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Abstract. Locally decodable codes (LDCs) have played a central role
in many recent results in theoretical computer science. The role of finite
fields, and in particular, low-degree polynomials over finite fields, in the
construction of these objects is well studied. However the role of group
homomorphisms in the construction of such codes is not as widely stud-
ied. Here we initiate a systematic study of local decoding of codes based
on group homomorphisms. We give an efficient list decoder for the class
of homomorphisms from any abelian group G to a fixed abelian group
H. The running time of this algorithm is bounded by a polynomial in
log |G| and an agreement parameter, where the degree of the polynomial
depends on H. Central to this algorithmic result is a combinatorial re-
sult bounding the number of homomorphisms that have large agreement
with any function from G to H. Our results give a new generalization of
the classical work of Goldreich and Levin, and give new abstractions of
the list decoder of Sudan, Trevisan and Vadhan. As a by-product we also
derive a simple(r) proof of the local testability (beyond the Blum-Luby-
Rubinfeld bounds) of homomorphisms mapping Zn

p to Zp, first shown by
M. Kiwi.

1 Introduction

Given a pair of finite groups G = (G,+) and H = (H, ·), the class
of homomorphisms between G and H forms an “error-correcting code”.
Namely, for any two distinct homomorphisms φ, ψ : G→ H, the fraction
of elements α ∈ G such that φ(α) = ψ(α) is at most 1/2. This observation
has implicitly driven the quest for many “homomorphism testers” [3, 2, 8,
1, 13], which test to see if a function f : G→ H given as an oracle is close
to being a homomorphism. In this paper, we investigate the complemen-
tary “decoding” question: Given oracle access to a function f : G → H
find all homomorphisms φ : G→ H that are close to f .

To define the questions we study more precisely, let agree(f, g) denote
the agreement between f, g : G → H, i.e., the quantity Prx←UG[f(x) =
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g(x)]. Let Hom(G,H) = {φ : G→ H | φ(x+y) = φ(x)φ(y)} denote the set
of homomorphisms from G to H. We consider the combinatorial question:
Given G, H and ε > 0, what is the largest “list” of functions that can
have ε-agreement with some fixed function, i.e, what is maxf :G→H |{φ :
G→ H|φ ∈ Hom(G,H), agree(f, g) ≥ ε}|?

We also consider the algorithmic question: Given G, H, ε > 0 and
oracle access to a function f : G → H, (implicitly) compute a list of all
homomorphisms φ : G → H that have agreement ε with f . (A formal
definition of implicit decoding will be given later. For now, we may think
of this as trying to compute the value of φ on a set of generators of G.)
We refer to this as the “local decoding” problem for homomorphisms.

Local decoding of homomorphisms for the special case of G = Zn
2

and H = Z2 was the central technical problem considered in the seminal
work of Goldreich and Levin [4]. They gave combinatorial bounds showing
that for ε = 1

2 + δ, the list size is bounded by poly(1/δ), and gave a local
decoding algorithm with running time poly(n/δ).

The work of Goldreich and Levin was previously abstracted as de-
coding the class of degree one n-variate polynomials over the field of two
elements. This led Goldreich, Rubinfeld, and Sudan [5] to generalize the
decoding algorithm to the case of degree one polynomials over any finite
field. (In particular, this implies a decoding algorithm for homomorphisms
from G = Zn

p to H = Zp, that decodes from 1
p + ε agreement and runs in

time poly(n/ε), where Zp denotes the additive group of integers modulo a
prime p.) Later Sudan, Trevisan, and Vadhan [11], generalized the earlier
results to the case of higher degree polynomials over finite fields . This
generalization, in turn led to some general reductions between worst-case
complexity and average-case complexity.

Our work is motivated by the group-theoretic view of Goldreich and
Levin, as an algorithm to decode group homomorphisms. While the group-
theoretic view has been applied commonly to the complementary problem
of “homomorphism testing”, the decoding itself does not seem to have
been examined formally before.

To motivate we start with a simple example.

