthe previous section:

1. use a channel which acts in a way that those codewords whichoccur with high probability are “killed”.

2. Rest of the codewords are “inflated”to within a total distortion D by using BSC or RWC.

For block lengthn rateR, recall:

Message setMn = {m1, m2, . . . , m2nR}.

Channel input spaceXn. Arrange the2n sequences∈ Xn in some order. Call themx1, x2, . . . , x2n .

Channel output spaceYn. Arrange the2n sequences∈ Yn in some order. Call themy1, y2, . . . , y2n .

Let pn
ij , 1 ≤ i ≤ 2nR, 1 ≤ j ≤ 2n, denote the probability thatmi is encoded asxj . pn

ij are determined by the encoder alone
and are independent of the decoder.

pn
11 . . . pn

1j . . . pn
12n

...

...

. . .

. . .

...

...

. . .

. . .

...

...

pn
i1 . . . pn

ij . . . pn
i2n

pn
2nR1. . . pn

2nRj. . . pn
2nR2n

sum each column

γn
1 γn

i γn
2n

pn
ij :probability thatmi is encoded as

thexj (bit sequences
in codeword space are arranged in
someorder; it does not matter).

Let

γn
j =

2nR

∑

k=1

pn
kj , 1 ≤ j ≤ 2n andαn

j =
γn

j

2nR
(3)
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αn
j is the total probability that thejth bit sequencexj is used as codeword. This is because probability that message mi is

transmitted is 1
2nR and the probability that sequencexj is used as codeword given messagemi is transmitted ispn

ij .

Consider a channel which “kills”an fraction of sequences in the input space. That is, the channel maps somean2n of the2n

possible input sequences to the all zero sequence. The valuesai will be fixed later.

As stated in the intuition, a “bad” channel will be constructed in a way that it will “kill” some of the sequences and inflateothers.
Intuitlvely, a “bad” channel will “kill” those bit sequences which transmit the maximum amount of information. Withoutloss
of generality,αn

i can be considered to be in descending order, that is,αn
1 ≥ αn

2 ≥ αn
2n (else, one can interchange and rename).

With this re-ordering, probability thatx1 is used as codeword≥ probability thatx2 is used as codeword, and so on. Consider a
channel which “kills”x1, . . . , xan2n and transmits rest of the sequences perfectly. This channel“kills” those an fraction of bit
sequences which have the maximum probability of being codewords.

The only sequences which possibly transmit information arexan2n+1, xan2n+2, . . . x2n .

Define

βn = αn
1 + αn

2 + . . . αn
an2n (4)

βn should be thought of as the “wasted probability”: it is the total probability of those codewords which lead to no information
transmission.

Sinceαis are in descending order,

αn
k ≤ βn

an2n
for k > an2n (5)

Now, we fixan in such a way that it will be convenient for us to construct a channel over which reliable communication is not
possible.

Let an =
1

n
. Note thatan → 0 asn → ∞ (6)

Thus,

αn
k ≤ nβn

2n
for k >

2n

n
(7)

βn, being a probability of an event, is< 1. It follows that

αn
k ≤ n2−n for k >

2n

n
(8)

It follows that those codewords which transmit useful information, each occurs with a probability≤ n2−n. n2−n .
= 2−n. This

encoder uses atleast1
n fraction ofXn as codewords.1n

.
= 1. This construction is in line with the intuition that a “good” encoder

should use a significant fraction of sequences as codewords.

Consider the following channel:

Definition 6.1 (Modified BSC, mBSC) 1. Any sequence which is used as codeword with probability> n2−n is “killed”

These sequences will be called Type 1 sequences.

2. The channel acts as BSC(D − δ) on the rest of the sequences,δ > 0.

These sequences will be called Type 2 sequences.

mBSC∈ CX,D. mBSC depends on the encoder used for encoding. It does not depend on the decoder. mBSC is a modification
of a BSC in that it “kills” some codewords and acts as BSC on others. So, it is called modified BSC, or mBSC. mBSC has been
defined rigorously. mBSC will be the channel for which we willprove that reliable communication is not possible at any rate
R > 0 (recall,D > 0).

Note 6.2 One can also define a modified random walk channel, mRWC, analogously to mBSC. mRWC “kills” every sequence
which is used as a codeword with probability> n2−n, and acts as RWC on all other codewords others.
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Recall that the probability that a bit sequencexj is used as codeword isαn
j (Equation 6).

