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Abstract

Recently, [3] studied the universal capacity of a set of detsywhere each channel in the set communicates a random
source to within a distortion levdD, when the transmitter and receiver have acces®tomon randomnes#n this paper, we
study the universal capacity for this channel set in the wdmn there is no access to common randomness. We show that whe
the distortion leveD is positive, the universal capacity(s

1 Introduction

For a given distortion leveD, letC be the set of channels which directly transmit a given soircich that

n—oo
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The above is a probabilistic criterion. See figure.
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In [3], the problem of finding the univeral capacity ©was considered. They showed that, when the transmitteresrsivier
have access to common randomness, the universal capa€itg pfecisely the rate-distortion functidt (D). The main idea

of that result is that the common randomness can be used &vajera random code which is independent of the channel, and
the transmitter and receiver can then communicate usisgtde.

In Shannon’s random-coding argument, the existence of @rarcode for reliable communication implies the existenfce o
deterministic code for reliable communication. This isthecause there is onbnechannel, not a set of channels. In general,
when asking the question of universal capacity of a set aficbks, the existence of a random code does not imply theeexist

of a deterministic/individually stochastic code for thaienset of channels, unless there is common randomnessahtitter
and receiver. We would use the phrases “random code”, “comraedomness,”, and “stochastic-coupled encoder-detoder
(Section 3) interchangeably.

In this paper we consider the case when there is no commonmameks (although the transmitter and receiver can be imdepe
dently stochastic). Our main result is that in the case ofararnon randomness, if the rate-distortion lefzels > 0, then the
universal capacity of is zera

The main motivation for this question comes from the the ergal source-channel separation theorem for rate-dtqtoved
in [4]. We briefly recall the statement of this separatiorotieen:

Let.A be a set of channels. If there is common randomness at traesim order to universally communicate i.i.d.
X source to within a distortion leveD in the sense of Equation 1 ovg, it is sufficient to consider architectures
which consist of rate-distortion source-coding i.iXl.source to within a distortion level in the sense of Equation
1 followed by universal reliable communication ovér



The proof uses the fact that the universal capacity @fith common randomness Bx (D). Our result shows that without
common randomness, I > 0 the universal capacity @ is is zero, even thougRx (D) > 0. As a corollary, the universal
source-channel separation theorem is false when theredsmmon randomness at transmitter and receiver.

Our proof uses some combinatorial ideas along with a poweréguality due to Bonami and Beckner [5]. This inequality,
which is a cornerstone of the modern study of boolean funstiavas first applied to combinatorial situations by the lyigh
influential paper of Kahn, Kalai and Linial [6]. We believeatithese techniques could have applications to a wide rahge o
information theoretic problems.

For simplicity of exposition, in this version of the paper a@y consider the case of binary alphabets with Hammingdisi.
The same ideas can also be used for the general case.

2 Past Work

Shannon had considered the same question of communicat@rcbannels which communicate i.i.d{ source within a
distortion D [1]. Shannon considered just one channel, and instead ¢ptbbabilistic criterion”, considered an expectation
criterion. The questions of universal channel capacitymtiere is no common randomness exist in literature. Thexe ar
examples in literature where random codes perform muckttbtin deterministic codes example [8, 9].

3 Notation and Definitions

Sets, random variables, and distortion measure:

X finite set: channel input space

Y: finite set: channel output space

Y: finite set: channel output space.

X: random variable ork'.

px: probability distribution ofX. X™: iid X sequence of random variables of length

d: X xY — Ris anon-negative valued function. Thinkd(fz, y) as the distortion incurred whenc X is decoded ag € )

S 1< :
. For sequences of length 2" € X™, y™ € V", the average distortion measu%eg d(x"(4),y"(2)). is used.
n
i=1

Notation 3.1 (superscriptn) A superscript: will denote a variable when sequence length(or block lenigth.

