Today we will see ϵ-biased spaces, almost k-wise independent spaces, and some applications.

1 Distributions

Let μ be a distribution on $\{0, 1\}^n$.

Lemma 1. μ is uniformly distributed on $\{0, 1\}^n$ iff for each nonempty $S \subseteq [n]$

$$\Pr_{x \in \mu} \left[\sum_{i \in S} x_i = 1 \right] = \frac{1}{2}$$

(where the addition is mod 2).

Proof. Let $\chi_S : \{0, 1\}^n \to \mathbb{R}$ where

$$\chi_S(x) = (-1)^{\sum_{i \in S} x_i}.$$

Thus:

$$\chi_S(x) = \begin{cases} 1 & \text{if } \sum_{i \in S} x_i = 0 \\ -1 & \text{if } \sum_{i \in S} x_i = 1. \end{cases}$$

We can treat μ as a real valued function $\mu : \{0, 1\}^n \to \mathbb{R}$ with $\mu(x) \geq 0$ for all $x \in \{0, 1\}^n$ and $\sum_{x \in \{0, 1\}^n} \mu(x) = 1$.

For nonempty S, consider the inner product:

$$\langle \mu, \chi_S \rangle = \sum_{x \in \{0, 1\}^n} \mu(x) \chi_S(x)$$

$$= \sum_{x \in \{0, 1\}^n, \chi_S(x) = 1} \mu(x) - \sum_{x \in \{0, 1\}^n, \chi_S(x) = 0} \mu(x)$$

$$= \Pr_{x \in \mu} \left[\sum_{i \in S} x_i = 0 \right] - \Pr_{x \in \mu} \left[\sum_{i \in S} x_i = 1 \right] = 0 \text{ (by our hypothesis)}$$

Aside: Characters and Fourier analysis

The χ_S are called the characters of the group $(\mathbb{Z}_2^n, +)$. We have the following important properties:
1. \(\chi_S(x + y) = \chi_S(x) \ast \chi_S(y) \)

2. For any nonempty \(S \), we have \(\sum_{x \in \{0,1\}^n} \chi_S(x) = 0 \). This follows from the following calculation. Pick any \(i \in S \). Then:

\[
\sum_{x \in \{0,1\}^n} \chi_S(x) = - \sum_{x \in \{0,1\}^n} \chi_S(x + e_i) = - \sum_{x \in \{0,1\}^n} \chi_S(x),
\]

where \(e_i \) is the 0-1 vector with 1 only in the \(i \)th coordinate.

3. Furthermore, \(\chi_S(x) \ast \chi_T(x) = (-1)^{\sum_{i \in S \Delta T} x_i} \chi_{S \Delta T}(x) \). Sometimes we will also treat \(S, T \) as their characteristic vectors in \(\mathbb{Z}_2^n \), and in this notation, \(\chi_S(x) \cdot \chi_T(x) = \chi_{S \Delta T}(x) \).

4. \(\langle \chi_S, \chi_T \rangle = \sum_{x \in \{0,1\}^n} \chi_S(x) \chi_T(x) = \sum_{x \in \{0,1\}^n} \chi_{S \Delta T}(x) = \begin{cases} 0 & \text{if } S \neq T \neq 0 \\ 2^n & \text{if } S = T. \end{cases} \)

This means that \(\{x_S\} \) are an orthogonal system, and since there are \(2^n \) of them, they are a basis for \(\mathbb{R}^{\{0,1\}^n} \).

Let \(\hat{\mu}(S) = \langle \mu, \chi_S \rangle \): the \(S \)th Fourier coefficient of \(\mu \).

End Aside

Proof (continued) We have \(\hat{\mu}(S) = 0 \) for each nonempty \(S \). Thus \(\mu = \alpha \ast \chi_\emptyset \) for some \(\alpha \), and since \(\mu \) is a distribution, we have \(\mu = \frac{1}{2^n} \cdot \chi_\emptyset \), and this is the uniform distribution. \(\square \)

Lemma 2. Suppose that for all nonempty \(S \subseteq [n] \),

\[
\Pr_{x \in \mu} \left[\sum_{i \in S} x_i = 1 \right] \in ((1 - \epsilon)/2, (1 + \epsilon)/2).
\]

Then \(\mu \) is \(\epsilon \) close to the uniform distribution in \(L_2 \), and thus \(\mu \) is \(\epsilon 2^{n/2} \) close the the uniform distribution in \(L_1 \) and \(\mu \) is \(\epsilon \) close the the uniform distribution in \(L_\infty \).

