
Lecture 3: AC0, the switching lemma

Topics in Complexity Theory and Pseudorandomness (Spring 2013)
Rutgers University
Swastik Kopparty

Scribes: Meng Li, Abdul Basit

1 Pseudorandom sets

We start by proving the existence of small sets that look pseudorandom to all small circuits. Getting
your hands on such a set is enough for derandomizing all your randomized algorithms.

Theorem 1. For any c and n, there is an m = O(n2c) and x1, . . . , xm ⊆ {0, 1}n such that ∀ circuit
C with |C| ≤ nc

| Pri∈[m][C(xi) = 1]− Prx∈{0,1}n [C(x) = 1] |≤ 0.1

Proof. Pick x1, x2, ..., xm from {0, 1}n independently and uniformly at random. For a fixed C,
consider the probability

Prx1,...,xm
[∣∣Pri∈[m][C(xi) = 1]− Prx∈{0,1}n [C(x) = 1]

∣∣ > 0.1
]

Let

Yi =

{
1 C(xi) = 1
0 C(xi) = 0

Notice that

E[Yi] = Prx∈{0,1}n [C(x) = 1]

E
[∑m

i=1 Yi
m

]
= Pri∈[m][C(xi) = 1]

So by the Chernoff bound:

Prx1,...,xm
[∣∣Pri∈[m][C(xi) = 1]− Prx∈{0,1}n [C(x) = 1]

∣∣ > 0.1
]
≤ e−(0.1)2m/2

Now we know that for every fixed circuit C, the random collection x1, . . . , xm fools C with high
probability. Taking a union bound over all C s.t. |C| ≤ nc (of which there are (nc)O(nc)):

Pr
x1,...,xm

[
∃C, |C| ≤ nc s.t.

∣∣Pri∈[m][C(xi) = 1]− Prx∈{0,1}n [C(x) = 1]
∣∣ > 0.1

]
≤ e−O(n2c)·eO(nc logn) < 1

Thus with positive probability (and in fact, with high probability), a random choice of x1, . . . xm
has the desired property. In particular, such a choice exists.

1

2 AC0 circuits

AC0 circuits are circuits with O(1) depth and unbounded fan-in AND, OR and NOT gates. It will
be the first nontrivial circuit class for which we can prove exponential lower bounds.

First observe: every polynomial size AC0 circuit has an equivalent circuit in NC1. We will show
that PARITY and MAJORITY both do not have polynomial size AC0 circuits. Thus AC0 is a strict
subset of NC1.

Let us warm up by understanding AC0 circuits when the depth is really small. Depth 0 circuits
are simply literals. Depth 1 circuits are simply ANDs or ORs of literals. Circuits of depth 0 and 1
thus cannot even compute some functions, even if we do not care about their size.

Depth 2 circuits are either DNFs (ORs of ANDs of literals) or CNFs(ANDs of ORs of literals).
Every function can be computed by a DNF and also by a CNF. The AND gates of a DNF are
called terms. The OR gates of a CNF are called clauses.

A t-DNF is a DNF where all the gates at the bottom level have fan-in at most t. Note that not
every function can be computed by a t-DNF if t < n.

Theorem 2. Depth 2 AC0 circuits for PARITY have size at least Ω(2n).

Proof. Suppose we have a DNF computing PARITY (the case of CNF is handled similarly). Sup-
pose some term T does not include all variables. Consider an assignment which sets that term T
to 1, and thus sets the value of the full DNF to 1. Now if we flip the value of any of the variables
not in T , the term is still set to 1, and thus so is the DNF. But PARITY changes its value every
time we flip a variable. Hence, all terms include all n variables.

Now a term that includes all n variables can equal 1 on exactly 1 input in {0, 1}n. Since the DNF
has to compute PARITY, which equals 1 on 2n−1 inputs, there must be at least 2n−1 terms in the
DNF.

Already showing that polynomial size depth 3 circuits cannot compute PARITY is quite nontrivial.

We will show that any AC0 circuit of constant depth and subexponential size cannot compute PAR-
ITY.