Consider the case where G = Zn
p and H = Zm

p . How many homo-
morphisms can have agreement 1

p + δ with a fixed function f : G → H?
Most prior work in this setting used (versions) of the Johnson bound
in coding theory. Unfortunately such a bound only works for agreement



greater than 1√
p in this setting.1 An ad-hoc counting argument gives a

better bound on the list size of δ−O(m). While better bounds ought to
be possible, none are known, illustrating the need for further techniques.
Our work exposes several such questions. It also sheds new light on some
of the earlier algorithms.

Our results. Our results are restricted to the case of abelian groups G
and H. Let Λ = ΛG,H denote the maximum possible agreement between
two homomorphisms from G to H. Our main algorithmic result is an
efficient algorithm, with running time poly(log |G|, 1

ε ) to decode all ho-
momorphisms with agreement Λ+ ε with a function f : G→ H given as
an oracle, for any fixed group H. Note that in such a case the polynomial
depends on H. See Theorem 2 for full details.

Crucial to our algorithmic result is a corresponding combinatorial one
showing that there are at most poly(1

ε ) homomorphisms with agreement
ΛG,H + ε with any function f : G → H, for any fixed group H. Once
again, the polynomial in the bound depends on H. See Theorem 1 for
details.

Finally, we also include a new proof of a result of Kiwi [8] on testing
homomorphisms from Zn

p to Zp. This is not related to our main quests,
but we include it since some of the techniques we use to decode homo-
morphisms yield a simple proof of this result. See Theorem 3.

Organization of this paper. In Section 2 we present basic terminology and
our main results. In Section 3 we exploit the decomposition theorem for
abelian groups to reduce the proofs of the main theorems to the special
case of p-groups. In Section 4 we tackle the combinatorial problem of the
list-size for p-groups. In Section 5 we consider the corresponding algo-
rithmic problem. Section 6 analyzes a homomorphism tester for functions
from Zn

p to Zp using some techniques of the previous sections.

2 Definitions and Main Results

Let G,H be abelian groups, and let Hom(G,H) = {h : G → H |
h is a homomorphism}. Note that Hom(G,H) forms a code. Indeed, if
f, g ∈ Hom(G,H), then G′ = {x | f(x) = g(x)} is a subgroup of G. Since
the largest subgroup of G has size at most |G|2 , it follows that f and g

1 For those familiar with the application of the Johnson bound in the setting of m = 1,
we point out that it relied crucially on the fact that the agreement of any pair of
homomorphisms was 1

|H| which is no longer true when m 6= 1.



differ in at least 1
2 of the domain.

For two functions f, g : G→ H, define

agree(f, g) = Prx←UG[f(x) = g(x)],

and
ΛG,H = max

f,g∈Hom(G,H),f 6=g
{agree(f, g)}.

In the case when Hom(G,H) contains only the trivial homomorphism we
define ΛG,H = 0.

The notions of decodability and local list decoders are standard in the
context of error correcting codes. Below we formulate them for the case
of group homomorphisms.

Definition 1. [11] (List decodability) The code Hom(G,H) is (δ, l)-list
decodable if for every function f : G → H, there exist at most l homo-
morphisms h ∈ Hom(G,H) such that agree(f, h) ≥ δ.

Definition 2. [14](Local list decoding) A probabilistic oracle algorithm
A is a (δ, T ) local list decoder for Hom(G,H) if given oracle access to
any function f : G→ H, (notation Af ), the following hold:

1. With probability 3
4 over the random choices of Af , Af outputs a list of

probabilistic oracle machines M1, . . . ,ML s.t., for any homomorphism
h ∈ Hom(G,H) with agree(f, h) ≥ δ,

∃j ∈ [L],∀x, Pr[Mf
j (x) = h(x)] ≥ 3

4
,

where the probability is taken over the randomness of Mf
j (x).