Proof. The hypothesis gives us that \(|\hat{\mu}(S)| \leq \epsilon \)

We also have \(\hat{\mu}(\emptyset) = \langle \mu, \chi_\emptyset \rangle = 1 \)

Aside: Parseval’s Identity

Lemma 3. Take any \(f : \{0,1\}^n \rightarrow \mathbb{R} \). We have

\[
f = \frac{1}{2^n} \sum_S \langle f, \chi_S \rangle \cdot \chi_S = \frac{1}{2^n} \sum_S \hat{f}(S) \cdot \chi_S.
\]

Then

\[
\sum_x f(x)^2 = \frac{1}{2^n} \sum_S \hat{f}(S)^2
\]
Proof. This follows from the orthogonality of the χ_S:

$$\sum_x f(x)^2 = \langle f, f \rangle$$

$$= \frac{1}{4^n} \sum_S \hat{f}(S) \chi_S \sum_T \hat{f}(T) \chi_T$$

$$= \frac{1}{4^n} \sum_{S,T} \hat{f}(S) \hat{f}(T) \langle \chi_S, \chi_T \rangle$$

$$= \frac{1}{2^n} \sum_S \hat{f}(S)^2.$$

\(\square\)

End Aside

Proof (cont’d): Let $U = \chi_\emptyset \ast \frac{1}{2^n}$ be the uniform distribution. We have $\hat{U}(\emptyset) = 1$, and $\hat{U}(S) = 0$ for all nonempty S. Thus $\mu - U$ (which is what we want to show is small in the L_2 norm), has the following Fourier coefficients:

$$\widehat{\mu - U}(S) = \begin{cases}
0 & \text{if } S = \emptyset \\
\hat{\mu}(S) & \text{otherwise}
\end{cases}$$

Now using the Parseval identity, we get that

$$\|\mu - U\|_2^2 = \frac{1}{2^n} \sum_{S \neq \emptyset} \hat{\mu}(S)^2 \leq \frac{1}{2^n} \epsilon^2 (2^n - 1) \leq \epsilon^2.$$

This completes the proof, and the result for L_1 and L_∞ follow from Cauchy-Schwarz and trivially.

\(\square\)

Thus if a distribution fools linear functions really well, it is almost uniform.

1.1 Notes on the L_1 distance

There are many distances between probability distributions. But the L_1 distance has special status when we are interested in pseudorandomness.

Lemma 4 (Data processing inequality). Suppose μ, ν are distributions over the same domain D. Let f be a function defined on D. Pick $x \in \mu$, $y \in \nu$.

$$\|f(x) - f(y)\|_{L_1} \leq \|\mu - \nu\|_{L_1}.$$

This is closely related to the following simple characterization of L_1 distance:

$$\frac{1}{2} \|\mu - \nu\|_{L_1} \geq \epsilon$$ if and only if there exists a distinguishing test $T : D \to \{0, 1\}$ such that

$$\|T(\mu) - T(\nu)\|_{L_1} = \Pr_{x \in \mu}[T(x) = 1] - \Pr_{x \in \nu}[T(x) = 1] \geq \epsilon.$$

Sketch of Proof: Graph the distributions μ and ν over their domain (They have the same domain). $\frac{1}{2} \|\mu - \nu\|_{L_1}$ is the area between the curves where μ is above ν. Choose T to output 1 on sets where $\mu > \nu$. This gives us $\Pr_{x \in \mu}[D(x) = 1] - \Pr_{x \in \nu}[D(x) = 1]$ is the area between μ and ν on these sets, which is $\frac{1}{2} \|\mu - \nu\| \geq \epsilon.$
Relationship to pseudorandom generators When we studied PRGs, the goal was to find a simple \(\mu \) s.t. \(\forall \) small circuits \(C \),

\[
\Pr_{x \in \mu} [C(x) = 1] - \Pr_{x \in U} [C(x) = 1] \leq \epsilon.
\]

