Lecture 6: Deterministic Primality Testing

Topics in Pseudorandomness and Complexity (Spring 2018) Rutgers University Swastik Kopparty

Scribe: Justin Semonsen, Nikolas Melissaris

1 Introduction

The AKS (Agrawal-Kayal-Saxena) algorithm, found in 2002, is the first ever deterministic polynomialtime primality testing algorithm. The algorithm is based on a generalization of Fermat's Little Theorem to polynomial rings over finite fields: if a number a is co-prime to n, n > 1, then:

n is prime iff
$$(x+a)^n \equiv x^n + a \pmod{n}$$
 (1)

2 The AKS Algorithm

- $\begin{array}{l} A = \log^{10} n \\ R = \log^6 n \end{array}$
 - 1. If *n* is a perfect power, output composite.
 - 2. If n has a factor smaller than R, output composite.
 - 3. For each $a \in [A]$: For each $r \in [R]$: Check that $(x + a)^n \equiv x^n + a \pmod{(n, x^r - 1)}$

We can check efficiently this identity by repeated squaring.

3 Proof (AKS)

Claim 1. $\exists r_0 < R \text{ s.t. } \gcd(r, n) = 1 \text{ and } c = \operatorname{ord}(n) \pmod{r} > \log^2 n$

The last inequality means that all n, n^2, \dots, n^c are distinct (mod r).

Proof. We look at $M = n(n-1)(n^2 - 1) \cdots (n^{\log^2 n} - 1)$. This means that $M \le n^{\log^4 n} = 2^{\log^5 n}$ which in turn implies that there is some prime r < R that doesn't divide M. That is the r we are looking for because $\forall a < \log^2 n, r \nmid n^a - 1 \Rightarrow$ ord $(n) \pmod{r} \ge \log^2 n$ Suppose n is composite and not a power and not divisible by any prime less that R. We want to show that:

$$\exists a \le A \text{ s.t. } (x+a)^n \not\equiv x^n + a \pmod{(n, x^{r_0} - 1)}$$

$$\tag{2}$$

Suppose not. This means that:

$$(x+a)^n \equiv x^n + a \pmod{(n, x^{r_0} - 1)} \quad \forall a \in [A]$$
(3)

Take p s.t. $p \mid n, r_0 \nmid p-1$. Since $n \not\equiv 1 \pmod{r_0}$, some prime factor of n has $p \not\equiv 1 \pmod{r_0}$. Now we work over $\mathbb{F}_p[x]$. We know that:

$$(x+a)^n \equiv x^n + a \pmod{x^{r_0} - 1} \tag{4}$$

Let $H = \{a \in \overline{\mathbb{F}}_p : a^{r_0} = 1\}.$

From (4) we get that $\forall \alpha \in H \quad (\alpha + a)^n = \alpha^n + a \quad \forall a \in A.$

Definition 2. We say that Q(x) and m commute if $\forall \alpha \in H$ $Q(\alpha^m) = (Q(\alpha))^m$

From (4) we get that $\forall a \in [A]$, (x + a) and n commute: $\forall \alpha \in H \quad (\alpha + a)^n = \alpha^n + a$.

Claim 3. $\forall Q(x) \in \mathbb{F}_p$, Q(x) and p commute: $\forall \alpha \in H$, $Q(\alpha)^p = Q(\alpha^p)$.

Proof.
$$Q(\alpha)^p = \left(\sum a_i \alpha^i\right)^p = \sum a_i^p \alpha^{ip} = \sum a_i \alpha^{ip} = Q(\alpha^p)$$

The proof is based on the fact that in \mathbb{F}_p , $(a+b)^p = a^p + b^p$. For $a \in \mathbb{F}_p$, $a^p = a$.

Lemma 4. If Q_1 , Q_2 both commute with m then so does Q_1Q_2 .

Proof. Given:
$$\forall \alpha \in H, Q_1(\alpha^m) = Q_1(\alpha)^m, Q_2(\alpha^m) = Q_2(\alpha)^m$$
 then
 $\forall \alpha \in H, Q_1Q_2(\alpha^m) = Q_1(\alpha^m)Q_2(\alpha^m) = Q_1(\alpha)^mQ_2(\alpha)^m = (Q_1Q_2(\alpha))^m$

Lemma 5. If Q commutes with m_1 , m_2 then Q commutes with m_1m_2 .