2. A and each Mf
j run in time T .

The model of computation with respect to groups is as follows. An
abelian group G can be represented (see Sect. 3) by its cyclic decomposi-
tion Zp

e1
1
× . . .× Zp

ek
k

, where pi’s are prime. An element of G is given by
a vector α = (α1, α2, . . . , αk), with αi ∈ Zp

ei
i

.
Our main results are the list decodability and local list decodability

of group homomorphism codes.

Theorem 1. Let H be a fixed finite abelian group. Then for all finite
abelian groups G, Hom(G,H) is

(
ΛG,H + ε,poly|H|(

1
ε )

)
list decodable.



Remark: The exact polynomial bound on the list size that our proof gives,
in general, depends on the structure of the groups in an intricate way,
but can nevertheless be uniformly bounded by O

(
1

ε4 log |H| |H|5
)
. Still, the

precise bounds obtained by the proof are not optimal. For example, our
proof gives that Hom(Zn

2 ,Z2
2) is (1

2 + ε, O( 1
ε4

)) list decodable, while it can
be shown (via alternate means) that it is (1

2 + ε, O( 1
ε2

)) list decodable.

Theorem 2. Let H be a fixed finite abelian group. Then for all finite
abelian groups G there is a (ΛG,H +ε,poly|H|(log |G|, 1

ε )) local list decoder
for Hom(G,H).

3 Decomposition and Reduction

We will embark on our quest by first decomposing the groups involved into
slightly smaller but better-behaved groups. In this section we will see how
these decompositions can be done and thereby reduce our main theorems
to statements about list decoding on “p-groups”. These statements will be
proved in the following two sections by some Fourier analytic machinery
and by generalizing the STV-style list decoders.

The structure theorem for finite abelian groups states that every
abelian group G is of the form

∏k
i=1 Zp

ei
i

, where the pi’s are primes and
the ei’s are positive integers. A p-group is a group of order pr, for some
positive integer r. The structure theorem implies that for any prime p,
any finite abelian group G can be written as Gp × G′, where Gp is a p-
group and gcd(p, |G′|) = 1 (take Gp =

∏
pi=p Zp

ei
i

). This decomposition
will play a crucial role in what follows.

Remark 1. ΛG,H behaves well under decomposition of G and H:

1. If gcd(|G|, |H|) = 1 then Hom(G,H) contains only the trivial homo-
morphism and therefore, ΛG,H = 0.

2. Otherwise, let p be the smallest prime s.t. p | gcd(|G|, |H|). Then
ΛG,H = 1

p .
Indeed, it is enough to bound agree(h,0), for any nontrivial homo-
morphism h : G→ H. Let d = |image (h)| and note that d | |H|, since
image(h) is a subgroup of H. Since G/ ker(h) ∼= image(h), it follows
that | ker(h)|/|G| = 1/d ≤ 1/p, and thus ΛG,H ≤ 1

p .
Finally, if G = Zpt ×G′, and H = Zpr ×H ′, then the homomorphism
h : G → H definde by h(a, b) = (apr−1, 0) satisfies agree(h,0) = 1

p .
Hence, ΛG,H = 1

p .
3. The above observations imply ΛG1×G2,H = max{ΛG1,H , ΛG2,H} and
ΛG,H1×H2 = max{ΛG,H1 , ΛG,H2}.



3.1 The decompositions G → H1 × H2 and G1 × G2 → H

The following two propositions (whose proofs are omitted from this ver-
sion) say that list decoding questions for Hom(G,H) can be reduced to
list decoding questions on summands of G or H.

Proposition 1. Let G, H1,H2 be abelian groups. Let ai = ΛG,Hi. Sup-
pose for all ε > 0, Hom(G,Hi) is (ai + ε, `i(ε))-list decodable, with (ai +
ε, Ti(ε)) local list decoders, for i = 1, 2. Then Hom(G,H1×H2) is (max{a1, a2}+
ε, `1(ε)`2(ε)) list decodable and has a (max{a1, a2}+ ε, O ((T1(ε)T2(ε))) lo-
cal list decoder, for all ε > 0.