The only difference between this condition and the condition for small \(L_1 \) distance is the complexity constraint that \(C \) is small. **THIS MAKES ALL THE DIFFERENCE IN THE WORLD!**

By the above discussion, we could try to show that \(\mu \) is a PRG by showing the stronger condition that \(\mu \) is \(\epsilon \)-close to the uniform distribution in \(L_1 \). This strengthening ruins the approach: there cannot be a \(\mu \) which is generated using a small seed that is close to the uniform distribution in \(L_1 \) distance:

\[
\|\mu - U\|_{L_1} \leq \epsilon \Rightarrow \text{support}(\mu) \geq (1 - \epsilon) \cdot 2^n.
\]

Try to show this.

2 \(\epsilon \)-biased distributions and \(k \)-wise independence

Definition 5. \(\mu \) is \(\epsilon \)-biased if for all nonempty \(S \subseteq [n] \),

\[
\Pr_{i \in S} [\sum_{i \in S} x_i = 1] \in [(1 - \epsilon)/2, (1 + \epsilon)/2].
\]

Note:

1. \(\mu \) is 0-biased \(\iff \mu \) is uniform.
2. \(\epsilon \)-biased \(\Rightarrow \mu \) is \((\epsilon, \epsilon 2^n/2)\)-close to uniform in \((L_2, L_1)\).
3. \(\epsilon \)-biased \(\iff \mu \) is \(\epsilon \)-close to uniform in \(L_1 \).

When is \(\mu \) \(k \)-wise independent?

\(\mu \) is \(k \)-wise independent \(\iff \forall S \ 1 \leq |S| \leq k \), we have \(\hat{\mu}(S) = 0 \).

Proof: \((\Rightarrow)\) Take such an \(S \). Since \(\mu \) is \(k \)-wise independent, we have \(\Pr_{x \in \mu} [\sum_{i \in S} x_i = 1] = \frac{1}{2} \). By definition of \(\hat{\mu} \), this yields \(\hat{\mu}(S) = 0 \).

\((\Leftarrow)\) Let \(S \) be as stated. Look at \(\mu|_S \). \(\forall T \subseteq S \), \(T \neq \emptyset \), we know that \(\Pr_{x \in \mu|_S} [\sum_{i \in S} x_i = 1] = \frac{1}{2} \), so \(\mu|_S(T) = 0 \), meaning \(\mu|_S \) is uniform. This implies that \(\mu \) is \(k \)-wise independent. \(\square \)

When is \(\delta \)-almost \(\mu \) \(k \)-wise independent?

Suppose \(\forall S \subseteq [n], |S| \leq k, S \neq \emptyset \) we have \(|\hat{\mu}(S)| \leq \epsilon \), then \(\mu \) is \(\delta \)-almost \(k \)-wise independent in \(L_1 \) for \(\delta = \epsilon 2^k/2 \).

Take any \(S \subset [n] \ |S| = k \). Look at \(\nu = \mu|_S \), a distribution on \(\{0, 1\}^S \). \(\forall T \subseteq S \), since \(\hat{\nu}(T) = \hat{\mu}(T) \), we have \(|\hat{\nu}(T)| \leq \epsilon \). This implies that \(\nu \) is \(\epsilon \cdot 2^k/2 \) close to uniform on \(\{0, 1\}^S \).
How much randomness is needed to generate these spaces?

For k-wise independence: we saw that $k(\log n)$ bits suffices. In fact, $\Omega(k \log n)$ bits are needed (you will prove this in the homework).

For ϵ-biased spaces: First let us show that there exist “simple” ϵ-biased spaces; we will later see how to get them explicitly. We try to get an ϵ-biased μ which is uniform on some $K \subseteq \{0,1\}^n$ with $|K|$ small. Then $\log |K|$ bits suffice to generate a sample from μ.

We use the probabilistic method: Choose K at random as follows: pick y_1, \ldots, y_m in $\{0,1\}^n$ uniformly. We want that for all linear functions $h : \mathbb{Z}_n^2 \to \mathbb{Z}_2$,

$$\Pr_{i \in [m]}[h(y_i) = 1] \in ((1 - \epsilon)/2, (1 + \epsilon)/2).$$

Fix h. Then:

$$\Pr_{y_1, \ldots, y_m}[y_1, \ldots, y_m \text{ are bad for } h \leq e^{-\Omega(\epsilon^2 m)},$$

by a Chernoff bound (This is because for a random $y \in \mathbb{Z}_2^n$, $\Pr[h(y) = 1] = 1/2$).