Channel model: A channel is a sequence of transition probability matri(o%)?o. This channel will be denoted by")}".
It's operation ' should be thought of, as follows:

when the length of the input sequenceristhe channel input space ™, the channel output space)&’, and the channel
acts ag=": ¢y, denotes the probability that the channel outpuf is Y™ when the channel input is € ™. No causality or
nestedness assumptions are assumed'gi”.

This channel model is the same as the channel model in the pgerdu and Han [2].

Example 3.2 (Binary Symmetric Channel, BSC(D))X = ¥ = {0,1}. ¢j o = ¢}, =1 —D. ¢, = ¢} ; = D. The channel
flips a bit with probabilityD. c7'; is the product of matrices': the channel acts independently at each time.



Example 3.3 (Random walk channel, RWC(D))The set{0, 1}" can be thought of as the vertices of a hypercube. RWC is a
random walk on the hypercube. Each point (sequendeasn neighborsy, ..., r,: the sequences which are at a hamming
distance 1 from the point. At the next time, the random walkpjsi to one of these neighbors, each with probabﬂityThis
continues fom D jumps.

Definition 3.4 (Cx,p) Consider a channgk™){°. If the input to the channelis i.i.d¥ sourceX™, the channel acts as'. The
channel output is a random variable™ on ™. A channelis said to belong o, p if, under the joint distributiorpx»y~ on
the input-output space,

Pr (Z} —d(X" (@), Y"(0)) > D) — 0asn — oo @
See figure in the beginning of Section 1.

Note 3.5 Y™ need not be i.i.d. Recall Notation 3.1.

The i.i.d. X sequenceX; is just a tool in the definition of the channel s&t . It does not mean that one is trying to
communicate i.i.d. X source over the channel.

Cx,p is a set of channels. Intuitively, one can think of a chanmély p as follows: ap x-typical sequence of lengthsuffers
a distortion< n.D after passing through the channel with high probabilityfmstp x typical sequences.

arbitraryy € Y . - .
yy ey x is distorted to within the green circle

Red squaregx typical sequences X™
Gold circles: arbitrary sequenee)™

px typicalz € X"

Process of Communication and Universal channel capacity

Communication will be done using block codes. For block tang

Channel input spac&™, is the cartesian product éf, n times..X™ = {z1,z2,..., 7 xn }.
Channel output spagg”, is the cartesian product 0f*, n times. )" = {y1, %2, ..., Yjx|» }-
Suppose we want to communicate at rRte

Message seM™ = {my,mo, ..., monr }. Message reproduction set is denoted\ty. The elements oM™ are the same as
that of M™.

A deterministic encoder is a map : M"™ — X™. A deterministic decoder is a mab: Y — Mn. Deterministic encoder-
decoder will be denoted as d-encoder-decoder.

A Stochastic-decoupled encoder-decodés a pair of stochastic matrices:

e The encoderis a stochastic matrixg?,., m € M™ x € X™. This should be interpreted as: messagés encoded to
sequence with probabilityp}?, ..

e The decoderis a stochastic matrig;,, y € V", m € M~ This should be interpreted as: channel outpistdecoded to
messagen with probabilityqy;,

The pair is called stochastic-decoupled encoder-decddies. is because the encoder and decoder are individualthastic
and act independently of each other. These will be denoted{sncoder-decodexd-encoder-decoder are the consideration
in this paper.



A stochastic-coupled encoder-decodés the same as a random code. The encoder comes from a fanubdet and the
decoder has access to the realization of the encoder. Onimwidnich encoder-decoder can generate a random code iggtirou
common randomness Common randomness is defined as the encoder and decodeg laadess to the realizations of a
continuous valued random variable. These realizationghembe used to generate random cod&ochastically coupled
encoder-decoder were considered in [3]They arenot under consideration in this paper.

Encoders and decoders are sequenegsd”);°, wheren is the block length.

Universal Channel CapacityConsider a uniform distributiod/™ on M™. Thus,py~(m) = %Vm € M™. The composi-

tion of the /™, encoder, channel and decoder results in an output randdailel/™ on M. This induces a joint probability
distributionp, ., ;. 0N the message-message reproduction spatex M™. RateR is universally achievable oV€r, p under
the average block error probability criterion if there éxédacoder-decoder pair such that under this joint prokgaistribu-
tion, Pr(M" # M"™) — 0 asn — oo for each channel i€x p. Encoder-decoder should be independent of the channel.
Supremum of achievable rates is called the universal chanheapacity of Cx p.