Proposition 2. Let G1, G2, H be abelian groups. Let ai = ΛGi,H . Sup-
pose for all ε > 0, Hom(Gi,H) is (ai + ε, `i(ε))-list decodable, with a
(ai + ε, Ti(ε)) local list decoder, for i = 1, 2. Then Hom(G1 × G2,H) is
(max{a1, a2}+ε, O( 1

ε2
`1(ε)`2(ε) |H|2)) list decodable, and has a (max{a1, a2}+

ε, O( |H|
ε2

(T1(ε) +T2(ε)) + `1(ε)`2(ε) |H|2) local list decoder, for all ε > 0.

3.2 Proof of the main theorems

Using the propositions proved in the previous section, our theorems will
reduce to the main lemma given below. A proof is sketched in Section 4.

Lemma 1. Let p be a fixed prime and r > 0 be a fixed integer. Then for
any abelian p-group G, Hom(G,Zpr) is

(
1
p + ε, (2p)3r 1

ε2

)
list decodable.

In Section 5, we shall use it to prove the corresponding algorithmic
version.

Lemma 2. Let p be a fixed prime and r > 0 be a fixed integer. Then for
any abelian p-group G, Hom(G,Zpr) is

(
1
p + ε,poly(log |G|, 1

ε )
)

locally
list decodable.

Proof ( of Theorem 1). If |G|, |H| are relatively prime then the result is
obvious. Otherwise, let p(= 1

ΛG,H
) be the smallest prime dividing both |G|

and |H|. Let H =
∏r

i=1 Z
p

βi
i

. Let i ∈ {1, . . . , r}. If gcd(pi, |G|) = 1, then

Hom(G,Z
p

βi
i

) is (ε, 1) list decodable. Otherwise, write G as Gpi × G′,

where Gpi is a pi-group and gcd(pi, |G′|) = 1. Then by Lemma 1 and

Proposition 2, Hom(G,Z
p

βi
i

) is
(

1
pi

+ ε, O( 1
ε4

(2pi)3βip2βi)
)

list decodable,

and hence is also
(

1
p + ε, 1

ε4
p5βi

i

)
list decodable (since if pi||G|, then p ≤

pi). Combining these for all i ∈ {1, . . . , r} by Proposition 1, Hom(G,H)
is

(
1
p + ε,

∏
pi||G|

1
ε4

(2pi)5βi

)
list decodable, as required.



Proof (of Theorem 2). The proof of this theorem is directly analogous to
the previous proof, using Lemma 2 instead of Lemma 1.

4 Combinatorial bounds for p-groups

In this section we will briefly touch upon how our main lemma (Lemma
1) is proved. Recall that we wish to obtain a combinatorial upper bound
on the number of homomorphisms having agreement 1

p +ε with a function
f : G → Zpr , where G is a p-group. The starting point for our proof is
the observation that Zpr is isomorphic to the multiplicative group µpr , a
subgroup of the complex numbers consisting of the prth roots of unity.
This makes the tools of Fourier analysis available to us.

4.1 Sketch of the argument

In this version we only give a sketch of the proof at a very high level.
We are given a function f : G→ Zpr . We begin by giving a formula that
expresses the agreement between our function and any given homomor-
phism in terms of Fourier coefficients of some functions related to f . This
will imply that every homomorphism having high agreement with f “cor-
responds” to some large Fourier coefficient. Now Parseval’s identity tells
us that there can only be few large Fourier coefficients, and the end of the
proof looks near. Unfortunately, it is possible that many distinct homo-
morphisms “correspond” to the same Fourier coefficients. Nevertheless,
we will be able to bound the number of occurences of the above pathology
in terms of the number of homomorphisms in Hom(G,Zpl) that have high
agreement with a related function f ′ : G → Zpl , for some l < r. Thus,
inducting on r, we will arrive at the result.

In the proof we use the following version of the Johnson bound, which
is the base case for the induction, and is also useful in Section 6.