Let xj be a Type 2 sequence. Then,αn
j ≤ n2−n. Thus,γn

j ≤ n2−n(1−R). Thus,

pn
ij ≤ n2−n(1−R)∀i (9)

Let rateR be reliably achievable over mBSC. By the standard information theoretic argument of going from average block
error criterion to maximal block error criterion by throwing throwing away half the messages, it follows that

∃εn → 0 such thatPr(error| mi is transmitted) ≤ εn for atleast
2nR

2
of the messagesmi (10)

Denote this subset ofMn byMn
good.

pn
ij , 1 ≤ j ≤ 2n, i fixed, is a probability distribution onXn By (9) and (10), it follows that formi ∈ Mn

good, this probability

distribution is such that atleast(1−εn) of the probability is made up of individual probabilities, each of which is≤ n2−n(1−R) .
=

2−n(1−R). Precisely,∃K ⊂ Xn such thatpn
ik ≤ n2−n(1−R) forall k ∈ K, and

∑

k∈K pn
ik ≥ 1 − εn

Roughly, this says that a potentially “good” stochastic encoder encodes a message stochastically to atleast1
n2n(1−R) .

= 2n(1−R)

sequences.

To recap, we have defined a channel mBSC. A necessary condition for reliable communication to be possible over mBSC at
rateR > 0 is that atleast half of the2nR messagesmi, pn

ij , 1 ≤ j ≤ 2n, is a probability distribution onXn such that atleast
(1 − εn) of the probability is made up of masses, each of which is≤ n2−n(1−R) .

= 2−n(1−R).

Note that the above property is saying that the encoder should act as being “close” to a HE encoder in the rigorous sense defined
above for any hope of reliable communication However, the above condition is not sufficient for reliable communication over
mBSC at rateR. “Inflations” described in the previous section kick in.

The rest of this section makes rigorous, the “inflations,” and proves the fact that reliable communication is not possible over
mBSC at any rate> 0.

Since mBSC is one channel and not a set of channels, and the error probability criterion is average block, there exists a
deterministic optimal decoder.

A deterministic decoder is a sub-division of channel outputspaceYn = {0, 1}n into disjoint setsSi such that if the channel
output∈ Si, the estimate ismi. See figure.

Formi ∈ Mn,good, Pr(yi ∈ Si|mi) ≥ 1 − εn.

S1

S2
Si S2nR

setSi is decoded to messagei

a bit sequence in channel output space

We want to make a rigorous statement saying that such aTi should have cardinality exponentially larger than2n(1−R), that is,
2n(1−R+λ) for someλ > 0.
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PSfrag

Rough boundary of set where probability

of codewords corresponding to message

mi is concentrated. Each such codeword

has probability
.
≤ 2

−n(1−R). Thus,

cardinality of this set
.
≥ 2

n(1−R).

Rough boundary of set which has

probability≥ 1 − εn after

passing through mBSC or mRWC

given messagemi is transmitted.

Cardinality of this set
.
≥ 2

n(1−R+f(D)).

mBSC

This is done using Theorem 7.3. in Section 7. From this lemma,it will follow that setsTi should have cardinality> 2n(1−R)+λ

for suffiently largen for all i such thatmi ∈ Mn
good, for someλ > 0. . This would imply that the number of sequences in

the output space{0, 1}n ≥ 2nR

2 × 2n(1−R)+λ > 2n, which is not true. The conclusion is that reliable communication is not
possible for any rateR > 0 over mBSC.

This proves Theorem 4.1 (2).

The above argument could also have been carried out using themRWC in place of the mBSC. The key technical fact needed in
this case is Theorem 7.5, which shows that mRWC is also “inflating”.

7 Inflating channels

7.1 The Bonami-Beckner inequality and other preliminaries

For this section, we will represent{0, 1} by Z2, the additive group on two elements. Forf : Z
n
2 → R, we define the norm

‖f‖p =





1

2n

∑

x∈Z
n
2

|f(x)|p




1/p

.

