Zero-sum games are two player games played on a matrix $M \in \operatorname{Mat}_{m \times n}(\mathbb{R})$. The row player, denoted R, chooses a row $i \in [m]$ and the column player C chooses a column $j \in [n]$, simultaneously. The payoff to the row player is M_{ij} and the payoff to the column player is $-M_{ij}$ (hence the game is “zero-sum”). We can also consider randomized strategies, where R chooses a probability distribution p on $[m]$, which can be written as a vector in \mathbb{R}^m, and the column player chooses a probability distribution q on \mathbb{R}^n. The expected payoff to the row player, denoted $E(p,q)$, is thus equal to

$$p^T M q = \sum_{ij} M_{ij} p_i q_j.$$

Theorem 1 (Von Neumann Minimax Theorem). *For a linear game there is a value V such that*

1. *There exists p^* such that for all q, $E(p^*, q) \geq V$ and*
2. *there exists a q^* such that $E(p, q^*) \leq V$ for all p.*

In words: R can guarantee that the expected payoff to R is at least V, while C can guarantee that the expected payoff to R is at most V. This V is called the value of the game.

Proof. We say that R can guarantee that the expected payoff to R is at least α if there exists a probability distribution $p \in \mathbb{R}^m$ such that for all probability distributions $q \in \mathbb{R}^n$, $E(p, q) \geq \alpha$.

Lemma 2. *R can guarantee that the expected payoff to R is at least α if and only if there is a p such that for all $j \in [n]$ $E(p, e_j) \geq \alpha$.*

Proof. The “only” if direction is clear, because the deterministic strategies is a subset of the randomized strategies. To prove the “if” direction, suppose we have such a p. Note that for any q,

$$E(p, q) = \sum_{i\in[m]} \sum_{j\in[n]} p_i M_{ij} q_j = \sum_{j\in[n]} q_j E(p, e_j) \geq \alpha,$$

because q is a probability distribution on $[n]$. \qed

Lemma 3. *Given X, Y closed, disjoint convex sets in \mathbb{R}^n, there is a hyperplane that separates X and Y, that is, a unit vector u and a number t such that either for all $x \in X$ and $y \in Y$, $\langle u, x \rangle \leq t$ and $\langle u, y \rangle > t$ or for all $x \in X$ and $y \in Y$, $\langle u, x \rangle < t$ and $\langle u, y \rangle \geq t$.*
Observe the following: That is, there is \(R \in \mathbb{R} \) such that for all \(\alpha \in \mathbb{R} \), \(\alpha \) cannot guarantee expected value at least \(\alpha \). Otherwise you could make the corresponding entry in \(\alpha \) and replace \(\alpha \) by \(\alpha + 1 \). Now there is a hyperplane \(H \) that separates \(X \cap H \) as in the theorem. Without loss of generality suppose \(G \) does not intersect \(X \cap H \). By translating, assume \(G \) (and so \(H \)) is through the origin with normal \(v \), so that \(\langle x, v \rangle < 0 \) for \(x \in X \) and \(\langle y, v \rangle \geq 0 \) for \(y \in Y \). Let \(u' = u + .1v \). Now \(\langle x, u' \rangle = \langle x, u + .1v \rangle < 0 \) and similarly \(\langle y, u' \rangle \geq 0 \). Apply the inverse of the translation to obtain a new hyperplane \((u', t')\) that separates \(X \) and \(Y \) in the way required by the theorem.

