Lecture 6: Deterministic Primality Testing
Topics in Pseudorandomness and Complexity (Spring 2018)

Rutgers University
Swastik Kopparty

Scribe: Justin Semonsen, Nikolas Melissaris

1 Introduction

The AKS (Agrawal-Kayal-Saxena) algorithm, found in 2002, is the first ever deterministic polynomial-
time primality testing algorithm. The algorithm is based on a generalization of Fermat’s Little
Theorem to polynomial rings over finite fields: if a number a is co-prime to n, n > 1, then:

n is prime iff (x +)" = 2" +a (mod n) (1)

2 The AKS Algorithm

A=log"n
R =1log®n
1. If n is a perfect power, output composite.
2. If n has a factor smaller than R, output composite.

3. For each a € [A] :
For each r € [R] :
Check that (z + a)” = z" 4+ a (mod (n,z" — 1))

We can check efficiently this identity by repeated squaring.

3 Proof (AKS)
Claim 1. 3ry < R s.t. ged(r,n) =1 and ¢ = ord(n) (mod r) > log?n
The last inequality means that all n,n?,--- ,n¢ are distinct (mod 7).

Proof. We look at M = n(n —1)(n? —1)--- (nlogzn —1).

This means that M < nlog'n — 2108’ n which in turn implies that there is some prime r < R that
doesn’t divide M. That is the r we are looking for because Ya < log?n,r fn—1=

ord(n) (mod) >log*n O

Suppose n is composite and not a power and not divisible by any prime less that R. We want to
show that:
da<Ast. (x+a)"#2"+a (mod (n,z™ —1)) (2)

Suppose not. This means that:

(x4+a)"=2"+a (mod (n,z" — 1)) Va € [A] (3)

Take p s.t. p|n, rotp—1. Since n Z1 (mod r¢), some prime factor of n has p £ 1 (mod rg).

Now we work over Fj,[z]. We know that:

(x4+a)"=2"+a (modz™ —1) (4)

Let H={a €F,:a"™ =1}
From (4) we get that Ve €e H (a+a)"=a"+a Vae€ A.
Definition 2. We say that Q(z) and m commute if Yoo € H Q(a™) = (Q(a))™

From (4) we get that Va € [4], (x + a) and n commute: Voo € H (o +a)" = o™ + a.
Claim 3. VQ(z) € Fp, Q(z) and p commute: Yoo € H, Q(a)P = Q(aP).

Proof. Q)P = (X a;a’)? =3 ala? =3 a0’ = Q(aP) O

The proof is based on the fact that in F,, (a + b)? = aP 4+ bP. For a € F,,, aP = a.

Lemma 4. If Q1, Q2 both commute with m then so does Q1Q)2.

Proof. Given: Vo € H, Q1(a™) = Q1(a)™, Q2(a™) = Q2(a)™ then

Va € H, Q1Q2(a™) = Q1(a™)Q2(a™) = Q1(a)"Q2(a)™ = (Q1Q2())™ o

Lemma 5. If QQ commutes with my, ms then QQ commutes with mims.
Proof. Given: Va € H, and

(). Q™) = Qa)™
(if). Q(a™) = Q)™

a™leH
i)

Qo) =@ (™)) & Qam) £ Q (a)m a

We define S = {z +a :a € [A] C Fylz]} and T = {n,p} C Z. Every element in S commutes
with every element in 7. Moreover we have S the multiplicative closure of S, which is the set of
products of (z + a)’s, and T the multiplicative closure of T with is the set {n’p’ :i,j > 0}.

Then, by the two lemmas 3 and 4, every element of S commutes with every element of T.

Let G =T (mod 7)g. G is a group and a subgroup of (Z:O, ><). Let t = |G|

2

4 Continuation of proof

Note that H is a cyclic group, and thus Jag € H such that H = {1, ap, a3, . .. ,ago_l}. This is a
known result from algebra.

Lemma 6. VQ1 # Q2 € S with deg(Q1), deg(Q2) < t, then Q1(ap) # Q2(ap).

Proof. Assume that Q1(ao) = Q2(ag). Then Qi(ag') = Qi(a)™ # Q2(a)™ = Q2(ag’) for any
meT.

However, since T is a multiplicative group and a’ =1, any a € G can be written as a af’ for some
m € T. This means that Q;(a) = Q2(«) for every a € G.

