1 Recap

Previous classes we discussed an algorithm that, given a circuit C such that $Pr_{x \in F^m_q}[C(x) = g(x)] > 0.9$ for g a polynomial in F_q of degree $< d$ in each of m variables, we can produce a circuit $\text{FIX}(C)$ such that $\forall x \in F^m_q, C(x) = g(x)$ and $\text{size}(\text{FIX}(C)) \leq \text{poly}(m) \text{size}(C)$.

In addition, we discussed the single variable polynomial decoder algorithm, which works as follows: Given $S \subset F^m_q$ with $|S| = n$, output all polynomials $\{Q(t)\}$ of degree $< d$ such that $\forall Q, |\{t : (t, Q(t)) \in S\}| \geq \epsilon n$. Note that this requires that $d = O(\epsilon^2 n)$ and ensures $|\{Q(t)\}| \leq 2 \epsilon$.

In the upcoming proofs, we also use the low degree polynomial extension method discussed in a previous class. For simplicity, we define this extension of a function f to be $\text{LDPE}(f)$.

2 Correcting circuits that compute low degree polynomials in multiple variables

Theorem 1. Suppose $g \in F_q[x_1, \ldots, x_m]$ is a polynomial of degree $< d$ in each variable, and C is a circuit of size s such that $Pr_{x \in F^m_q}[C(x) = g(x)] > \epsilon$. Then, using randomness, we can efficiently produce circuits C_1, \ldots, C_L of size $\text{poly}(q, m, \epsilon^{-1})$ (with $L = \text{poly}(q, m, \epsilon^{-1})$) such that with high probability $\exists i \in [L]$ such that $\forall x \in F^m_q, C_i(x) = g(x)$.

Proof. We define the function $\text{pre-}C_{y,a}(x)$ as follows:

1. Let l be the line $\{x + t(y - x) : t \in F_q\}$, which is the line through x and y.
2. Using C, compute the set $S = \{(t, C(x + t(y - x))) : t \in F_q \setminus \{0\}\}$.
3. Using the polynomial decoder algorithm, find $\{Q(t)\}$ of degree $< d$ with $|\{t : (t, Q(t)) \in S\}| \geq \epsilon q$.
4. If $\exists! Q^*(t) \in \{Q(t)\}$ such that $Q^*(1) = a$, output $Q^*(0)$. Otherwise, error.

Claim 2.

$$Pr_{x,y \in F^m_q}[\text{pre-}C_{y,a}(x) = g(x)] \geq .99$$

The proof for this claim will follow in the next section.
Lemma 3.
\[
\Pr_{y \in \mathbb{F}_q^m} \left[\Pr_{x \in \mathbb{F}_q} [\text{pre-}C_{y,a}(x) = g(x)] \geq .9 \right] \geq .99
\]

Proof. Assume \(\Pr_{y \in \mathbb{F}_q^m} \left[\Pr_{x \in \mathbb{F}_q} [\text{pre-}C_{y,a}(x) = g(x)] \geq .9 \right] < .9 \).

By linearity of expectation, \(\mathbb{E}_{y \in \mathbb{F}_q^m} \left[\mathbb{E}_{x \in \mathbb{F}_q} [1_{\{\text{pre-}C_{y,a}(x) = g(x)\}}] \right] \). By Markov:
\[
\Pr_{x \in \mathbb{F}_q} [\text{pre-}C_{y,a}(x) = g(x)] \geq .9
\]

This means that with high probability, \(\Pr_{x \in \mathbb{F}_q} [\text{pre-}C_{y,a}(x) = g(x)] \geq .9 \), meaning that (with high probability) \(\forall x \in \mathbb{F}_q, \text{FIX}(\text{pre-}C_{y,a})(x) = g(x) \). Let \(C_{y,a} \) be defined to be \(\text{FIX}(\text{pre-}C_{y,a}) \).