Proof sketch. Suppose \(X \) and \(Y \) are compact. Consider \(\inf_{x \in X, y \in Y} d(x, y) \); we know this distance is achieved by some \(x_0 \) and \(y_0 \) because it is a continuous function on \(X \times Y \) which is also compact. One can check that the hyperplane bisecting the segment \(xy \) separates \(X \) and \(Y \). Suppose \(X \) and \(Y \) are only closed; then \(X_N = X \cap \{ x : |x| \leq N \}, Y_N = Y \cap \{ x : |x| \leq N \} \) are compact sets for each natural number \(N \). There is a separating hyperplane \(H_N \) for each \(X_N \) and \(Y_N \); \(H_N \) can be described by a unit vector \(u_N \) and a threshold \(t_N \) such that \(H_N = \{ x : \langle x, u_N \rangle = t_N \} \). Suppose we always pick \(u_N \) so that \(X_N \) is on the negative side of \(H_N \). \(t_N \) is in fact the distance from the origin of \(H_N \), which must be bounded above because some points \(x \in X \) and \(y \in Y \) are at a finite distance from the origin and hence cannot be separated by any hyperplane that is arbitrarily far from the origin despite being contained in \(X_N \) and \(Y_N \) for \(N \) sufficiently large. Hence \(\{(u_N, t_N)\}_{N \in \mathbb{N}} \) resides in a compact subset of \(\mathbb{R}^{n+1} \), so it has a convergent subsequence. Let \((u, t)\) be the limit of this subsequence. For each \(x \in X \), and for \(N \) sufficiently large, \(\langle x, u_N \rangle < t \), and \(\langle x, u \rangle = \lim_{N \to \infty} \langle x, u_N \rangle \leq t \). Similarly for \(y \), we have \(\langle y, u \rangle \geq t \). The intersections \(X \cap H \) and \(Y \cap H \) are closed convex sets. If either is empty, we are done. If neither is empty, then by induction there is a hyperplane \(G \subset H \) that separates \(X \cap H \) and \(Y \cap H \) as in the theorem. Without loss of generality suppose \(G \) does not intersect \(X \cap H \). By translating, assume \(G \) (and so \(H \)) is through the origin with normal \(v \), so that \(\langle x, v \rangle < 0 \) for \(x \in X \) and \(\langle y, v \rangle \geq 0 \) for \(y \in Y \). Let \(u' = u + .1v \). Now \(\langle x, u' \rangle = \langle x, u + .1v \rangle < 0 \) and similarly \(\langle y, u' \rangle \geq 0 \). Apply the inverse of the translation to obtain a new hyperplane \((u', t')\) that separates \(X \) and \(Y \) in the way required by the theorem.

Take some value \(\alpha \) such that \(R \) cannot guarantee expected value at least \(\alpha \). Then for all \(p \) there exists \(j \) such that

\[
\sum_i p_i M_{ij} \leq \alpha.
\]

Let \(X = \{ u \in \mathbb{R}^n : u_j \geq \alpha \forall j \in [n] \} \) and \(Y = \{ pM : p \) is a probability distribution on \([m]\)\}. \(R \) cannot guarantee \(\alpha \) if and only if \(X \) and \(Y \) are disjoint. One needs to check that these are convex and closed. We claim that if \(R \) cannot guarantee \(\alpha \) then there is a hyperplane separating \(X \) and \(Y \). That is, there is \(l \in \mathbb{R}^n \) and \(b \in \mathbb{R} \) such that for all \(x \in X \), \(\langle l, x \rangle > b \) and for all \(y \in T \), \(\langle l, y \rangle < b \).

Observe the following:

1. Every entry of \(l \) is nonnegative. Otherwise you could make the corresponding entry in \(x \in X \) arbitrarily large while leaving all others equal to \(\alpha \). This would violate \(\langle l, x \rangle > b \).
2. Replace \(l \) from the separating hyperplane by \(q = \frac{1}{\sum l_i} \) so that \(q \) is a probability distribution, and replace \(\alpha \) by \(b = \sum \alpha_i l_i \). So now for all \(x \in X \), \(\langle q, x \rangle > b \) and for all \(y \in T \), \(\langle q, y \rangle < b \).
3. \(b \leq \alpha \), which one can see by applying \(\langle q, x \rangle > b \) for \(x = \alpha \).

Items 2 and 3 show that for all \(p \in \mathbb{R}^m \), \(\langle q, pM \rangle < \alpha \), or \(E(p,q) < \alpha \). In other words, if \(C \) plays \(q \) she guarantees that the expected payoff for \(R \) is \(< \alpha \).

We know that those values \(R \) can guarantee comprise a left half interval, and those values \(C \) can guarantee comprise a right half interval. What we’ve shown is that for any \(\alpha \) outside \(R \)’s left half interval is in the interior of \(C \)’s right interval. Because our proof was symmetric in \(R \) and \(C \), any \(\alpha \) outside \(C \)’s right half interval is in the interior of \(R \)’s left half interval. Together these imply the
intervals are closed and intersect in exactly one point.