2" messagedA™. Uniform distributionA/™ on M”H—» c" e CXvD—»H/M"

rate R reliably achievable ifPr(M" # M™) — 0 asn — ooVe € Cx.p

Universal capacity can analogously be defined for anydset

The channel set can be interpreted as an adversary agdialste@ommunication. First, the encoder and decoder avsarh
and then, channel set acts on the output of the encoder. fffeushannel set can choose the “worst” channel correspgmalin
this encoder-decoder.

ThePr(]\Z/" # M™) — 0 asn — oo is the average block error probability criterion. Othetemnia exist. They will not be
considered in this paper.

Definition 3.6 (Cy4, Csa4, Csc) : When encoder-decoder are required to be deterministitvarsal capacity oCx p will be
denoted by”,;. Csq andC;,. are defined analogously.

4 The main theorem

As mentioned in the introduction, here we will only deal witimary alphabets and Hamming distortion. We now fix some
notation for binary channels and describe p in this case:

X =Yy={0,1}.
d: Hamming distortion metric; i.ed(0,0) = d(1,1) = 0 andd(0,1) = d(1,0) =1

e X: auniformly random bitpx (0) = px (1) = 3

e D > (: distortion level.

Cx,p: The definition from Equation ((2)), with the above choicest’, ), d, X.

Roughly, for a channel i€x p, the number of bit errors in am length bit sequence is n.D with high probability for
most bit sequences.

In what follows, Cx,p will refer to this example. Cy, Csq, and Cs. will refer to the channel capacity for this particular
Cx,p.

We can now state our main theorem.
Theorem 4.1 (Main) LetD € [0, 1] and letC = Cx p, Cq4, Csa, Csc be as above. Then:

1. (a) IfD =0, ratel is achievable for d-encoder-decoder, whereas rétes R < 1 are not achievable.
(b) fD=0,Csq =1.

2. If D > 0,Csq = 0 (and thus(Cy = 0).



5 Intuition

Intuition for Theorem 4.1, (1)

Cx,0 (Note,Cx o, notCx p: this isCx p with D = 0) consists of channels where most bit sequences are, withphapabil-
ity, perfectly received.

Csq < 1 (and hence(; < 1)because there are or§ possible sequences in the input spate
Intuition for Theorem 4.1 (1a)

To transmit at ratd? = 1, there ar&™ messages. The encoder encodes each message to a bit sggoémogessage set and
channel input space have cardinality). The decoder decodes a received sequence to the corr@spamessage. This results
in reliable communication. Thus, rate 1 is achievable widndoder-decoder.

In what follows, a codeword is “killed” would mean that thetput produced by the channel is the all zero sequence. Thus,
there is no information transmission.

Suppose one tries to transmit at rée< 1 with d-encoder. Thus, each of thé” messages is mapped to some bit sequence in
Xx™ = {0, 1}". Consider the following channel: the channel “kills” eadhhese sequences which are codewords whereas rest
of the sequences are transmitted perfectly. This chandgl o. There is no information transmission. Thus, rate$ are not
achievable.

The question of capacity, thus, does not make sense foradencecoder. However, it does for sd encoder-decoden, Aland
sd encoder-decoder are similar in the sense that encoddeander do not need to share any knowledge during commioricat

Intuition for Theorem 4.1 (1b)

As said before(,; < 1. One can achieve rate < 1 with sd-encoder-decoder in the following way: Dividg" into 2"F
disjoint setsd;, 1 < i < 2"% of cardinality2”(! %) each. See figure.

each red square is a bit sequerc&’™
Xn

codeword corresponding to message
Is chosen nﬂorrr%ﬂrom t%e%e sequences

Each of the2”® messages is mapped to one of th2’s@ sets. Letn; be mapped to the set;. When transmittingn;, transmit
z € A; with probability2*”(1*R). If y is received, decode it to the; such thaty € A;. It is easy to see that this results in
reliable communication at rate.