Finally, this allows us to define the algorithm for the theorem as follows:

1. Pick \(y \in \mathbb{F}_q^m \) uniformly at random.
2. Output \(\{C_{y,a} : a \in \mathbb{F}_q\} \).

The list output by this algorithm then clearly is of the appropriate size, and contains a circuit that evaluates \(g(x) \) for every \(x \in \mathbb{F}_q^m \). \(\square \)

3 Proof of Claim 2

Proof. Let \(A = \{x \in \mathbb{F}_q^m : C(x) = g(x)\} \). Note that \(|A| = q^m \Pr_{x \in \mathbb{F}_q^m} [C(x) = g(x)] \geq \epsilon q^m \).

Pick \(x, y \in \mathbb{F}_q^m \) uniformly (and distinctly) at random. Let \(l \) be the line \(\{x + t(y - x) : t \in \mathbb{F}_q\} \), which is the line through \(x \) and \(y \).

Note that for fixed \(t_1 \neq t_2 \), \(\Pr[x(1-t_1)+t_1y = a \land x(1-t_2)+t_2y = b] = \Pr[x = \frac{1}{t_2-t_1}(t_2a-t_1b) \land y = \frac{1}{t_2-t_1}(-(1-t_2)a + (1-t_1)b)] \). Since all of \(t_1, t_2, a, \) and \(b \) are fixed, and \(x \) and \(y \) are chosen independently, \(\Pr[x(1-t_1)+t_1y = a \land x(1-t_2)+t_2y = b] = \Pr[x = \frac{1}{t_2-t_1}(t_2a-t_1b)] \Pr[y = \frac{1}{t_2-t_1}(-(1-t_2)a + (1-t_1)b)] \), and thus the points on the line are pairwise independent.

Since the points \(x \) and \(y \) are chosen uniformly at random, \(x + t(y - x) \) is distributed uniformly at random and thus \(\Pr(x + t(y - x) \in A) \geq \epsilon \). This means that if we define the events \(E_t = \{x + t(y - x) \in A\} \), these events are pairwise independent with probabilities \(\geq \epsilon \).

Therefore, using that the variance of a Bernoulli random variable with probability \(p \) is \(p(1-p) \leq p \), by Markov:
Therefore \(\Pr_{x, y \in \mathbb{F}_q} [|l \cap A| < \frac{\epsilon q}{2}] < O \left(\frac{1}{\epsilon q} \right) \). This means that if \(\epsilon q = \omega(1) \), with high probability we have that the polynomial decoder contains a polynomial \(\overline{Q}(t) = g(x + t(y - x)) \).

When this happens, and \(a = g(y) \), then \(\overline{Q}(1) = a \), then \(\overline{Q} \) is a polynomial in the list with \(Q(1) = a \).

Lemma 4. Let \(a = g(y) \) and \(\{ \overline{Q} = Q_0, Q_1, \ldots Q_r \} \) be the polynomials of degree \(\leq d \) returned from the polynomial decoder as above. Then \(\Pr[\exists i : \overline{Q}(1) = Q_i(1)] = o(1) \).

Proof. Consider choosing \(l \) uniformly at random from lines in \(\mathbb{F}_q^m \). Note that then choosing \(x \) and \(y \) uniformly at random (and distinctly) on the line is exactly the same as choosing \(x \) and \(y \) uniformly at random.

However, once the line is chosen, there are at most \(O \left(\frac{1}{\epsilon q} \right) \) polynomials \(Q \) of degree \(< d \) such that \(| \{ t : (t, Q(t)) \in S \} | \geq \epsilon n \). Note that if \(\overline{Q}(t) = Q_i(t) \) for some \(t \), then \(\overline{Q}(t) - Q_i(t) = 0 \), and since \(\deg(\overline{Q}), \deg(Q_i) \leq d \), there are at most \(d \) such \(t \) for which \(\overline{Q}(t) = Q_i(t) \). This is true for every \(i \), meaning that there are \(\leq O \left(\frac{d}{\epsilon q} \right) \) points on \(l \) for which \(\overline{Q}(t) = Q_i(t) \) for some \(i \). Since \(y \) is chosen uniformly at random on \(l \), \(\Pr[\exists i : \overline{Q}(1) = Q_i(1)] \leq O \left(\frac{d}{\epsilon q} \right) \). Since \(d = O(\epsilon^2 q) \) for the polynomial decoder, \(O \left(\frac{d}{\epsilon q} \right) = o(1) \).