Proof. Given: $\forall \alpha \in H$, and

- (i). $Q(\alpha^{m_1}) = Q(\alpha)^{m_1}$
- (ii). $Q(\alpha^{m_2}) = Q(\alpha)^{m_2}$

$$Q(\alpha^{m_1m_2}) = Q\left(\left((\alpha)^{m_1}\right)^{m_2}\right) \stackrel{\alpha^{m_1} \in H}{\stackrel{(ii)}{=}} Q\left(\alpha^{m_1}\right)^{m_2} \stackrel{(i)}{=} Q\left(\alpha\right)^{m_1m_2} \square$$

We define $S = \{x + a : a \in [A] \subseteq \mathbb{F}_p[x]\}$ and $T = \{n, p\} \subseteq \mathbb{Z}$. Every element in S commutes with every element in T. Moreover we have \overline{S} the multiplicative closure of S, which is the set of products of (x + a)'s, and \overline{T} the multiplicative closure of T with is the set $\{n^i p^j : i, j > 0\}$.

Then, by the two lemmas 3 and 4, every element of \overline{S} commutes with every element of \overline{T} . Let $G = \overline{T} \pmod{r_0}$. G is a group and a subgroup of $(\mathbb{Z}_{r_0}^*, \times)$. Let t = |G|

4 Continuation of proof

Note that *H* is a cyclic group, and thus $\exists \alpha_0 \in H$ such that $H = \{1, \alpha_0, \alpha_0^2, \dots, \alpha_0^{r_0-1}\}$. This is a known result from algebra.

Lemma 6. $\forall Q_1 \neq Q_2 \in \overline{S}$ with $\deg(Q_1), \deg(Q_2) < t$, then $Q_1(\alpha_0) \neq Q_2(\alpha_0)$.

Proof. Assume that $Q_1(\alpha_0) = Q_2(\alpha_0)$. Then $Q_1(\alpha_0^m) = Q_1(\alpha_0)^m \neq Q_2(\alpha_0)^m = Q_2(\alpha_0^m)$ for any $m \in \overline{T}$.

However, since \overline{T} is a multiplicative group and $\alpha_0^{r_0} = 1$, any $\alpha \in G$ can be written as a α_0^m for some $m \in \overline{T}$. This means that $Q_1(\alpha) = Q_2(\alpha)$ for every $\alpha \in G$.

This means that Q_1 agrees with Q_2 on t elements, so since $\deg(Q_1), \deg(Q_2) < t$, this means that $Q_1 = Q_2$.

This means that we can let $B = \{Q(\alpha_0) : \deg(Q) \le t - 1, Q \in S\}$. Note that B includes $Q(x) = \prod_i = 1^{t-1}(x - a_i)$ for any distinct choices of a_i , so $|B| \ge {A \choose t-1} \ge {A \choose t-1}^{t-1} \ge 2^t$.

Now we upper bound this set, and get a contradiction out of that.

Note that if $n \neq p^l$ then $n^i p^j = n^{i'} p^{j'}$ only when (i, j) = (i', j'). However, since $\alpha_0^{n^i p^j} \in G$ for any i, there are only t distinct exponents mod r_0 . Therefore $|\{n^i p^j \mod r_0 : i, j \leq \sqrt{t} + 1\}| \leq t$.

This means $\exists m_1, m_2$ of the form $n^i p^j \mod r_0 : i, j \leq \sqrt{t} + 1$ such that $m_1 \cong m_2 \mod r_0$, but $m_1 \neq m_2$.

Therefore $\alpha_0^{m_1} = \alpha_0^{m_2}$, so $Q(\alpha_0)^{m_1} = Q(\alpha_0^{m_1}) = Q(\alpha_0^{m_2}) = Q(\alpha_0)^{m_2}$ for any $Q \in \overline{S}$. Because we chose $r_0 \neq p-1$, this means that $\alpha_0 \notin F_p$, so $Q(\alpha_0) \neq 0$. This means that for every $Q \in \overline{S}, Q(\alpha_0)^{\overline{m}} = 1$, where $\overline{m} = m_1 - m_2$.

This means that for any $b \in B$, we have that $b^{\overline{m}} = 1$. Since this polynomial has no more than \overline{m} roots, $|B| \leq \overline{m} \leq n^{2(\sqrt{t}+1)} \leq 2^{3\sqrt{t}\log(n)}$.