Proposition 3. Let G be a p-group. Then

1. Hom(G,µp) is (1
p + ε, 1

ε2
) list decodable, for any ε > 0.

2. Let f : G→ µp and ρt = agree(f, χt) for χt ∈ Hom(G,µp), then

∑
χt∈Hom(G,µp)

(
ρt −

1
p− 1

(1− ρt)
)2

≤ 1.



5 Algorithmic results for p-groups

In this section we will turn our attention to the algorithmic decoding
question suggested by the combinatorial results of the previous section.
Here we will show Lemma 2 stated in Section 3.

Lemma 2. Let p be a fixed prime and r > 0 be a fixed integer. Then
for any abelian p-group G, Hom(G,Zpr) is

(
1
p + ε,poly(log |G|, 1

ε )
)

lo-
cally list decodable.

We will provide an algorithm which, given access to a function f : G →
Zpr , with G a p-group, outputs an implicit representation of the homo-
morphisms that agree in a 1

p + ε with f . Intuitively, to get the value of
such a homomorphism h ∈ Hom(G,Zpr) at a point x, we restrict our
attention to a random coset of a random subgroup of G that contains x.
Provided that h restricted to this coset has agreement at least 1

p + ε/2
with f , we can deduce the value of h(x). Along the way we prove a lemma
that says that random cosets of a random subgroup of a p-group “sample
well”, which is shown using the second moment method.

5.1 Cosets of subgroups generated by enough elements
sample well

Definition 3. Let G be an abelian group, and let z1, . . . , zk ∈ G. Define
Sz1,...,zk

to be the subgroup of G generated by z1, . . . , zk.

Before giving our decoding algorithms, we state a useful lemma (whose
proof is omitted in this version).

Lemma 3. Let G be an abelian p-group, let A ⊆ G, with µ = |A|
|G| and let

x, z1, . . . zk ∈ G be picked uniformly at random. Then

Prx,z1,...,zk

[ ∣∣∣∣ |A ∩ (x+ Sz1,...,zk
)|

|Sz1,...,zk
|

− µ

∣∣∣∣ > ε

]
≤ 1
ε2pk

.

5.2 The generalized STV algorithm

We begin with a simple but useful observation [3]: homomorphisms have
simple and efficient self-correctors, i.e., for g : G→ H, there is a random-
ized procedure Corrg : G → H running in time poly(log |G|) satisfying
the following property



– Self-corrector: If g : G → H is such that there is some homomor-
phism h : G → H with agree(g, h) > 7/8, then with for all x ∈ G,
Corrg(x) = h(x) with probability > 3/4.

Let Rx,z1,...,zk
be the set x + Sz1−x,...,zk−x, i.e., the “affine subspace”

passing through x, z1, . . . , zk. Let rx,z1,...,zk
: [T ]k → (x+Sz1−x,...,zk−x) be

the parametrization of Rx,z1,...,zk
given by:

rx,z1,...,zk
(ᾱ) = x+

∑
i

αi(zi − x).

For a function g : G→ H, define the restriction g|Rx,z1,...,zk
: [T ]k → H

by g|Rx,z1,...,zk
(ᾱ) = g(rx,z1,...,zk

(ᾱ)). Notice that when we restrict homo-
morphisms to a set of the form Rx,z1,...,zk

, we get an affine homomorphism,
i.e., a function of the form h+ b where h is a homomorphism and b ∈ H.

The oracle Mf
z1,...,zk,a1,...,ak

(x):

For b ∈ H, define hb : [T ]k → H by hb(ᾱ) = b +
P

αi(zi − x).
1: For each b in H, estimate (by random sampling)
lb = agree(f |Rx,z1,...,zk

, hb).

2: If there is exactly one b with lb > 1
p

+ ε
4

then output b, else fail.

The local list decoder:
Repeat O(1) times:
1: Pick z1, . . . , zk ∈ G uniformly and independently at random, where k = c1 logp

1
ε
.

2: For each (a1, . . . , ak) ∈ Hk, output Corr
Mf

z1,...,zk,a1,...,ak .