Note that in the above proof, we do not actually need \(o(1) \), just a small constant to get high probability \((\geq .99) \).

This means that if \(a = g(y) \) with high probability \(\overline{Q}(t) = g(x + t(y - x)) \) is returned from the polynomial decoder and is the unique polynomial returned with \(Q(1) = a \), and thus is returned with high probability.

Since \(g(y) \in \mathbb{F}_q \), this means that one of the \(C_{y,a} \), has \(a = g(y) \), and thus \(\overline{Q}(t) \) is in the list with high probability (notably \(\geq .99 \)).
4 “Extreme” Hardness Amplification

Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) such that \(\forall C \) circuits of size \(\leq s \), \(\exists x \) with \(C(x) \neq f(x) \).

Using this, we define \(\tilde{f} : \{0,1\}^N \rightarrow \{0,1\} \) as:

1. Define \(g : \mathbb{F}_q^m \rightarrow \mathbb{F}_q \) by \(g = LDPE(f) \).
2. Let \(\tilde{f} : \mathbb{F}_q^m \times 2^t \rightarrow \{0,1\} \) be defined by \(\tilde{f}(x,i) = Had(g(x))_i \) where \(Had \) is the Hadamard encoding. Note that this means that \(\{0,1\}^N \) is given by identifying \(\mathbb{F}_q^m \) with a product of booleans, and taking the binary representation of \(2^t \). This is done in the same way as in a previous class.

Theorem 5. \(\forall \tilde{C} \) circuits of size \(\leq \frac{s}{\text{poly}(n,\epsilon^{-1})} \), \(\Pr_{y \in \{0,1\}^n} [\tilde{f}(y) = \tilde{C}(y)] < \frac{1}{2} + \epsilon \).

Proof. Assume for contradiction \(\Pr_{x \in \mathbb{F}_q^m,i \in [2^t]} [\tilde{f}(x,i) = \tilde{C}(x,i)] \geq \frac{1}{2} + \epsilon \).

Given the circuit \(\tilde{C} \), let \(C_0 : \mathbb{F}_q^m \rightarrow \mathbb{F} \) be defined by setting \(C_0(x) \) as follows:

1. Let \(v \in \mathbb{F}_q^m \) be defined by \(v_i = \tilde{C}(x,i) \) by querying \(\tilde{C} \).
2. Let \(S = \{ r \in \mathbb{F}_q : \Pr_{i \in [2^t]} [Had(r)_i = v_i] \geq \frac{1}{2} + \epsilon/2 \} \).
3. Output \(r \in S \) chosen uniformly at random.

By Goldreich-Levin \(|S| \leq \text{poly}(\epsilon^{-1}) \). Since \(r \) is outputted randomly, and \(g \in S \), trivially \(C_0(x) = g(x) \) with probability \(\geq \epsilon \text{poly}(1) \) for any \(x \in \mathbb{F}_q^m \) with \(\Pr_{i \in [2^t]} [\tilde{C}(x,i) = Had(g(x))_i] \geq \frac{1}{2} + \epsilon/2 \).

Claim 6. \(\Pr_{x \in \mathbb{F}_q^m} \left[\Pr_{i \in [2^t]} [\tilde{f}(x,i) = \tilde{C}(x,i)] \geq \frac{1}{2} + \frac{\epsilon}{2} \right] \geq \frac{\epsilon}{2} \).

Proof. Assume for the sake of contradiction that \(\Pr_{x \in \mathbb{F}_q^m} \left[\Pr_{i \in [2^t]} [\tilde{f}(x,i) = \tilde{C}(x,i)] \geq \frac{1}{2} + \frac{\epsilon}{2} \right] < \frac{\epsilon}{2} \).