\textbf{Theorem 4} (Impagliazzo Hard Core Lemma). For all \(\epsilon, \delta > 0 \), and \(\Omega(n/\epsilon^2 \log(n/\epsilon^2)) = s \leq 2^{0.9n} \), suppose \(f : \{0,1\}^n \to \{0,1\} \) such that for all circuits \(C \) with size \(s \)
\[
\Pr_{x \in \{0,1\}^n} [C(x) = f(x)] < 1 - \delta.
\]

Then there exists a “hard core” \(H \subset \{0,1\}^n, |H| \geq (2\delta)2^n - O(\sqrt{\delta}2^n) \) such that for all circuits \(C \) with size at most \(\epsilon^2 \delta s/5n \),
\[
\Pr_{x \in H} [C(x) = f(x)] < 1/2 + \epsilon.
\]

\textbf{Proof.} Consider a linear game played by two players \(S \) (sets, row) and \(C \) (circuit, column). \(S \) chooses from sets of \(\{0,1\}^n \) of size exactly \((2\delta)2^n \), which we will call “Large sets” and \(C \) chooses from circuits of size at most \(s' \), which we will call “Small circuits”. The matrix \(M \) of payoffs to the circuit player has entries \(M_{S,C} = \Pr_{x \in S} [C(x) = f(x)] \).

By the Von Neumann Minimax Theorem and Lemma 2, we are in one of two cases: Either

1. There is a distribution \(\mu_s \) on Large sets such that for all Small circuits \(C \) of size at most \(s' \),
\[
\mathbb{E}_{S \sim \mu_s} [M_{S,C}] \leq 1/2 + \epsilon,
\]
or

2. There is a distribution \(\mu_c \) on Small circuits such that for all Large sets
\[
\mathbb{E}_{C \sim \mu_c} [M_{S,C}] \geq 1/2 + \epsilon.
\]

\textbf{0.1 Case 1:}

We want to obtain a single Large set from the distribution \(\mu_s \) on which no circuit agrees well with \(f \). Define
\[
\nu(x) = \Pr_{S \in \mu_s} [x \in S]
\]
Then \(\sum_{x \in \{0,1\}^n} \nu(x) = (2\delta)2^n \), the expected size of \(S \), by linearity of expectation.

To choose \(H \), for each \(x \in \{0,1\}^n \), add \(x \) to \(H \) independently with probability \(\nu(x) \). Then

1. \(\Pr[|H| \geq (2\delta)2^n(1 - \eta)] \geq 1 - e^{-\eta^2(2\delta)2^n/3} \). (The sum of independent Bernoulli’s is controlled by the multiplicative Chernoff bound; see Alon and Spencer Corollary A.1.14 or Wikipedia).

We will end up choosing \(\eta \) so that this probability is close to one.

2. With high probability over choice of \(H \),
\[
\Pr_{x \in H} [f(x) = C(x)] \leq 1/2 + \epsilon/2
\]
To prove 2, fix a circuit C. Let Y be the random variable that is the number of agreements between f and C on H. Then

$$
\mathbb{E}_H Y = \sum_{x \in \{0, 1\}^n} \Pr[x \in H] 1_{f(x) = C(x)} = \sum_{x \in \{0, 1\}^n} \nu(x) 1_{f(x) = C(x)}
$$

(1)

again by linearity of expectation. $M_{S,C} = \frac{1}{(2\delta)^n} \sum_{x \in S} 1_{f(x) = C(x)}$, so

$$
\mathbb{E}_{S \sim \mu_s}[M_{S,C}] = \sum_{S} \mu_S(S) \frac{1}{(2\delta)^n} \sum_{x \in S} 1_{f(x) = C(x)}
$$

(2)

$$
= \frac{1}{(2\delta)^n} \sum_{x \in \{0, 1\}^n} 1_{f(x) = C(x)} \sum_{S \ni x} \mu_S(S)
$$

(3)

$$
= \frac{1}{(2\delta)^n} \sum_{x \in \{0, 1\}^n} 1_{f(x) = C(x)} \Pr_{S \sim \mu_s}[x \in S]
$$

(4)

$$
= \frac{1}{(2\delta)^n} \sum_{x \in \{0, 1\}^n} \nu(x) 1_{f(x) = C(x)}.
$$

(5)