For ε ∈ [0, 1], theBonami-Beckneroperator,Tε, acts on functions fromZn
2 to R as follows:

Tε(f)(x) =
∑

y∈Z
n
2

(

1 + ε

2

)n−wt(y)(
1 − ε

2

)wt(y)

f(x + y).

wt(y) is the weight ofy: number of1s in the bit sequencey. Note thatTε is a convolution operator that “smooths” out the
functionf . This is made precise by the fundamental Bonami-Beckner inequality.

Theorem 7.1 (Bonami-Beckner)For anyf : Z
n
2 → R, and anyε ∈ [0, 1] we have

‖Tε(f)‖2 ≤ ‖f‖1+ε2.

It is instructive to compare the statement of the Bonami-Beckner inequality with the trivial observation that‖Tε(f)‖2 ≤ ‖f‖2

(note that‖f‖1+ε2 ≤ ‖f‖2 always, and‖f‖1+ε2 can be significantly smaller than‖f‖2 in general).

The Fourier Transform on Z
n
2 . We now introduce some basics of Fourier analysis onZ

n
2 . For ξ ∈ Z

n
2 , define the function

χξ : Z
n
2 → R by

χξ(x) := (−1)
∑

n
i=1 ξixi .
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The functionsχξ are called thecharactersof F
n
2 .

We use this to definêf : Z
n
2 → R, theFourier transformof f , by:

f̂(ξ) =
1

2n

∑

x∈Z
n
2

f(x)χξ(x).

The Fourier inversion formula states that
f(x) =

∑

ξ∈Z
n
2

f̂(ξ)χξ(x).

For future reference, we note that for any functionf supported only on vectors of even weight, and for anyξ ∈ Z
n
2 , we have

f̂(ξ) = f̂(ξ̄), whereξ̄ denotes the vectorξ + (1, 1, . . . , 1). Similarly for any functionf supported only on vectors of odd
weight, and for anyξ ∈ Z

n
2 , we havef̂(ξ) = −f̂(ξ).

We have the basic Plancherel identity for any two functionsf, g : Z
n
2 → R:

1

2n

∑

x∈Z
n
2

f(x)g(x) =
∑

ξ∈Z
n
2

f̂(ξ)ĝ(ξ).

As a special case, we get the Parseval equality:
‖f‖2 =

∑

ξ∈Z
n
2

|f̂(ξ)|2.

The action of the Bonami-Beckner operator,Tε also has a simple expression in the Fourier basis. It acts as aFourier multiplier
as follows:

Tε(f)(x) =
∑

ξ∈Z
n
2

εwt(ξ)f̂(ξ)χξ(x).

Finally, let A ∈ R
2n×2n

be the transition probability matrix for the random walk on the hypercube, i.e., forx, y ∈ Z
n
2 ,

Ax,y = 1/n if x andy differ in exactly one coordinate, andAx,y = 0 otherwise. It can be checked that for anyf : Z
n
2 → R, A

also acts as a Fourier multiplier, as follows

Af(x) =
∑

ξ∈Z
n
2

(

1 − 2
wt(ξ)

n

)

f̂(ξ)χξ(x).

7.2 BSC is inflating

The following simple proposition relates the BSC to the Bonami-Beckner operator.

Proposition 7.2 Let µ be a probability distribution on input spaceZn
2 . Then, the distribution on the output spaceZ

n
2 after

passing through BSC isT1−2D(µ).

Via the above proposition, the following theorem now shows that the BSC is inflating.

Theorem 7.3 (BSC is inflating) Let D ∈ (0, 1). Let µ be a probability measure on{0, 1}n with µ(x) ≤ 2−αn for all x ∈
{0, 1}n, and letν = T1−2D(µ). Then there exists a constantλD ∈ (0, 1), depending only onD, such that for anyS ⊆ {0, 1}n

with
∑

x∈S ν(x) ≥ 1
2 , we have

|S| ≥ 1

4
2n(αλD+(1−λD)).
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Proof Let 1S : {0, 1}n → R be the indicator function ofS. Let ε = 1 − 2D. We know that
∑

x∈{0,1}n ν(x)1S(x) ≥ 1
2 .