Theorem 3. If C is an AC0 circuit of size s, depth d computing PARITY, then s ≥ 2Ω(n
1

d−1)

In order to prove the theorem, we need to use a powerful theorem describing the behavior of AC0

circuits under restrictions. As in the case of formula lower bounds, we will say that there is a
restriction of any AC0 circuit which simplifies it drastically. On the other hand, any restriction
of the PARITY function is a PARITY function, and will mean that it cannot be computed by a
drastically simplified AC0 circuit (unless the originall AC0 circuit was very big to begin with).

How can we hope to prove the existence of such a restriction? One idea is to induct on the circuit.
Consider all the subcircuits feeding in to the top gate. By induction, we can get a simplifying
restriction for each of the subcircuits. But how do these restrictions relate to each other? In fact,

2

these restrictions may be mutually inconsistent. This dooms any such naive strategy to find such
a restriction.

The key idea is to aim higher. We will try to show that most restrictions simplify a circuit drastically.
This kind of statement lends itself to induction very nicely; if for each subcircuit of a circuit, most
restrictions simplify that subcircuit drastically, then by a union bound, most restriction simplify
all the subcircuits of a circuit simultaneously. The crucial aspect is to analyze how these simplified
subcircuits interact with the top gate of the circuit. This is precisely the content of the switching
lemma.

The switching lemma is concerned with using random restrictions to simplify a CNF/DNF. To
generate a random restriction, we pick a random set of variables, and set them to 0/1 uniformly and
independently, and leave the remaining variables unset. We denote the formula f after restriction
ρ by f |ρ.

Lemma 4. Given a t-CNF f , apply a random restriction ρ on it, leaving pn variables alive (p <
1/2).

Pr[f|ρcan not be represented as a s-DNF] ≤ (16pt)s

Proof. Let l = pn be the number of alive variables, Rk be the set of restrictions leaving k variables
alive. We have:

|Rk| =
(
n

k

)
2n−k

Let B be the set of ”bad” restrictions in R` for which the restricted function cannot be represented

as an s-DNF. Obviously, B ⊆ Rl. The probability that f can’t be rewritten as a s-DNF is
|B|
|Rl|

.

To find a upper bound on |B|, we try to find an “encoding” of B. Specifically, we will give an
injection from B → Rl−s ×W , where W is a set of size at most (4t)s. Therefore we will get:

|B|
|Rl|
≤
(
n
l−s
)
2n−l+s(4t)s(
n
l

)
2n−l

≤ (
l

n− l
)s(8t)s ≤ (

p

1− p
)s(8t)s ≤ (16tp)s

What kind of property is ”not representable as an s-DNF”? Define a minterm of a function to be
a minimal set of variables which has the property that there is a setting of those variables which
forces the function to equal 1. It is a simple fact that if every minterm of a function is of size
≤ s, then the function can be represented as an s-DNF. So if a function is not representable as an
s-DNF, then it must have a minterm of size > s.

We fix an ordering of the clauses of f , and within each clause fix an ordering of the variables. Take
a bad restriction ρ. Because ρ is bad, f |ρ is not identically 0 or 1; thus no clause of f is fixed to 0
under ρ (some clauses are fixed to 1, and the rest of the clauses are left unfixed).

We now use the minterm properties of functions not representables as s-DNFs. Since ρ is bad,
there is a restriction π of > s of the remaining variables that fixes f |ρ to 1, but any setting of a
subset of ≤ s of the variables of π does not fix the function f |ρ to 1.

Since ρπ fixes f to 1, it must fix each clause of f to 1. Let C1 be the first clause which is not fixed
to 1 by ρ (but is fixed to 1 by ρπ). Suppose C1 has d1 variables from π. Let π1 be the part of π
restricting those variables. Let π1 be the unique setting to the variables of π1 which prevents C1

from being fixed to 1 (this exists since C1 is OR of literals).

3

Now suppose we know only the restriction ρπ1, but not ρ. The key observation is that this is
enough to identify the clause C1! Indeed, we can consider the clauses of f in order, and identify the
first one which is not fixed to 1 by ρπ1. By giving a little bit more information along with ρπ1, we
can also identify π1 and thus ρ. Thus we found a way of describing a bad ρ by giving an element
of R`−d1 , along with a little bit more information. This is the main trick of the proof.