Definition 5.1 (HE encoder) The above encoder will be called HE encoder.

Think of HE as “high entropy.” In some sense, a determingsticoder has zero entropy. HE encoder has high entropy. Rough
it is the opposite of a deterministic encoder and inducegh &imount of randomness.

Intuition for Theorem 4.1 (2)
WhenD > 0, a “bad” channel can “inflate” any set because output can bayatlistance< nD from the input.

For a deterministic encoder, as in Theorem 4.1 (1a), thereiaan “kill” all the codewords and transmit rest of the senges
perfectly. Reliable communication will not be possible.

Now, consider the encoder HE (Definition 5.1). This encodese’s the whole set &* sequences as codewords.” In some
sense, it is the opposite of a deterministic encoder.

Let HE be used as the encoder. A channelinp can distort a sequence D. Thus, a “bad” channel will roughly, inflate
each set4; by radiusnD. Call this inflated seB;. The setd; has2"(!~ %) elements. The sd8; will have 271~ F+X) X\ > 0



elements (this is made rigorous in the next section). Trel3awill “overlap significantly” since there are no@#* sets, each
with cardinality2” (1~ %+ and reliable communication is not possible. See figure

80 S

The two extreme cases: d-encoder and HE-encoder provideeaihtuition for proving Theorem 4.1 (2). In general, when
the encoder lies somewhere “between” these two extremealengca “bad” channel can be constructed such that it will™ki
some of the codewords which occur with high probability, dinflate” others. One way of inflating a codeword By is to
“pass” the codeword through BSC(D). Another way is to “pas#iirough RWC(D). There are others.

6 Rigorous proofs

Rigorous proof for Theorem 4.1 (1): Rigorous proof is omitted because it is easy to make thetiotudf the previous section
precise.

Rigorous proof for Theorem 4.1, 2:

Suppose an sd encoder-decoder has been fixed for commanickée will construct a channe Cx, p over Which reliable
communication is not possible at any rdte> 0 for this encoder-decoder. This will prove that whBrn 0, Csq =

The proof will consist of 2 parts in line with the intuition tfe previous section:

1. use a channel which acts in a way that those codewords whatlr with high probability are “killed”.

2. Rest of the codewords are “inflated”to within a total distn D by using BSC or RWC.

For block lengthn rate R, recall:

Message setM”™ = {mq,ma, ..., Manr }.
Channel input spac&™. Arrange the™ sequences X" in some order. Call them;, zo, ..., zon.
Channel output spagg™. Arrange the™ sequences )™ in some order. Call them, yo, . . ., yon.

Letp?j, 1 <i< 2™ 1< j <27, denote the probability that; is encoded as;. p;; are determined by the encoder alone
and are independent of the decoder.

P o--- DYy oo Dlan py;- probability thatm; is encoded as

. . . thez; (bit sequences
in codeword space are arranged in
someorder; it does not matter).

n n n
P --- Do Dion

pgan .. pgnR7 .. pgnR n
\ \ \
sum each column

' ' '

" Vi Yo
Let
277,}? ,771
Zpkj, 1<j <2"anda} 2n7R 3)
k=1



«aj is the total probability that thg'" bit sequencer; is used as codeword. This is because probability that messads
transmitted isﬁ and the probability that sequenegis used as codeword given messagsis transmitted i9;.

Consider a channel which “killsi,, fraction of sequences in the input space. That is, the cthanags some:,, 2" of the 2"
possible input sequences to the all zero sequence. Thesvaludl be fixed later.