This means by the law of total probability, \(\Pr_{x \in \mathbb{F}_q^m,i \in [2^t]} [\tilde{f}(x,i) = \tilde{C}(x,i)] \leq \frac{\epsilon}{2}(1 + 1*(\frac{1}{2} + \frac{\epsilon}{2})) = \frac{1}{2} + \epsilon \).

Now if we let \(R \) be the randomness in \(C_0 \), then we can let \(C_1(x,R) \) be the deterministic function that simulates \(C_0 \) with the randomness given by \(R \). Using the definition of \(C_0 \), we have \(\Pr_{x \in \mathbb{F}_q^m} \left[\Pr_{R} [C_1(x,R) = g(x)] \geq \epsilon \text{poly}(1) \right] \geq \frac{\epsilon}{2} \). By a trivial multiplicative bound, this gives that \(\Pr_{x \in \mathbb{F}_q^m,R} [C_1(x,R) = g(x)] \geq \epsilon \text{poly}(1) \).

By the pigeonhole principle, \(\exists R' \) such that \(\Pr_{x \in \mathbb{F}_q^m} [C_1(x,R') = g(x)] \geq \epsilon \text{poly}(1) \). By the previous theorem (using \(C(x) = C_1(x,R') \) and an appropriate \(\epsilon \)), we can generate a list of circuits within which \(\exists C_2 \) circuit such that \(\forall x \in \mathbb{F}_q^m, C_2(x) = g(x) \). Since \(\text{size}(C_2) \leq \text{poly}(n,\epsilon^{-1}) \text{size}(\tilde{C}) \), the circuit \(C_2 \) is a circuit of size \(\leq s \) computing \(g \), meaning \(f \) is not worst case hard. This contradiction proves the theorem.
Let $\epsilon = 2^{-\delta n}$ and $s = 2^m$ such that $\frac{s}{\text{poly}(n, \epsilon^{-1})} > 2^{\eta' n}$ for some η'. If $f \in E$ (time complexity $2^{O(n)}$) such that $\forall C$ circuits of size $\leq 2^m$, $\exists x \in \{0,1\}^n$ with $C(x) \neq f(x)$, then by the above theorem, $\exists \tilde{f} \in E$ such that $\forall \tilde{C}$ circuits of size $\leq 2^m/n$, $\Pr_{y \in \{0,1\}^n}[\tilde{C}(y) \neq \tilde{f}(y)] < \frac{1}{2} + 2^{-\delta n}$. This means that for exponentially computable functions, very (average-case) hard functions exist, assuming there are worst case hard functions.

5 Derandomization

We want to define a pseudorandom generator, but first we have to consider the context in which we care about it. A pseudorandom for cryptography would look different than the one we will create, which will be for randomized algorithms. With that in mind, we define a pseudorandom generator G to be a probability distribution over outputs $r_1, \ldots, r_t \in \{0,1\}^n$ such that for any (sufficiently small) randomized algorithm C, $\Pr_{r \in \{0,1\}^n}[C(r) = 1] \approx \frac{1}{2} |\{i : C(r_i) = 1\}|$. To formalize this, we note that we can replace any randomized algorithm of small size with a circuit of small size. In addition, to formalize the approximation, we use another parameter. This means that an ϵ-PRG against size s is a distribution over $r_1, \ldots, r_t \in \{0,1\}^n$ such that $|\Pr_{r \in \{0,1\}^n}[C(r) = 1] - \frac{1}{2} |\{i : C(r_i) = 1\}|| < \epsilon$.

Now we have an example of an pseudorandom generator: Let $h : \{0,1\}^{n-1} \rightarrow a \{0,1\}$ be such that $\Pr_{x \in \{0,1\}^{n-1}}[C(x) = h(x)] \leq \frac{1}{2} + \epsilon$ for every circuit C of size s. Output $(x, h(x))$ with x chosen uniformly at random from $\{0,1\}^{n-1}$.

Claim 7. The above algorithm is an ϵ-PRG against size $\frac{s}{\text{O}(1)}$.

