
Lecture 3: Randomness Efficient Error Reduction Using Expanders,
Expander Construction Using Zig-Zag Product

Topics in Pseudorandomness and Complexity Theory (Spring 2018)
Rutgers University
Swastik Kopparty

Scribes: Amnon Attali, Jiyu Zhang

1 Error Reduction Algorithm

Remark. Our goal: given an algorithm A(x,r) to compute some function f : {0, 1}n → {0, 1}
which satisfies

∀x ∈ {0, 1}n Pr
r∈{0,1}m

[A(x, r) 6= f(x)] ≤ 0.1

we wish to produce a new algorithm A*(x,r’) such that

∀x ∈ {0, 1}n Pr
r∈{0,1}m′

[A∗(x, r′) 6= f(x)] ≤ 2−l

where l is some controllable parameter that affects A*’s increased runtime. Note also m′ ≥ m
but ”not by much”, in the sense that this method uses less random bits than say taking the naive
majority of multiple runs of the algorithm with fresh randomness.
Our question now becomes: how small can r’ be?

In this lecture we describe one such error reduction process using expander graphs.

Fix x.
Let B = {r | A(x, r) 6= f(x)} ⊆ {0, 1}m =⇒ |B|

sm ≤ 0.1

Let N = 2m, β = |B|
sm

Our strategy will now be to use r’ to pick a set of t elements r1, ..., rt ∈ {0, 1}m and then we will
output Maj(A(x, ri)) and so what we want is for the probability that more than half will be in B
to be small.
Proposed solution:
Use m’ = m + tlog(d), r’ uniform random on {0, 1}m.
We construct a d-regular expander on {0, 1}m and use the rest of the bits to perform a random
walk of length t.
In this new setting what we want is that the probability of a random walk staying in B to be
low (note that this is not true for all graphs, t << 0.1 × 2m so for example on a grid if you start
somewhere in the center of a ”concentrated” B you will never leave in t steps).

We will start by considering the probability that all ri are in B.
Let M be the normalized adjacency matrix of our d-regular λ-expander graph G.
Let PB be the matrix which projects onto B, that is (PB)i,i = 1 if i ∈ B and 0 elsewhere. PB

1

projection =⇒ P 2
B = PB

Let f0 ∈ RN be the uniform distribution
The quantity we wish to analyze involves the probability mass concentrated on B after t steps:

Pr[∀i, ri ∈ B] = 〈~1, (PBM)tPBf0〉 = 〈~1, (PBMPB)tf0〉

where PBM represents the probability mass on B remaining after one step in the random walk, and
the R.H.S comes from using that PB is a projection (the reason we ”insert” these extra projections
is because it makes analysis easier - we have a better understanding of what distributions look like
after we project onto B than simply after taking a random step in our walk).

Lemma 1.
∀v ∈ RN ||PBMPBv||2 ≤ (β + λ)||v||2

Proof. Let v1, ..., vN be the eigenvectors of M, forming an orthonormal basis
Let u = PBv, u = u1 + u∗ = α1v1 + u∗, where u1||v1 and u∗ ⊥ v1

PBMPBv = PBMu = PBM(u1 + u∗) = PBλ1u1 + PBMu∗ = PBu1 + PBMu∗

Now since v1 is the uniform vector ||PBu1||2 = ||PBα1v1||2 ≤ α1

√
|B|
N = α1

√
β

And α1 = 〈u, v1〉 = 〈PBv, v1〉 = 〈v, PBv1〉 ≤ ||PBv1||2||v||2 =
√
β||v||2 using that PB is symmetric

and then Cauchy-Schwarz So ||α1PBv1||2 ≤ β||v||2

Looking at our second term: ||PBMu∗||2 ≤ ||Mu∗||2 ≤ λ||u∗||2 ≤ λ||u||2 ≤ λ||v||2 since PB as
a projection only shrinks size and the eigenvectors of M in the direction of u* all have eigenvalues
at most λ in absolute value

Finally we have ||PBu1||2 + ||PBMu∗||2 ≤ (β + λ)||v||2

Now we have ||(PBMPB)tf0||2 ≤ (β + λ)t||f0||2 = (β + λ)t 1√
N

=⇒ 〈~1, (PBMPB)tf0〉 ≤ ||~1||2(β +

λ)t 1√
N

=
√
N(β + λ)t 1√

N
= (β + λ)t

So the Pr[∀i, ri ∈ B] ≤ (β + λ)t

We now want the probability that more than half are in B, we do this with a simple union bound:

Fix S ⊆ [t] of size t
2

Claim 2.
Pr[{ri| i ∈ S} ⊆ B] ≤ (β + λ)t/2

Proof. First note that PBM
iPB scales a vector by (β + λi) ≤ (β + λ), as above.

So
Pr[{ri1 , ri2 , ..., rit/2} ⊆ B] = 〈~1, (PBM

it/2−it/2−1PB)(...)(PBM
i2−i1PB)f0〉 ≤

〈~1, (PBMPB)tf0〉 ≤ (β + λ)t/2

2

Given the claim we now apply a union bound:

Pr[∃ such a bad S] ≤ (#S′s)(β + λ)t/2 =

(
t

t/2

)
(β + λ)t/2 ≤ 2t(β + λ)t/2

So for (β + λ) ≤ 0.25 this is 2Ω(−t), and we are done.

Conclusion:

Given a strongly explicit 0.1-expander (note we can reduce 0.9 to 0.1, say by squaring the graph),
we can take any randomized algorithm that uses m bits of randomness, runs in time T, and
has 0.1 probability of error (this too can be reduced from some higher value without using more
randomness, say by repeating and taking majority), and convert it to another algorithm which uses
m+ O(t log(d)) bits and runs in time tT + poly(m) time and has probability 2Ω(−t) of error.