The analysis of the list-decoding algorithm is similar to that of [11]
and we omit it in this version. It leads to the following lemma.

Lemma 4. If h is a homomorphism s.t. agree(h, f) ≥ 1
p + ε then

Prx[Mf
z1,...,zk,h(z1),...,h(zk)(x) = h(x)] ≥ 7/8,

with probability 1
2 over the choice of z1, . . . , zk ∈ G.

Proof of Lemma 2
Let h be a homomorphism that agrees with f on a 1

p + ε fraction of

points. Consider the oracle Mf
z1,...,zk,h(z1),...,h(zk) (where the ai are “consis-

tent” with h). By Lemma 4, Mf
z1,...,zk,h(z1),...,h(zk)(x) is correct on at least



15
16 > 7

8 of the x ∈ G, and thus CorrMf
z1,...,zk,h(z1),...,h(zk) computes h on

all of G with probability at least 3
4 . It follows that each high-agreement

homomorphism will appear w.h.p in the final list if the execution of the
algorithm is repeated a constant number of times. This completes the
proof of the lemma.

6 Homomorphism tester

In this section we will prove a result of Kiwi using techniques related to
Section 4. The result says that the 3 query linearity tester given below
for homomorphisms in Hom(Zn

p , µp) has very good acceptance probabil-
ity/maximum agreement trade-offs. In particular, its performance is far
better than that of the BLR [3] test for p > 2.

Given f : Zn
p → µp.

We are analyzing the following linearity test:

– Pick x, y ∈ Zn
p , α, β ∈ Z∗p uniformly at random

– Accept if f(αx+ βy) = f(x)αf(y)β, else reject.

Kiwi [8] analyzed this test to get the following theorem.

Theorem 3. Suppose f passes the above test with probability δ, then f
has agreement at least δ with some homomorphism in Hom(Zn

p , µp).

In fact, [8] proved a more general result for testing vector-space ho-
momorphisms over any finite field Fn

q → Fq, not necessarily over prime
fields. His proof uses the MacWilliams identities and properties of the
Krawchouk polynomials. Here we give a simple proof of the above theo-
rem using elementary Fourier analysis. Our proof also generalizes to the
case of vector-space homomorphisms (using Trace functions) though we
don’t include the proof in this version.

Proof. The proof will use Fourier analysis, and modeled along the general
lines of the argument in [2] (i.e., expressing agreement and acceptance
probabilities in terms of Fourier coefficients).

For η ∈ µp, define S(η) = Ec∈Z∗
p
[ηc]. It is easily seen that

S(η) =
{

1, if η = 1
−1
p−1 , otherwise

Recall that every homomorphism from Zn
p → µp is a character χt for

some t ∈ Zn
p , where χt(x) = e2πi(t·x)/p. For f : Zn

p → C, the Fourier



coefficient f̂(t) is defined to be Ex∈Zn
p
f(x)χt(x). We will assume some

familiarity with basic properties of characters and Fourier coefficients in
this version of the paper.

For t ∈ Zn
p let ρt be the agreement of f with χt. We shall prove that

δ ≤ maxt∈Zn
p
ρt. This will prove the result.

We begin by finding an explicit formula for ρt in terms of the Fourier
coefficients.

ρt −
1

p− 1
(1− ρt) = Ex∈Zn

p
[S(f(x)χt(x))] = Ex∈Zn

p ,c∈Z∗
p
[f(x)cχt(x)c]

(1)

= Ec∈Z∗
p
Ex∈Zn

p
[f(x)cχct(x)] = Ec∈F ∗

p
[f̂ c(ct)] (2)

We now find a similar formula for δ and perform some manipulations
that allow us to relate it to our formula for ρt.