Proof. Assume for the sake of contradiction that it is not. This means that $\exists \tilde{C}$ circuit of size $\frac{s}{\text{O}(1)}$ such that $|\Pr_{r \in \{0,1\}^n}[C(r) = 1] - \frac{1}{2} |\{i : C(r_i) = 1\}|| > \epsilon$. By reversing the output of \tilde{C} if needed, we may assume that $\Pr_{x \in \{0,1\}^{n-1}}[\tilde{C}(x, h(x)) = 1] - \Pr_{r \in \{0,1\}^n}[\tilde{C}(r) = 1] > \epsilon$.

Define the circuit C by setting $C(x)$ as follows:

1. Compute $\tilde{C}(x, 0)$ and $\tilde{C}(x, 1)$.
2. If $\tilde{C}(x, 0) = 1$ and $\tilde{C}(x, 1) = 0$, then output 0.
3. If $\tilde{C}(x, 0) = 0$ and $\tilde{C}(x, 1) = 1$, then output 1.
4. Otherwise output a random bit.

Claim 8. For the above circuit C, $\Pr_{x \in \{0,1\}^{n-1}}[C(x) = h(x)] > \frac{1}{2} + \epsilon$.

Proof. Let $A_{ij} = \Pr_{x \in \{0,1\}^{n-1}}[\tilde{C}(x, i) = 1 \land h(x) = j] \text{ for } i, j \in \{0,1\}$. Note that This means that $\Pr_{x \in \{0,1\}^{n-1}}[\tilde{C}(x, h(x)) = 1] = 1$ and $\Pr_{r \in \{0,1\}^n}[\tilde{C}(r, i) = 1] = \frac{1}{2} |\{i : C(r_i) = 1\}| = \frac{1}{2} |\{i : C(r_i) = 1\}| = \frac{1}{2} (A_{00} + A_{01} + A_{10} + A_{11})$.

5
This means that $A_{00} + A_{11} - A_{01} - A_{10} > 2\epsilon$. Since $A_{01} - A_{10} = \Pr_{x \in \{0, 1\}^{n-1}}[\tilde{C}(x, 1 - h(x)) = 1]$, we have that $\Pr_{x \in \{0, 1\}^{n-1}}[\tilde{C}(x, h(x)) = 1] - \Pr_{x \in \{0, 1\}^{n-1}}[\tilde{C}(x, 1 - h(x)) = 1] > 2\epsilon$.

By subtracting the probability of intersection, $\Pr_{x \in \{0, 1\}^{n-1}}[\tilde{C}(x, h(x)) = 1 \land \tilde{C}(x, 1 - h(x)) = 0 \land \tilde{C}(x, 1 - h(x)) = 1] > 2\epsilon$. By definition of $C(x)$, this means $\Pr_{x \in \{0, 1\}^{n-1}}[C(x) = h(x) \land \tilde{C}(x, h(x)) \neq \tilde{C}(x, 1 - h(x))] - \Pr_{x \in \{0, 1\}^{n-1}}[C(x) \neq h(x) \land \tilde{C}(x, h(x)) \neq \tilde{C}(x, 1 - h(x))] > 2\epsilon$.

Since $C(x)$ is random when $\tilde{C}(x, h(x)) = \tilde{C}(x, 1 - h(x))$, this means that $\Pr_{x \in \{0, 1\}^{n-1}}[C(x) = h(x)] - \Pr_{x \in \{0, 1\}^{n-1}}[C(x) \neq h(x)] > 2\epsilon$, and thus $\Pr_{x \in \{0, 1\}^{n-1}}[C(x) = h(x)] > \frac{1}{2} + \epsilon$.

Now note that C is a circuit of size $O(1) \ast \text{size}(\tilde{C})$ such that $\Pr_{x \in \{0, 1\}^{n-1}}[C(x) = h(x)] > \frac{1}{2} + \epsilon$. This means that if $\text{size}(\tilde{C}) \leq \frac{s}{\Omega(1)}$, then C is a circuit of size $\leq s$ and thus a counterexample to the assumption that $\Pr_{x \in \{0, 1\}^{n-1}}[C(x) = h(x)] \leq \frac{1}{2} + \epsilon$ for all circuits C of size $\leq s$. □