As stated in the intuition, a “bad” channel will be constedtin a way that it will “kill” some of the sequences and inflatkers.
Intuitlvely, a “bad” channel will “kill” those bit sequensavhich transmit the maximum amount of information. Withtmss

of generalitya]” can be considered to be in descending order, thaflis> a3 > af. (else, one can interchange and rename).
With this re-ordering, probability that; is used as codeword probability thatz, is used as codeword, and so on. Consider a
channel which “kills"z1, . . ., z,, 2» and transmits rest of the sequences perfectly. This ché&kilis! those «a,, fraction of bit
sequences which have the maximum probability of being coddsv

The only sequences which possibly transmit informationare. +1, x4, 2n 42, - . . Tan.

Define
Bn=0af +ay +...04 on 4)

B, should be thought of as the “wasted probability”: it is theat@robability of those codewords which lead to no inforimiat
transmission.

Sinceq;s are in descending order,

B

ap2™

ap < fork > a,2" (5)

Now, we fixa,, in such a way that it will be convenient for us to construct ararel over which reliable communication is not
possible.

1
Leta, = —. Note thata,, — 0 asn — oo (6)
n
Thus,
n 2n
a}ggﬂfork>— (7)
2n n

On, being a probability of an event, is 1. It follows that

n

2
aj <n27"fork > — (8)

It follows that those codewords which transmit useful imfi@ation, each occurs with a probabiltyn2—". n2=" = 2=, This
encoder uses atleaf}?tfraction ofX™ as codewords}—L = 1. This construction is in line with the intuition that a “gdaehcoder
should use a significant fraction of sequences as codewords.

Consider the following channel:

Definition 6.1 (Modified BSC, mBSC) 1. Any sequence which is used as codeword with probabilit2~" is “killed”
These sequences will be called Type 1 sequences.

2. The channel acts as BSZ( §) on the rest of the sequencés; 0.
These sequences will be called Type 2 sequences.

mBSCe Cx,p. mBSC depends on the encoder used for encoding. It does pehden the decoder. mBSC is a modification
of a BSC in that it “kills” some codewords and acts as BSC oeisthSo, it is called modified BSC, or mBSC. mBSC has been
defined rigorously. mBSC will be the channel for which we witbve that reliable communication is not possible at ang rat
R > 0 (recall,D > 0).

Note 6.2 One can also define a modified random walk channel, mMRWC, gmadty to mBSC. mRWC “kills” every sequence
which is used as a codeword with probabilityn2~", and acts as RWC on all other codewords others.



Recall that the probability that a bit sequenges used as codeword is} (Equation 6).
Letz; be a Type 2 sequence. Ther, < n27". Thusy? < n2 (=) Thus,

pij < n2- "=y, (9)

Let rate R be reliably achievable over mBSC. By the standard inforomatheoretic argument of going from average block
error criterion to maximal block error criterion by throwithrowing away half the messages, it follows that

nR
Je,, — 0 such thatPr(error| m; is transmittegl < ¢,, for atleast2T of the messages; (20)
Denote this subset o$1™ byMaood
Py, 1 < j <27, ifixed, is a probability distribution oA™ By (9) and (10), it follows that forn; € Maood this probability

distribution is such that atleagt—e,, ) of the probability is made up of individual probabilitiesa of which is< n2-7(1—F) =
2-"(1=R) PpreciselydC ¢ x™ such thapy, < n2~"0-R forall k € K, and}", ., p7 > 1 — €,

Roughly, this says that a potentially “good” stochasticaer encodes a message stochastically to atjegst —7) = 2n(1=F)
sequences.

To recap, we have defined a channel mBSC. A necessary canftitioeliable communication to be possible over mBSC at
rate R > 0 is that atleast half of the”® messages;, piy, 1 < j < 27, is a probability distribution o™ such that atleast

(1 — €,) of the probability is made up of masses, each of which is2—"(1=F) = g—n(1-FR),

Note that the above property is saying that the encoder dlamtias being “close” to a HE encoder in the rigorous senseeatefi
above for any hope of reliable communication However, thevattondition is not sufficient for reliable communicatioreo
mBSC at rateR. “Inflations” described in the previous section kick in.

The rest of this section makes rigorous, the “inflationsd anoves the fact that reliable communication is not possiver
mBSC at any rate- 0.