We then union bound over all h to get

$$\Pr_{y_1, \ldots, y_m}[\exists h : y_1, \ldots, y_m \text{ are bad for } h \leq 2^n \cdot e^{-\Omega(\epsilon^2 m)}.$$

Now choose $m = O(\frac{n}{\epsilon^2})$, so that this is less than 1. We thus get an ϵ-biased space which can be generated using $\log n + 2 \log \frac{1}{\epsilon} + O(1)$ bits of true randomness. It turns out that this seed length is near optimal. Later this class we will explicitly construct ϵ-biased spaces with seed length $O(\log n + \log \frac{1}{\epsilon})$.

For δ-almost k-wise independent spaces: We know that ϵ-biased spaces are automatically δ-almost k-wise independent for some δ. It turns out that this already gives us almost k-wise independent spaces using smaller seed length than what is needed for pure k-wise independence. Indeed, if we take $\epsilon = 2^{-k/2} \cdot \delta$ and take an explicit ϵ biased space as mentioned above, then this is δ-almost k-wise independent, and has a seed length of $O(\log n + \log \frac{1}{\epsilon}) = O(\log n + k + \log \frac{1}{\delta})$.

3 Efficient construction of δ-almost k-wise independent spaces

One way to get k-wise independence is to multiply a random seed y by a matrix M:

$$y \mapsto y^T M.$$

In this construction, y is a vector with $O(k \log n)$ elements chosen uniformly at random, and M has n columns. Each element of $y^T M$ is $\langle y, a_i \rangle$, where a_i is a column of M.

Claim: The output $y^T M$ will be k-wise independent if and only if every k rows of M are independent.

Proof: Let $S \subset [n]$. Suppose $\sum_{i \in S} (a_i, y)$ is not uniformly distributed. This is equivalent to $\langle y, \sum_{i \in S} a_i \rangle$ is not uniformly distributed. But, this implies that $\sum_{i \in S} a_i = 0$, since $\langle y, b \rangle$ is uniform for any fixed $b \neq 0$.

5
Claim: If, instead of taking y from a uniformly random distribution, we take y from an ϵ-biased distribution, $y^T M$ will still be $\epsilon 2^{k/2}$-almost k-wise independent.

Proof: Suppose not; then there exists $S \in [n], S \neq \emptyset, |S| \leq k$ such that bias $\left(\langle \sum_{i \in S} a_i, y \rangle \right) \geq \epsilon$. Since each set of k columns of M are independent, we know that $\sum_{i \in S} a_i \neq 0$. In addition, y is chosen from an ϵ-biased space. So, we've reached a contradiction.

How many bits of randomness will we need to generate an n bit sample from a δ-almost k-wise independent space using this procedure? We need a $\delta 2^{-k/2}$-biased sample of length $O(k \log n)$. Since $\log m + 2 \log \left(\frac{1}{\epsilon} \right)$ bits of uniform randomness are needed for m bits of ϵ-biased randomness, we need $O(\log k + \log \log n) + O(\log \left(\frac{1}{\delta} \right) + k) = O(k + \log \log n + \log \left(\frac{1}{\delta} \right))$ total bits of randomness.

4 Applications of δ-almost k-wise independent distribution

4.1 k-universal sets

A k universal set $S \subseteq \{0,1\}^n$ has the property that the projection of S onto any k indexes contains all 2^k possible patterns. We can use δ-almost k-wise independent distribution to construct k-universal sets. If $\delta = \frac{1}{10} \cdot \frac{1}{2^k}$, then any δ-almost k-wise independent distribution has k-universal support.

The size of the k-universal set we get out of this is $2^{O(k + \log \log n + \log \left(\frac{1}{\delta} \right))} = (2^k \cdot \log n)^O(1)$, and is nearly optimal. (Note the surprisingly tiny dependence on n!)