1

2
≤





∑

x∈{0,1}n

|ν(x)|2




1
2




∑

x∈{0,1}n

|1S(x)|2




1
2

by the Cauchy-Schwarz inequality

= 2n · ‖ν‖2 · ‖1S‖2

= 2n · ‖Tεµ‖2 · ‖1S‖2

≤ 2n · ‖µ‖1+ε2 ·
( |S|

2n

)
1
2

by the Bonami-Beckner inequality

≤ 2n · 2−
(1+αε2)n

1+ε2 ·
( |S|

2n

)1/2

asµ(x) ≤ 2−αn for eachx

Thus,

|S| ≥ 1

4
· 2n

(

α 2ε2

1+ε2
+ 1−ε2

1+ε2

)

.

The theorem follows.

7.3 RWC is inflating

The behaviour of the random-walk channel can be compactly described in terms of the matrixA via the following proposition.

Proposition 7.4 Letµ be a probability measure on output spaceZ
n
2 . Then, the distribution on the output spaceZ

n
2 after passing

through RWC isADnµ.

We now show that the RWC is inflating. The proof is a variation of an elegant argument due to Motwani, Naor and Panigrahy [7].
Following [7], by working in the Fourier domain, we relate the action ofA to the action of the Bonami-Beckner operator, which
then reduces us to the situation of Theorem 7.3.

Theorem 7.5 Let D ∈ (0, 1]. Letµ be a probability measure on{0, 1}n with µ(x) ≤ 2−αn for all x ∈ {0, 1}n, and letν =
ADnµ. Then there exists a constantλD ∈ (0, 1), depending only onD, such that for anyS ⊆ {0, 1}n with

∑

x∈S ν(x) ≥ 1
2 ,

we have

|S| ≥ 1

32
2n(αλD+(1−λD)).

Proof Let S0 be the set of all even weight vectors inS and letS1 be the set of odd weight vectors inS.

Let 1S : {0, 1}n → R be the indicator function ofS. Similarly define1S0 and1S1 . Note that since the support ofS0 is only
on even weight vectors,̂1S0(ξ) = 1̂S0(ξ̄). Similarly, 1̂S1(ξ) = −1̂S1(ξ̄).

Let ε = e−2D. We know that
∑

x∈{0,1}n ν(x)1S(x) ≥ 1
2 . Therefore there is ani ∈ {0, 1} such that

∑

x∈{0,1}n ν(x)1Si
(x) ≥

1
4 .
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1

4
· 1

2n
≤
∑

ξ∈Z
n
2

µ̂(ξ)1̂Si
(ξ)

(

1 − 2
wt(ξ)

n

)Dn

by Plancherel, and sinceν = ADnµ

≤





∑

ξ∈Z
n
2

µ̂(ξ)2





1/2



∑

ξ∈Z
n
2

1̂Si
(ξ)2

∣

∣

∣

∣

1 − 2
wt(ξ)

n

∣

∣

∣

∣

2Dn




1/2

by Cauchy-Schwarz

≤ ‖µ‖2





∑

ξ∈Z
n
2 ,wt(ξ)≤n/2

21̂Si
(ξ)2

∣

∣

∣

∣

1 − 2
wt(ξ)

n

∣

∣

∣

∣

2Dn




1/2

since
∣

∣

∣1 − 2wt(ξ)
n

∣

∣

∣

2Dn

=
∣

∣

∣1 − 2wt(ξ̄)
n

∣

∣

∣

2Dn

and1̂Si
(ξ)2 = 1̂Si

(ξ̄)2

≤
√

2 · ‖µ‖2





∑

ξ∈Z
n
2 ,wt(ξ)≤n/2

1̂Si
(ξ)2e−2wt(ξ)

n
·2Dn





1/2

usinge−x ≥ 1 − x

≤
√

2 · ‖µ‖2 · ‖Tε(1Si
)‖2

≤
√

2 · 2−n(1+α)/2 · ‖1Si
‖1+ε2 by the Bonami-Beckner inequality

≤
√

2 · 2−n(1+α)/2 ·
( |Si|

2n

)
1

1+ε2

.

Thus,|S| ≥ |Si| ≥ 2−5(1+ε2)/2 · 2n
(

α 1+ε2

2 + 1−ε2

2

)

. The theorem follows.

8 Conclusion

We proved that the capacity of the set of channels described in Section 4.1 when there is no common randomness at transmitter
and receiver. is zero forD > 0. This then proves by counter-example that the universal source-channel separation theorem for
rate-distortion as described in [4] is false.
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