This process for decreasing error without using too much randomness is optimal in the sense that
we don’t use any properties of the algorithm A (of the set B), and rather treat it as a black box
and try to generate a t tuple of strings which contains fewer than half in the set B.

Our next goal is to construct such expander graphs as can be used for this purpose.

2 Construction of Expander

In this class we study the construction of expander based on the zig − zag product suggested by
Reingold, Vadhan and Wigderson[RVW02], The general idea is to start with some graph and we keep
improving its expansion until it is ideal, while keeping the degree of the graph fixed(roughly). Notice
that one way we have already studied to improve expansion is by squaring: for an (n, d, λ)-graph G,
the k-th power of G, denoted by Gk, is an (n, dk, λk)-graph. But in this way the degree increases
exponentially. Thus we introduce the zig − zag product, which takes a product of a large graph
with a small graph, the resulting graph inherits the size of the large one and the size of the small
one, and improves its expansion from both of the graphs. We first give the resulting theorem here
to give a sense of the description above. Later we’ll mention it again with detailed notations and
proofs.

Theorem 3. Let G be a N -vertices,D-regular, λG-expander graph, denoted by (N,D, λG)-graph.
Let H be a (D, d, λH)-graph. Then the zig − zag product of G and H, denoted by GH, is an
(ND, d2, 1− (1− λH)2(1− λG))-graph.

The Replacement Product

We’ll first describe a simpler product, the replacement product.
To introduce the products we first define some notations. The Rotation Map RotG : V × [D] →
V × [D] performs as follows:

RotG(u, i) = (v, j)
where v is the i-th neighbor of u and u is the j-th neighbor of v.
Now given a “small” d-regular graph H and a “large” D-regular graph G, assume that for each

3

H G GH

Figure 1: Replacement product of a graph

vertex of G there’s some ordering on its D neighbors. The replacement product denoted by GH is
as follows:

• Every vertex in G is replaced by vertices of H(We call it a cloud). The vertex denoted by
(u, v) where u ∈ V (G) and v ∈ V (H) is the v-th vertex in the u- cloud.

• Let (u, v) ∈ E(G), Then the edge((u, i), (v, j)) ∈ E(GH) if RotG(u, i) = (v, j) (i.e if v
is the i-th neighbor of u and u is the j-th neighbor of v). Also if (i, j) ∈ E(H), then
∀u ∈ V (G), ((u, i), (v, j)) ∈ E(GH)

The Zig-Zag Product

Now we proceed to describe the construction of the zig-zag product. Given

• H a “small” d-regular graph with D vertices.

• G a “large” D-regular graph with N vertices.

The zig-zag product is constructed as follows:

• The vertices V (G)×V (H) of V (GH) are the same as in the case of the replacement product.

• The edges are defined by a “zig-zag walk”: Consider vertex (i, j) ∈ V (G)×V (H), the neighbor
indexed by (k1, k2) ∈ [d]2(where d = N ·D in our case) is found in the following way:

1. Let j
′

be the k1-th neighbor of (i, j) in the cloud.

2. Let (i∗, j∗) = RotG(i, j
′
) .

3. Let j
′′

be the k2-th neighbor of (i∗, j∗) in the cloud(Notice that this cloud is different
from that in step 1).

The vertex (i∗, j
′′
) is the neighbor we want(there is an edge between (i, j) and (i∗, j

′′
).

Alternatively, you can interpret as such that (i∗, j
′′
) can be reached from (i, j) by taking a step in

the first cloud, then a step between the clouds, and a step in the second cloud.(hence zig-zag)

4

Analysis of the Construction

Theorem 4. GH is a d2-regular 1− (1− λH)2(1− λG)-expander graph.

We will be using the following lemma:

Lemma 5. If G is a N-vertex, d-regular, λ-expander, then MG(the normalized adjacency matrix
of G) can be written as (1− λ)J + λE.

where J is the all 1/N matrix, and ‖E‖ ≤ 1.
Note that ‖E‖ is the norm of the matrix E, which is defined as:

‖E‖ = max
x∈Rn,‖x‖=1

‖Ex‖

That is, the maximum eigenvalue of E.

Proof. Since MG is symmetric, we can write it as

MG = λ1v1v
T
1 + · · ·+ λnvnv

T
n

= J + λ2v2v
T
2 + · · ·+ λnvnv

T
n

= (1− λ)J + λJ + λ2v2v
T
2 + · · ·+ λnvnv

T
n

= (1− λ)J + λE

In the above, λ1 = 1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of MG and v1= 1√
n
,v2, . . . ,vn are the

corresponding system of orthogonal eigenvectors.

Now let M be the normalized adjacency matrix of GH of size ND ×ND, MH be the normalized
adjacency matrix of H of size D ×D. M can be written as:

M = ABA
where A = I ⊗MH and B is the adjacency matrix for a permutation.
Therefore we have

M = ABA

= (I ⊗MH)B(I ⊗MH)

Utilizing Lemma 4 we have MH = (1− λH)J + λHE. We get:

M = (I ⊗ ((1− λH)J + λHE))B(I ⊗ ((1− λH)J + λHE))

= (1− λH)2(I ⊗ J)B(I ⊗ J) + (1− λH)λH(I ⊗ J)B(I ⊗ E)

+ (1− λH)λH(I ⊗ E)B(I ⊗ J) + λ2
H(I ⊗ E)B(I ⊗ E)

= (1− λH)2(I ⊗ J)B(I ⊗ J) + (1− (1− λH)2)E
′

where E
′ ≤ 1, and I ⊗ J is the tensor product of I and J .

5