Equations 1 and 5, combined with the fact that we are in Case 1, imply $\mathbb{E}[Y] = \mathbb{E}_{S \sim \mu_s}[M_{S,C}](2\delta)^n \leq (1/2 + \epsilon)(2\delta)^n$. Note that Y is a sum of independent indicator variables, so by the multiplicative Chernoff bound and $\epsilon < 1/2$

$$
\Pr[Y > (1/2 + 2\epsilon)(2\delta)^n] = \Pr[Y > (1/2 + \epsilon)(2\delta)^n + \epsilon(2\delta)^n]
$$

$$
\leq e^{-\frac{\epsilon^2}{4}(\frac{n}{\delta})^2(2\delta)^n} \leq e^{-\frac{\epsilon^2}{4}(2\delta)^n}.
$$

This was for a fixed C. By the union bound, with probability at least

$$
1 - (\text{number of Small circuits}) e^{-\frac{1}{4}(2\delta)^n} - e^{-\eta^2(2\delta)^n/3}
$$

(6)

$$
= 1 - (s')^a(s') e^{-\frac{1}{4}(2\delta)^n} - e^{-\eta^2(2\delta)^n/3}
$$

(7)

we have that for all Small circuits, the number of agreements between C and f on H is at most $(1/2 + 2\epsilon)(2\delta)^n$ and $|H| \geq (1 - \eta)(2\delta)^n$. Provided 7 is positive, there exists such an H, so we can choose $s' = e^2s/5n \leq 2.9n e^2\delta$ and $\eta = 5(\delta 2^n)^{-1/2}$ provided n is large enough.

0.2 Case 2:

Now suppose we are in Case 2. We want a small circuit that agrees with f on a $(1 - \delta)$ fraction of inputs. First sample $C_1 \ldots C_t$ from μ_C. Let $\eta(x) = \Pr_{C \in \mu_C}[C(x) = f(x)]$. Recall that $M_{S,C} = \Pr_{x \in S}[C(x) = f(x)] = \mathbb{E}_{x \in S}[1_{C(x) = f(x)}]$. So for all Large sets S,

$$
\mathbb{E}_{C \in \mu_C}[M_{S,C}] = \mathbb{E}_{C \in \mu_C} \mathbb{E}_{x \in S}[1_{C(x) = f(x)}] = \mathbb{E}_{x \in S} \mathbb{E}_{C \in \mu_C}[1_{C(x) = f(x)}] = \mathbb{E}_{x \in S} \eta(x) \geq 1/2 + \epsilon.
$$

(8)

Let $n'(x) = \frac{1}{t} \sum_{i=1}^t 1_{C_i(x) = f(x)}$.

4
Claim 5. With probability at least $1 - 2^n e^{-5\epsilon^2 t}$ over choice of C_1, \ldots, C_t, for all x, $|\eta(x) - \eta'(x)| < \epsilon/2$.

Proof. Use Chernoff to bound the probability of the condition not holding for a specific x: by the additive form of Chernoff, $Pr[|\eta'(x) - \eta(x)| \geq \epsilon/2] \leq e^{-5\epsilon^2 t}$. Next union bound over $x \in \{0,1\}^n$. \hfill \square

If $t \geq 3n/\epsilon^2$, there are C_1, \ldots, C_t such that for all x, $|\eta(x) - \eta'(x)| < \epsilon/2$. By 8, $\mathbb{E}_{x \in S}[\eta'(x)] \geq 1/2 + \epsilon/2$ for all S of size $(2\delta)2^n$.

A first attempt: Define $C^*(x) = Maj(C_1, \ldots, C_t)$). Let S^* be the Large set where $\mathbb{E}_{x \in S}[\eta'(x)]$ is the smallest. In other words, S^* is the $(2\delta)2^n$ first x in increasing order of $\eta'(x)$. Note that for $x \notin S^*$, $\eta'(x) \geq 1/2 + \epsilon/2$. This implies C^* is correct outside S^*, since C^* is the majority of the C_i and at least half the C_i are correct. So $Pr_{x \in \{0,1\}^n}[C^*(x) = f(x)] \geq 1 - 2\delta$, but we need $1 - \delta$. It seems like this approach won’t tell us much about what happens inside S^*. To this end, we modify C^*.