We now fully describe the encoding. Find the first clause C2 which is not fixed to 1 by ρπ1. Let
π2 be the restriction to C2 of π \ π1. Let π2 be the unique setting to the variables of π2 which
prevents C2 from being fixed to 1. In general, let Ci be the first clause which is not fixed to 1 by
ρπ1π2 . . . πi−1. Let πi be the restriction to Ci of π \ (π1π2 . . . πi−1). Let πi be the unique setting
to the variables of πi which prevents C2 from being fixed to 1. Continuing we get π1, π2, . . . and
π1, π2, We stop this process after the total number of variables restricted by π1 . . . πk and
π1 . . . πk exactly equals s (at the last step, we may restrict a subset of the variables of π in Ci).

Let π∗ be the restriction π1π2 . . . πk truncated to exactly s variables. Define ρ∗ = ρπ∗. For each
i ∈ [k], define ai ∈ {0, 1}t as follows: ai indicates which of the t variables of clause Ci are set by
πi. Also define a string b ∈ {0, 1}s which contains the values of π for each of the s variables fixed
by π1, π2, . . . , πk. We will show that (ρ∗, (ai)

k
i=1, b) completely determines ρ. Furthermore, we will

show that ((ai)
k
i=1, b) lies in a set of size at most (4t)s.

As indicated earlier, using ρπ∗ we can identify C1: we find the first clause not fixed to 1 by ρπ∗.
Then using a1 and b we can find π1 and π1. Then consider the restriction ρ1 = ρπ∗ \ π1 ∪ π1.
Restriction ρ1 lets us identify C2: it is the first clause which is not fixed to 1 by ρ1. Using a2, b
we can identify π2 and π2. Then consider ρ2 = ρ1 \ π2 ∪ π2, and proceed. In the end we know
ρk = ρπ1π2 . . . πk, as well as π1, π2, . . . , πk, and thus we know ρ. Thus we have an encoding of ρ.

Finally, observe that (ai)
k
i=1 comes from the set of all sequences of length at most k, such that each

element of the sequence being an element of {0, 1}t with at least one 1, and the total number of 1’s
in all the ai equals s. It is a simple exercise to show that the number of such sequences is at most
(2t)s.

Theorem 5. If C is a circuit of size M and depth d that computes the parity of n inputs, then

M ≥ 2Ω(n1/(d−1))

Proof Idea: The proof will use the Switching Lemma extensively. Given an AC0 circuit, a random
restriction is very likely to simplify each DNF (assuming it has small width) at the bottom two
layers . Specifcally, it’s quite likely that the restriction of each small-width DNF will be computable
by small-width CNF. So we switch all the small-width DNFs at the bottom two layers with small-
width CNFs. This lets us merge two layers of AND gates, and hence shrink the depth by 1. We
then repeat, overall making d− 2 random restrictions. The final restricted function is computable
by a small width DNF/CNF. We have that a good fraction of the variables are still unset and
that any restriction of Parity is either Parity (or its negation). But Parity on m variables (or its
negation) cannot be computed by a DNF/CNF of width < m.

Proof. Suppose C is a depth d AC0 circuit of size M which computes parity. Assume without loss
of generality that the bottom layer of C is ∧ gates (a symmetric argument works if the bttom layer
is ∨ gates). Then the second layer consist of ∨ gates computing DNF formulas. We first apply a
random restriction α0 which sets each variable with probability 1/2; this serves to make every gate
at the bottom layer have fan-in bounded by t (with t TBA).

4

A ∧ gate survives iff none of its variables has been set to 0. For a fixed gate, the probability that
a ∧ gate of width > t survives is ≤ (3/4)t. Then by the union bound, we have that the probability
that some gate of height 1 and width > t survives is ≤M(3/4)t. Also, by the Chernoff bound the
probability that fewer than n/4 variables are unset is exp(−n).