Since mBSC is one channel and not a set of channels, and thepeabability criterion is average block, there exists a
deterministic optimal decoder.

A deterministic decoder is a sub-division of channel ougpéce)™ = {0,1}" into disjoint setsS; such that if the channel
outpute S;, the estimate isn;. See figure.

Form; € Mn,gOOd Pr(yi S S1|mz) >1—e€,.

a bit sequence in channel output space

setS; is decoded to message

We want to make a rigorous statement saying that suEhsaould have cardinality exponentially larger tH#i! —7) that is,
27(1=E+X) for some > 0.
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Rough boundary of set where probability Rough boundary of set which has

of codewords corresponding to message probability> 1 — e, after

m,; is concentrated. Each such codeword passing through mBSC or mRWC
has probability< 2="(1=®)_ Thus, given messagen; is transmitted.
cardinality of this set> 271~ Cardinality of this set> 271 ~f+/(P))

This is done using Theorem 7.3. in Section 7. From this lenimall follow that setsT; should have cardinality 21—+

for suffiently largen for all ¢ such thatm,; € Mg]ood for someX > 0. . This would imply that the number of sequences in

the output spac¢0,1}™ > g x 2n(I=F)+A > 9n which is not true. The conclusion is that reliable commatian is not
possible for any rat® > 0 over mBSC.

This proves Theorem 4.1 (2).

The above argument could also have been carried out usingv€C in place of the mBSC. The key technical fact needed in
this case is Theorem 7.5, which shows that mMRWC is also “infjat

7 Inflating channels
7.1 The Bonami-Beckner inequality and other preliminaries

For this section, we will represef, 1} by Z,, the additive group on two elements. For Z; — R, we define the norm

1/p

17l = 52 3 17

€LY

Fore € [0, 1], theBonami-BeckneoperatorT, acts on functions frorZ} to R as follows:

T =Y (%)"_Wt(y) (5 e)m(y) ).

YyeELY

wt(y) is the weight ofy: number ofls in the bit sequencg. Note thatT, is a convolution operator that “smooths” out the
function f. This is made precise by the fundamental Bonami-Beckneuiaidy.

Theorem 7.1 (Bonami-Beckner)For any f : Z2 — R, and anye € [0, 1] we have

ITe(H)ll2 < [ fllige2-

It is instructive to compare the statement of the BonamikBecinequality with the trivial observation thgT'.(f)||2 < || f]|2
(note thatl| f||11e2 < ||f||2 always, and| f||1.z can be significantly smaller thdry || in general).

The Fourier Transform on Z3. We now introduce some basics of Fourier analysiZgn For¢ € Zy, define the function
Xe 1 Zy — R by
Xf(l‘) = (_1)21:1 &z



The functionsy, are called theharactersof 5.

We use this to defing : 7% — R, theFourier transformof f, by:

76 = 5r 3 Flxee).

TELY

The Fourier inversion formula states that

fl@) =Y f©xel).

£eny

For future reference, we note that for any functjoeupported only on vectors of even weight, and for any Z%, we have
(&) = (&), where¢ denotes the vectaf + (1,1,...,1). Similarly for any functionf supported only on vectors of odd

weight, and for any € Zz, we havef(¢) = — f(¢).

We have the basic Plancherel identity for any two functipng: Z; — R:

2 3 Fea) = Y F©ae).

€Ly cezp

As a special case, we get the Parseval equality:

Ifl2 =D 1F©F.

g€y

The action of the Bonami-Beckner operatbr,also has a simple expression in the Fourier basis. It act§-as@er multiplier

as follows: R
Te(f)(@) = > €O f(©)xe(x).

£ezy
Finally, let A € R?"*2" be the transition probability matrix for the random walk éw thypercube, i.e., for,y € Z3,

Agy = 1/nif x andy differ in exactly one coordinate, antl, , = 0 otherwise. It can be checked that for afiy Z3 — R, A
also acts as a Fourier multiplier, as follows

1w = 3 (1-2") fee (o)

cezy

7.2 BSCisinflating
The following simple proposition relates the BSC to the Boir8eckner operator.

Proposition 7.2 Let 1, be a probability distribution on input spac&;. Then, the distribution on the output spag#g after
passing through BSC B, _op ().