δ − 1
p− 1

(1− δ) = Ex,y∈Zn
p
Eα,β∈Z∗

p

[
S

(
f(x)αf(y)βf(αx+ βy)−1

)]
(3)

= Ex,y∈Zn
p
Eα,β∈Z∗

p

[
Ec∈Z∗

p
[f(x)cαf(y)cβf(αx+ βy)−c]

]
(4)

= pnEx,y,zEα′,β′,γ′

[
f(x)α′

f(y)β′
f(z)γ′

1(α′x+ β′y + γ′z = 0)
]

(5)

where we substituted α′ = cα, β′ = cβ, γ′ = −c, z = αx + βy (and one
verifies that z = αx + βy is equivalent to α′x + β′y + γ′z = 0). Note
that since γ′ ∈ Z∗p, the probability that a random z ∈ Zn

p is such that
α′x+ β′y + γ′z = 0 is 1

pn .

(5) = pnEx,y,zEα′,β′,γ′

[
f(x)α′

f(y)β′
f(z)γ′

Et∈Zn
p
[χt(α′x+ β′y + γ′z)]

]
= pnEt

[
Eα′,β′,γ′Ex

[
f(x)α′

χα′t(x)
]

Ey

[
f(y)β′

χβ′t(y)
]

Ez

[
f(z)γ′

χγ′t(z)
]]

=
∑

t

[
Eα′,β′,γ′

[
ˆfα′(α′t) ˆfβ′(β′t)f̂γ′(γ′t)

]]
=

∑
t

(
Eα′∈Z∗

p
[ ˆfα′(α′t)]

)3

=
∑

t

(
ρt −

1
p− 1

(1− ρt)
)3

(By (2))

Simplifying the last expression and using Proposition 3 we get δ ≤
maxt ρt.



Acknowledgments

Thanks to Amir Shpilka for many valuable discussions.

References

1. Michael Ben-Or, Don Coppersmith, Michael Luby, Ronitt Rubinfeld, Non-Abelian
Homomorphism Testing, and Distributions Close to their Self-Convolutions. RAN-
DOM 2004.

2. Mihir Bellare and Don Coppersmith and Johan H̊astad and Marcos Kiwi and
Madhu Sudan. Linearity testing over characteristic two. IEEE Transactions on
Information Theory, 42(6), 1781-1795, 1996.

3. Manuel Blum and Michael Luby and Ronitt Rubinfeld. Self-Testing/Correcting
with Applications to Numerical Problems. Journal of Computer and System Sci-
ences, 47(3), 549-595, 1993.

4. Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way functions.
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, 25–32,
1989

5. Oded Goldreich and Ronitt Rubinfeld and Madhu Sudan. Learning polynomi-
als with queries: The highly noisy case. SIAM Journal on Discrete Mathematics,
13(4):535-570, 2000.

6. Venkatesan Guruswami and Madhu Sudan. List decoding algorithms for certain
concatenated codes. Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing, 181-190, 2000.

7. Marcos Kiwi , Frédéric Magniez , Miklos Santha. Exact and approximate test-
ing/correcting of algebraic functions: A survey. Theoretical Aspects of Computer
Science, Teheran, Iran, Springer-Verlag, LNCS 2292, 30-83, 2002.

8. Marcos Kiwi. Testing and weight distributions of dual codes. Theoretical Computer
Science, 299(1–3):81-106, 2003.

9. Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier
spectrum. SIAM Journal on Computing 22(6):1331-1348, 1993.

10. Dana Moshkovitz, Ran Raz. Sub-Constant Error Low Degree Test of Almost Linear
Size, STOC 2006.

11. Madhu Sudan and Luca Trevisan and Salil Vadhan. Pseudorandom generators
without the XOR lemma, Proceedings of the 31st Annual ACM Symposium on
Theory of Computing 537-546, 1999.

12. Madhu Sudan. Algorithmic Introduction to Coding Theory. Lecture Notes, 2001.
13. Amir Shpilka and Avi Wigderson. Derandomizing Homomorphism Testing in Gen-

eral Groups. Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 427-435, 2004.

14. L. Trevisan. Some Applications of Coding Theory in Computational Complexity.
Survey Paper. Quaderni di Matematica 13:347-424, 2004