After the restriction α0, we have that the gates at the second layer compute t-DNF’s. We now
apply a restriction α1 with p = 1/100t. From the Switching Lemma, we have that the probability
that a particular restricted DNF can not be represented by a t-CNF is (10pt)t = (1/10)t. Then by
the union bound, the probability that some gate fails to become a t-CNF is ≤M(1/10)t. If we now
“plug in” these CNFs to the circuit, we can collapse the bottom two laters and get a new circuit
of depth d− 1, with the gates at bottom level having fan-in at most t.

We can fix such a restriction, and repeat. We apply restrictions α2, . . . , αd−2, each with p = 1/100t,
collapsing the circuit to depth 2. After the last restriction, the number m of variables remaining
is ≥ n

4(100t)d−2 with probability at least exp(−n). Also, with probability at most O(dM · (1/10)t),

the resulting depth 2 circuit is a t-DNF/t-CNF.

Now if t < m, this is a contradiction, since a t-DNF/t-CNF cannot compute parity or its negation
on > t bits. Thus if

O(dM · (1/10)t) + exp(−n) < 1,

t <
n

4(100t)d−2

then we have a contradiction.

Taking t = O(n
1

d−1) the second condition holds, and so to invalidate the first condition we must

have M ≥ 2Ω(n
1

d−1), as desired.

3 Lower Bounds for Majority

Theorem 6. If C is a circuit of size M and depth d that computes the majority of n inputs, then

M ≥ 2Ω(n1/(d−1))

Theorem 6 can be proved using the Switching Lemma. It is a good exercise to try and do so. We
prove the following weaker version of the theorem:

Theorem 7. If C is a circuit of size M and depth d that computes the majority of n inputs, then

M ≥ 2Ω(n1/d)

The proof of the theorem follows from the following Lemma:

Lemma 8. MAJ ∈ AC0 ⇒ PARITY ∈ AC0.

Proof. Say that Majority ∈ AC0. Then given x ∈ {0, 1}, we can test if |x| ≤ k or |x| ≥ k, by feeding
fixed 0/1 bits along with x into the Majority circuit. It follows that we can test |x| = k. Let Ck be
a circuit that tests if |x| = k. Then we can realize Parity by taking

∨
k oddCk.

5

4 Randomized AC0

Theorem 9. For every C(x, r) ∈ AC0, with |C| ≤ nc and function f : {0, 1}n → {0, 1} such that

Prr∈{0,1}n [C(x, r) 6= f(x)] ≤ ε ∀x ∈ {0, 1}n

then ∃ C ′(x) ∈ AC0 s.t. C ′(x) = f(x), ∀x ∈ {0, 1}n with |C ′| ≤ n2c.

In the last lecture, we showed that any randomized circuit C computing f could be converted into
a deterministic one. The proof involved amplifying the success probability by running the circuit
several times with independent random seeds and then taking the majority. Once we have a circuit
C ′ computing f with error probability at most 2−n, then there exists a random string r that gives
the correct answer for every x ∈ {0, 1}n. Fixing r into C ′ gives us a deterministic circuit.

Since we proved that Majority /∈ AC0, the same argument will not work for converting randomized
AC0 circuits to deterministic ones. A beautiful observation of Ajtai and Ben-Or is that we don’t
really require the full power of Majority for that argument to work. Instead one can work with a
weaker notion, Approximate Majority. It turns out that AC0 circuits can compute Approximate
Majority. With this new tool, we will be able to prove Theorem 9.

Definition 10 (Approximate Majority). An Approximate Majority is a boolean function f :
{0, 1}n → {0, 1} such that:

• f(x) = 0 for every x of Hamming weight at most n/4.

• f(x) = 1 for every x of Hamming weight at least 3n/4.

Theorem 11 (Ajtai, Ben-Or). There exists an Approximate Majority computable with polynomial
size AC0 circuits.

Thus every function computable by a polynomial size randomized AC0 can also be computed by a
polynomial size deterministic AC0 circuit.

We will prove this by coming up with a distribution of circuits C such that

• if |x| ≤ n/4 then PrC [C(x) 6= 0] << 2−n
2
.

• if |x| ≤ 3n/4 then PrC [C(x) 6= 1] << 2−n
2
.

If we can come up with such a distrubution, then there exists a circuit in AC0 that computes
Approximate Majority.

6