This means that Q1 agrees with Q2 on ¢ elements, so since deg(Q1),deg(Q2) < t, this means that
Q1 = Q2. O

This means that we can let B = {Q(«ag) : deg(Q) < t —1,Q € S}. Note that B includes

t—1
Q(z) =TI, = 1" (2 — a;) for any distinct choices of a;, so |B| > (tfl) > (&) > 2t

Now we upper bound this set, and get a contradiction out of that.
Note that if n # p! then n'p/ = n’p?" only when (i,5) = (i’,j'). However, since agzp] € G for any
i, there are only ¢ distinct exponents mod ro. Therefore [{n‘p’ mod rq :14,j <Vt + 1} < t.

This means Imq, my of the form n’p! mod rg : 4,j < v/t + 1 such that m; = me mod rg, but
mi # mo.

Therefore ag™ = af'?, so Q(ap)™ = Qag) = Q(af?) = Q(ap)™ for any @ € S. Because
we chose 19 # p — 1, this means that ag & Fp, so Q(ap) # 0. This means that for every @ €
S,Q(ap)™ = 1, where m = my — mo.

This means that for any b € B, we have that ™ = 1. Since this polynomial has no more than m
roots, | B| < m < n2(Vitl) < 93Vilog(n)

However, since t is the order of n mod rg, this means that ¢ >> logz(n). This contradiction proves
the correctness of the algorithm.

5 Discrete Square Root

The problem consists of a given p prime, and a number a € F,. We would like to find b € F,, (if
one exists) such that b* = a. We assume that p > 2.

Note that we can tell if a is a square by checking that o’ =1,

Claim 7. a is a square if and only if T = 1.

Proof. Since a?~! = 1, we have that (a% — 1) (a%l + 1) — 0. This means that "7 is either 1
or —1.

If a is a square, then let b be such that a = b%>. Now o’ =l = 1.

Consider the homomorphism F) — {squares} given by = — 22, Since both —1 and 1 map to 1, the

-1
size of the kernel is 2. Therefore there are % squares, which are all the roots of 27T — 1. O

Berlekamp’s Algorithm is a probabilistic algorithm for finding the discrete square root. The algo-
rithm proceeds as follows:

1. Choose c,d €), uniformly at random.
2. Compute GCD(Q:pT_I —1,(cz +d)? — a).

3. If this result is degree 1, then the discrete square root is cx + d for = solving the linear
equation. Otherwise, the algorithm fails.

—1 —1
Since "7 —11is sparse, it is fairly simple to use repeated exponentiation to find 22 —1 mod (cx+
d)? — a without keeping track of every coefficient. In this way this algorithm runs efficiently.

Claim 8. This algorithm succeeds (and finds a proper square root) with probability approximately

1/2.
Proof. If a = b2, then (cx +d)? —a = [(cx 4+ d) +b][(cx 4 d) — b]. This means that if the GCD found
is linear, the value for cx + d that is found is a square root of a.

Since cx + d is a random affine transformation, it permutes the two roots of 2 — a independently
-1
at random. The GCD is linear when exactly one of these roots is a root of 2”2 — 1. Since there

-1
are exactly % roots of 22 — 1, the probability the GCD is linear is % — 2}'%. O

This algorithm relies on the fact that p is prime. In fact, if we could do this for any general n, we
could factor n!

Let’s assume that A(xz,n) is an (efficient) algorithm for finding the square root of x mod n. This
lets us factor n as follows:

1. Pick y € Z,, uniformly at random.

2. Let 3y = A(y?,n). If y = ¢/ algorithm fails.

3. Compute GCD(y — y',n). If this is non-trivial, we have factored n.
This algorithm will not work properly if y = ¢’ or when n is a prime power. We can check if n is a
prime power easily (as well as if y|n), and factor n that way if so.

Claim 9. This algorithm succeeds (when n is not a prime power) with probability at least 1/2.

Proof. Since 32 = (y')?> mod n, this means n|(y — v')(y +v'). Since both y and /' are less than n,
the only way that y — 3/ has trivial GCD with n is when ¢ =y or 3y = —y.

However, if n is not a prime power, then n =[], = 1kp? for some k primes p; (and exponents ;).
By the Chinese Remainder theorem, 3?2 is uniquely defined by its remainder modulo p;" for each 1.

4

Since y? is a square, each of these moduli is a square, and so each have two square roots modulo
that prime power. Each possible set of choices of these square roots corresponds to a unique square
root of y2, meaning y had 2¥ square roots modulo n.

Since A has no knowledge of which of these square roots we chose, it has a 2% < % probability of
returning y or —y. This means the algorithm fails with probability less than % O