However, since t is the order of $n \mod r_0$, this means that $t >> \log^2(n)$. This contradiction proves the correctness of the algorithm.

5 Discrete Square Root

The problem consists of a given p prime, and a number $a \in \mathbb{F}_p$. We would like to find $b \in \mathbb{F}_p$ (if one exists) such that $b^2 = a$. We assume that p > 2.

Note that we can tell if a is a square by checking that $a^{\frac{p-1}{2}} = 1$.

Claim 7. *a* is a square if and only if $a^{\frac{p-1}{2}} = 1$.

Proof. Since $a^{p-1} = 1$, we have that $\left(a^{\frac{p-1}{2}} - 1\right)\left(a^{\frac{p-1}{2}} + 1\right) = 0$. This means that $a^{\frac{p-1}{2}}$ is either 1 or -1.

If a is a square, then let b be such that $a = b^2$. Now $a^{\frac{p-1}{2}} = b^{p-1} = 1$.

Consider the homomorphism $\mathbb{F}_p^* \to \{\text{squares}\}\ \text{given by } x \to x^2$. Since both -1 and 1 map to 1, the size of the kernel is 2. Therefore there are $\frac{p-1}{2}$ squares, which are all the roots of $x^{\frac{p-1}{2}} - 1$. \Box

Berlekamp's Algorithm is a probabilistic algorithm for finding the discrete square root. The algorithm proceeds as follows:

- 1. Choose $c, d \in \mathbb{F}_p$ uniformly at random.
- 2. Compute $GCD(x^{\frac{p-1}{2}} 1, (cx+d)^2 a)$.
- 3. If this result is degree 1, then the discrete square root is cx + d for x solving the linear equation. Otherwise, the algorithm fails.

Since $x^{\frac{p-1}{2}} - 1$ is sparse, it is fairly simple to use repeated exponentiation to find $x^{\frac{p-1}{2}} - 1 \mod (cx + d)^2 - a$ without keeping track of every coefficient. In this way this algorithm runs efficiently.

Claim 8. This algorithm succeeds (and finds a proper square root) with probability approximately 1/2.

Proof. If $a = b^2$, then $(cx + d)^2 - a = [(cx + d) + b][(cx + d) - b]$. This means that if the GCD found is linear, the value for cx + d that is found is a square root of a.

Since cx + d is a random affine transformation, it permutes the two roots of $x^2 - a$ independently at random. The GCD is linear when exactly one of these roots is a root of $x^{\frac{p-1}{2}} - 1$. Since there are exactly $\frac{p-1}{2}$ roots of $x^{\frac{p-1}{2}} - 1$, the probability the GCD is linear is $\frac{1}{2} - \frac{1}{2p^2}$.

This algorithm relies on the fact that p is prime. In fact, if we could do this for any general n, we could factor n!

Let's assume that A(x, n) is an (efficient) algorithm for finding the square root of $x \mod n$. This lets us factor n as follows:

- 1. Pick $y \in \mathbb{Z}_n$ uniformly at random.
- 2. Let $y' = A(y^2, n)$. If y = y' algorithm fails.
- 3. Compute GCD(y y', n). If this is non-trivial, we have factored n.

This algorithm will not work properly if y = y' or when n is a prime power. We can check if n is a prime power easily (as well as if y|n), and factor n that way if so.

Claim 9. This algorithm succeeds (when n is not a prime power) with probability at least 1/2.

Proof. Since $y^2 = (y')^2 \mod n$, this means n|(y - y')(y + y'). Since both y and y' are less than n, the only way that y - y' has trivial GCD with n is when y' = y or y' = -y.

However, if n is not a prime power, then $n = \prod_i = 1^k p_i^{e_i}$ for some k primes p_i (and exponents e_i). By the Chinese Remainder theorem, y^2 is uniquely defined by its remainder modulo $p_i^{e_i}$ for each i. Since y^2 is a square, each of these moduli is a square, and so each have two square roots modulo that prime power. Each possible set of choices of these square roots corresponds to a unique square root of y^2 , meaning y had 2^k square roots modulo n.

Since A has no knowledge of which of these square roots we chose, it has a $\frac{2}{2^k} \leq \frac{1}{2}$ probability of returning y or -y. This means the algorithm fails with probability less than $\frac{1}{2}$.