
Lecture 6: Deterministic Primality Testing

Topics in Pseudorandomness and Complexity (Spring 2018)
Rutgers University
Swastik Kopparty

Scribe: Justin Semonsen, Nikolas Melissaris

1 Introduction

The AKS (Agrawal-Kayal-Saxena) algorithm, found in 2002, is the first ever deterministic polynomial-
time primality testing algorithm. The algorithm is based on a generalization of Fermat’s Little
Theorem to polynomial rings over finite fields: if a number a is co-prime to n, n > 1, then:

n is prime iff (x+ a)n ≡ xn + a (mod n) (1)

2 The AKS Algorithm

A = log10 n
R = log6 n

1. If n is a perfect power, output composite.

2. If n has a factor smaller than R, output composite.

3. For each a ∈ [A] :
For each r ∈ [R] :

Check that (x+ a)n ≡ xn + a (mod (n, xr − 1))

We can check efficiently this identity by repeated squaring.

3 Proof (AKS)

Claim 1. ∃r0 < R s.t. gcd(r, n) = 1 and c = ord(n) (mod r) > log2 n

The last inequality means that all n, n2, · · · , nc are distinct (mod r).

Proof. We look at M = n(n− 1)(n2 − 1) · · · (nlog2 n − 1).

This means that M ≤ nlog
4 n = 2log

5 n which in turn implies that there is some prime r < R that
doesn’t divide M. That is the r we are looking for because ∀a < log2 n, r - na − 1⇒
ord(n) (mod r) ≥ log2 n

1

Suppose n is composite and not a power and not divisible by any prime less that R. We want to
show that:

∃a ≤ A s.t. (x+ a)n 6≡ xn + a (mod (n, xr0 − 1)) (2)

Suppose not. This means that:

(x+ a)n ≡ xn + a (mod (n, xr0 − 1)) ∀a ∈ [A] (3)

Take p s.t. p | n, r0 - p− 1. Since n 6≡ 1 (mod r0), some prime factor of n has p 6≡ 1 (mod r0).

Now we work over Fp[x]. We know that:

(x+ a)n ≡ xn + a (mod xr0 − 1) (4)

Let H = {a ∈ Fp : ar0 = 1}.

From (4) we get that ∀α ∈ H (α+ a)n = αn + a ∀a ∈ A.

Definition 2. We say that Q(x) and m commute if ∀α ∈ H Q(αm) = (Q(α))m

From (4) we get that ∀a ∈ [A], (x+ a) and n commute: ∀α ∈ H (α+ a)n = αn + a.

Claim 3. ∀Q(x) ∈ Fp, Q(x) and p commute: ∀α ∈ H, Q(α)p = Q(αp).

Proof. Q(α)p =
(∑

aiα
i
)p

=
∑
apiα

ip =
∑
aiα

ip = Q(αp)

The proof is based on the fact that in Fp, (a+ b)p = ap + bp. For a ∈ Fp, ap = a.

Lemma 4. If Q1, Q2 both commute with m then so does Q1Q2.

Proof. Given: ∀α ∈ H, Q1(α
m) = Q1(α)m, Q2(α

m) = Q2(α)m then
∀α ∈ H, Q1Q2(α

m) = Q1(α
m)Q2(α

m) = Q1(α)mQ2(α)m = (Q1Q2(α))m

Lemma 5. If Q commutes with m1, m2 then Q commutes with m1m2.

Proof. Given: ∀α ∈ H, and

(i). Q(αm1) = Q(α)m1

(ii). Q(αm2) = Q(α)m2

Q(αm1m2) = Q
(

((α)m1)
m2
) αm1∈H

(ii)
= Q (αm1)m2

(i)
= Q (α)m1m2

We define S = {x + a : a ∈ [A] ⊆ Fp[x]} and T = {n, p} ⊆ Z. Every element in S commutes
with every element in T . Moreover we have S the multiplicative closure of S, which is the set of
products of (x+ a)’s, and T the multiplicative closure of T with is the set {nipj : i, j > 0}.

Then, by the two lemmas 3 and 4, every element of S commutes with every element of T .

Let G = T (mod r)0. G is a group and a subgroup of
(
Z∗r0 ,×

)
. Let t = |G|

2

4 Continuation of proof

Note that H is a cyclic group, and thus ∃α0 ∈ H such that H = {1, α0, α
2
0, . . . , α

r0−1
0 }. This is a

known result from algebra.

Lemma 6. ∀Q1 6= Q2 ∈ S with deg(Q1), deg(Q2) < t, then Q1(α0) 6= Q2(α0).

Proof. Assume that Q1(α0) = Q2(α0). Then Q1(α
m
0) = Q1(α0)

m 6= Q2(α0)
m = Q2(α

m
0) for any

m ∈ T .

However, since T is a multiplicative group and αr00 = 1, any α ∈ G can be written as a αm0 for some
m ∈ T . This means that Q1(α) = Q2(α) for every α ∈ G.

This means that Q1 agrees with Q2 on t elements, so since deg(Q1),deg(Q2) < t, this means that
Q1 = Q2.