The real attempt: Let S^* be the defined as in the first attempt. Define $\beta = \max\{\eta'(x) : x \in S^*\} - 1/2$. Define

$$C^*(x) = \begin{cases} 0 & \frac{1}{7} \sum_i C_i(x) \leq \frac{1}{7} - \beta \\ 1 & \frac{1}{7} \sum_i C_i(x) > \frac{1}{7} + \beta \\ Y & \text{otherwise,} \end{cases}$$

(9)

where Y is chosen independently in $\{0,1\}$ with mean $\frac{1}{2} + \frac{1}{7} \sum_i C_i(x) - \frac{1}{2}$. For $x \notin S^*$, $\eta'(x) \geq 1/2 + \beta > 1/2$ by the definition of β, so C^* is correct on x. Within S^*, we need to show that the probability over choice of x and Y that $C^*(x)$ is correct is at least $1/2$. If $f(x) = 1$, then $\frac{1}{7} \sum_i C_i(x) = \eta'(x)$ and so

$$Pr_{x \in S^*, Y}[C^*(x) = f(x)] = \mathbb{E}_{x \in S^*}[\mathbb{E}_Y[C^*(x)]] \geq E_{x \in S^*} \left[\frac{1}{2} + \frac{1}{7} \sum_i C_i(x) - \frac{1}{2} \right]$$

$$= E_{x \in S^*} \left[\frac{1}{2} + \frac{\eta'(x) - \frac{1}{2}}{2\beta} \right] \geq 1/2 + \epsilon/4\beta > 1/2.$$

because even if $\frac{1}{7} \sum_i C_i(x) \leq 1/2 - \beta$, $C^*(x)$ will be zero, which is larger than the negative number $\frac{1}{2} + \frac{1}{7} \sum_i C_i(x) - \frac{1}{2}$. If $f(x) = 0$, then $\frac{1}{7} \sum_i C_i(x) = 1 - \eta'(x)$ and so

$$Pr_{x, Y}[C^*(x) = f(x)] = \mathbb{E}_x[\mathbb{E}_Y[1 - C^*(x)]] \geq E_{x \in S^*} \left[\frac{1}{2} + \frac{1/2 - \frac{1}{7} \sum_i C_i(x)}{2\beta} \right]$$

$$= E_{x \in S^*} \left[\frac{1}{2} + \frac{\eta'(x) - \frac{1}{2}}{2\beta} \right] \geq 1/2 + \epsilon/4\beta > 1/2.$$
If remains to show that C^* can be computed by a small circuit. This stands to reason, since in addition to the t copies of C we just need to add a gadget that outputs 1 if the sum of the C_i is large enough, 0 if it is small enough, and a random bit with the right probability if it is in between. Intuitively this should take something like $O(t + ts')$ gates. First, let’s show C^* can be computed by a small randomized circuit $C(x, r)$ depending on some random bits r. As 2β is q/t for some integer $q \in [t]$, look at

$$\frac{1}{2} + \frac{1}{t} \sum_i C_i(x) - \frac{1}{2}\beta$$

$$= \frac{1}{2q} (q + 2 \sum_i C_i(x) - t). \quad (10)$$

This means once we can compute $q + 2 \sum_i C_i(x) - t$ from the C_i, we can output 0 if it is ≤ 0 and output 1 if it is $> 2q$, and if it is in $[2q]$ output 1 or 0 according to whether it is \geq or $<$ a random binary number between 1 and $2q$ generated by at most $O(\log t)$ random bits. Since $q + 2 \sum_i C_i(x) - t$ is at most $2t$, we need at most $O(\log t)$ bits to represent it and $O(t)$ gates to compute each bit (including a sign bit). To compare the two numbers we only need $O(\log^2 t)$ gates. In any case, since $t = 3n/\epsilon^2$, we need at most

$$3ns'/\epsilon^2 + O(n/\epsilon^2 \log(n/\epsilon^2)) \leq s$$

gates.

If $C(x, r)$ is a randomized circuit (where x is the input and r is random bits) such that $E_x[E_r[1_{f(x) = C(x,r)}]] \geq 1 - \delta$, then there exists r_0 such that $E_x[1_{f(x) = C(x,r_0)}] \geq 1 - \delta$. Fix that r_0 and hardwire it into C. This gives a circuit of size at most s that computes f with probability at least $1 - \delta$. \qed