4.2 Ramsey graphs

Pick the edges $(x_{ij})_{i<j} \in \{0,1\}^{\binom{n}{2}}$ from a δ-almost k-wise independent space; we can interpret $x_{ij} = 1$ as an edge between vertex i and vertex j, and $x_{ij} = 0$ as the absence of an edge. Fix $S \in [n], |S| = k$. By the data processing inequality,

$$\Pr[x_{ij} \text{ are all 0 or all 1 for all } i,j \in S] \leq 2 \cdot 2^{-\left(\frac{k}{2} \right)} + \delta.$$

Taking a union bound,

$$\Pr[\exists S, |S| = k, \text{ such that } S \text{ is a clique or independent set}] \leq \binom{n}{k} (2 \cdot 2^{-\left(\frac{k}{2} \right)} + \delta)$$

By setting $\delta = 2^{-\left(\frac{k}{2} \right)}$ and $n = 2^{k/10}$ in the above inequality, we ensure that the probability that there is a clique or independent set of size k is less than 1. Thus, we’ve described an explicit family of $2^{O(\log^2 n)}$ graphs on n vertexes, at least one of which is $O(\log n)$ Ramsey. As a corollary, we can construct an $O(\log n)$ Ramsey graph in $2^{O(\log^2 n)}$ time.
5 Construction of ϵ-biased spaces

5.1 Finite extension field review

The construction described here will use the finite field \mathbb{F}_{2^n}. This is an n-dimensional vector space over \mathbb{F}_2. Addition is the same as for \mathbb{F}_2^n; multiplication is a bilinear map. A polynomial $P(x) \in \mathbb{F}_{2^n}[x]$ of degree d has at most d roots.

5.2 Properties needed from an ϵ-biased space

Suppose $y_1 \ldots y_m$ is an ϵ-biased space; let G be the $n \times m$ matrix with columns $y_1 \ldots y_m$. Pick $x \in \{0, 1\}^n$. Consider $x^T G$. If $x \neq 0$, it must have $((1 - \epsilon)/2, (1 + \epsilon)/2)$ fraction of 1s. Pick any $x, y \in \{0, 1\}^n$, and consider the Hamming distance $\Delta(x^T G, y^T G)$; this is the number of 1s in $x^T G - y^T G = (x - y)^T G$, which is in the range $((1 - \epsilon)/2, (1 + \epsilon)/2)$. Thus, the image of $x^T G$ is a linear space in $\{0, 1\}^m$ of dimension n, such that any two vectors in the space have distance of $1/2 \pm \epsilon/2$.

5.3 Construction and proof of correctness

A point from the ϵ-biased space is calculated from two uniformly chosen elements $\alpha, \beta \in \mathbb{F}_{2^n}$. The point is calculated as $(\alpha, \beta) \mapsto [(1, \beta), (\alpha, \beta), \ldots, (\alpha^N, \beta)]$.

where $\langle \cdot, \cdot \rangle$ is the inner product over \mathbb{F}_{2^n}, when elements of \mathbb{F}_{2^n} are represented in some basis over \mathbb{F}_2.

If N is set to $\epsilon 2^n$, then this construction needs $2 \log(N/\epsilon) = 2 \log N + 2 \log(1/\epsilon)$ bits of randomness.

We need to show that the sample space described is ϵ-biased. Pick (α, β) uniformly from \mathbb{F}_{2^n}, and take any $S \subseteq [N]$. We need to show that

$$\Pr_{\alpha, \beta} \left[\sum_{i \in S} \langle \alpha^i, \beta \rangle = 0 \right] \in ((1 - \epsilon)/2, (1 + \epsilon)/2).$$

We have $\sum_{i \in S} \langle \alpha^i \beta \rangle = \langle \sum_{i \in S} \alpha^i, \beta \rangle$. There are two cases to consider; either α is a root of $P(x) = \sum_{i \in S} x^i$, or it is not. If α is not a root of $P(x)$, then $\Pr_{\beta} [\langle \sum_{i \in S} \alpha^i, \beta \rangle = 0] = \frac{1}{2}$. If α is a root of $P(x)$, then certainly $\langle \sum_{i \in S} \alpha^i, \beta \rangle = 0$. However, there are at most N roots of $P(x)$, so the probability that α is a root is at most $N/n = \epsilon$. Thus, the space is ϵ-biased.