This means that we can let B = {Q(α0) : deg(Q) ≤ t − 1, Q ∈ S}. Note that B includes

Q(x) =
∏
i = 1t−1(x− ai) for any distinct choices of ai, so |B| ≥

(
A
t−1
)
≥
(

A
t−1

)t−1
≥ 2t.

Now we upper bound this set, and get a contradiction out of that.

Note that if n 6= pl then nipj = ni
′
pj
′

only when (i, j) = (i′, j′). However, since αn
ipj

0 ∈ G for any
i, there are only t distinct exponents mod r0. Therefore |{nipj mod r0 : i, j ≤

√
t+ 1}| ≤ t.

This means ∃m1,m2 of the form nipj mod r0 : i, j ≤
√
t + 1 such that m1

∼= m2 mod r0, but
m1 6= m2.

Therefore αm1
0 = αm2

0 , so Q(α0)
m1 = Q(αm1

0) = Q(αm2
0) = Q(α0)

m2 for any Q ∈ S. Because
we chose r0 6= p − 1, this means that α0 6∈ Fp, so Q(α0) 6= 0. This means that for every Q ∈
S,Q(α0)

m = 1, where m = m1 −m2.

This means that for any b ∈ B, we have that bm = 1. Since this polynomial has no more than m
roots, |B| ≤ m ≤ n2(

√
t+1) ≤ 23

√
t log(n).

However, since t is the order of n mod r0, this means that t >> log2(n). This contradiction proves
the correctness of the algorithm.

5 Discrete Square Root

The problem consists of a given p prime, and a number a ∈ Fp. We would like to find b ∈ Fp (if
one exists) such that b2 = a. We assume that p > 2.

Note that we can tell if a is a square by checking that a
p−1
2 = 1.

Claim 7. a is a square if and only if a
p−1
2 = 1.

Proof. Since ap−1 = 1, we have that
(
a

p−1
2 − 1

)(
a

p−1
2 + 1

)
= 0. This means that a

p−1
2 is either 1

or −1.

If a is a square, then let b be such that a = b2. Now a
p−1
2 = bp−1 = 1.

3

Consider the homomorphism F∗p → {squares} given by x→ x2. Since both −1 and 1 map to 1, the

size of the kernel is 2. Therefore there are p−1
2 squares, which are all the roots of x

p−1
2 − 1.

Berlekamp’s Algorithm is a probabilistic algorithm for finding the discrete square root. The algo-
rithm proceeds as follows:

1. Choose c, d ∈ Fp uniformly at random.

2. Compute GCD(x
p−1
2 − 1, (cx+ d)2 − a).

3. If this result is degree 1, then the discrete square root is cx + d for x solving the linear
equation. Otherwise, the algorithm fails.

Since x
p−1
2 −1 is sparse, it is fairly simple to use repeated exponentiation to find x

p−1
2 −1 mod (cx+

d)2 − a without keeping track of every coefficient. In this way this algorithm runs efficiently.

Claim 8. This algorithm succeeds (and finds a proper square root) with probability approximately
1/2.

Proof. If a = b2, then (cx+d)2−a = [(cx+d) + b][(cx+d)− b]. This means that if the GCD found
is linear, the value for cx+ d that is found is a square root of a.

Since cx+ d is a random affine transformation, it permutes the two roots of x2 − a independently

at random. The GCD is linear when exactly one of these roots is a root of x
p−1
2 − 1. Since there

are exactly p−1
2 roots of x

p−1
2 − 1, the probability the GCD is linear is 1

2 −
1

2p2
.

This algorithm relies on the fact that p is prime. In fact, if we could do this for any general n, we
could factor n!

Let’s assume that A(x, n) is an (efficient) algorithm for finding the square root of x mod n. This
lets us factor n as follows:

1. Pick y ∈ Zn uniformly at random.

2. Let y′ = A(y2, n). If y = y′ algorithm fails.

3. Compute GCD(y − y′, n). If this is non-trivial, we have factored n.

This algorithm will not work properly if y = y′ or when n is a prime power. We can check if n is a
prime power easily (as well as if y|n), and factor n that way if so.

Claim 9. This algorithm succeeds (when n is not a prime power) with probability at least 1/2.

Proof. Since y2 = (y′)2 mod n, this means n|(y − y′)(y + y′). Since both y and y′ are less than n,
the only way that y − y′ has trivial GCD with n is when y′ = y or y′ = −y.

However, if n is not a prime power, then n =
∏
i = 1kpeii for some k primes pi (and exponents ei).

By the Chinese Remainder theorem, y2 is uniquely defined by its remainder modulo peii for each i.

4

Since y2 is a square, each of these moduli is a square, and so each have two square roots modulo
that prime power. Each possible set of choices of these square roots corresponds to a unique square
root of y2, meaning y had 2k square roots modulo n.

Since A has no knowledge of which of these square roots we chose, it has a 2
2k
≤ 1

2 probability of

returning y or −y. This means the algorithm fails with probability less than 1
2 .

5