Via the above proposition, the following theorem now shaweg the BSC is inflating.

Theorem 7.3 (BSC is inflating) Let D € (0,1). Letu be a probability measure of0, 1}™ with u(z) < 27" for all z €
{0,1}™, and letv = T;_5p(i). Then there exists a constaxiy € (0, 1), depending only o®, such that for anys' C {0,1}"
with > s v(z) > 1, we have
15| > Lon(@rp+(1-2p)
!

10



Proof Letls:{0,1}" — R be the indicator function of. Lete =1 — 2D. We know thay _ _ ¢, 1}, v(z)1s(2) = 3.

1
2

=

1 2 2 i i
5 < > @)l > is(@)] by the Cauchy-Schwarz inequality
xz€{0,1}n z€{0,1}n
=2"|lv]l2-[1s]l2
=2"||Tepll2 - [1s]]2
S|\ *
<2 ||y - (|2_n) by the Bonami-Beckner inequality
_ (tac®)n |S| 1/2
<2mM.27 ik . o asu(zr) < 27" for eachz

Thus,

2 2
2e 1—e€
. 2n(a 1+e2 + 1+e2) .

S| >

|
B~

The theorem followsll

7.3 RWC s inflating
The behaviour of the random-walk channel can be compactigrieed in terms of the matriA via the following proposition.

Proposition 7.4 Letu be a probability measure on output spa€g Then, the distribution on the output spa&gafter passing
through RWC isAP™ .

We now show that the RWC is inflating. The proofis a variatibaroelegant argument due to Motwani, Naor and Panigrahy [7].
Following [7], by working in the Fourier domain, we relatethction ofA to the action of the Bonami-Beckner operator, which
then reduces us to the situation of Theorem 7.3.

Theorem 7.5 Let D € (0, 1]. Letu be a probability measure of0, 1}™ with u(x) < 272" forall € {0,1}", and letr =
APm . Then there exists a constakp € (0,1), depending only o, such that for anys C {0,1}" with 3~ o v(z) > 1,
we have )

S| > _2n(a)\D+(1f)\D)).

51> 32

Proof LetSy be the set of all even weight vectorsSmand letS; be the set of odd weight vectors.$h

Letls: {0,1}" = R bg the indipatO[ function oS.A Similarly dAeﬁngrls0 andlg,. Note that since the support 6§ is only
on even weight vectord,s, (£) = 1s,(€). Similarly, 15, (¢) = —1g, ().

Lete = e~*P. We know that)" 1y v(2)1s(z) > 3. Therefore there is ane {0,1} suchthals, (o 1y v(7)1s,(z) >
1

1
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11 5 wt(€)\ """ .
i < i(é)1g, (&) (1 - 2—) by Plancherel, and singe= APy
cezy n
1/2 1/2
/ . Wt(g) 2Dn
< ae)? > g (9)? 1 —2—>= by Cauchy-Schwarz
gezy geny "
- 1/2
R t n ) 2Dn ~ 12Dn
Sl [ 2ise2 -2 since[1 - 220 """ _ [ g9
£y ,wt(§)<n/2 "
andisi (5)2 = j‘Si (5)2
1/2
<V2-|plla > 15,(¢)2e 2" 20n usinge * > 1 —x
§ELY ,wt(§)<n/2
< V2 plle - 1Te(1s,)]2
< V2. 27n0FN/2 16 | e by the Bonami-Beckner inequality
_1
< V3. gne)2, ('*29_"|) o
2 _e2
Thus,|S| > | S| > 275 +<)/2. 9"(a*5=+557) The theorem follows.

8 Conclusion

We proved that the capacity of the set of channels describ8ddtion 4.1 when there is no common randomness at traesmitt
and receiver. is zero faD > 0. This then proves by counter-example that the universatgschannel separation theorem for
rate-distortion as described in [4] is false.
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