
Lecture 1: Course overview, circuits, and formulas

Topics in Complexity Theory and Pseudorandomness (Spring 2013)
Rutgers University
Swastik Kopparty

Scribes: John Kim, Ben Lund

1 Course Information

Swastik Kopparty
Email: swastik.kopparty@rutgers.edu
Website: http://www.math.rutgers.edu/ sk1233/courses/Topics-S13/

Good reference books worth flipping through:

• Jukna: Extremal Combinatorics

• Jukna: Boolean Function Complexity

• Wegener: Complexity of Boolean Functions

• Vadhan: Pseudorandomness

• Luby and Wigderson: Pairwise Independent Hashing and Applications

2 Course Overview

2.1 Circuits and Formulas

A typical setting is that there is a function

f : {0, 1}n → {0, 1}

we want to compute. We will be studying whether this function can be computed using little
resources.

Definition 1. A boolean circuit is a directed acyclic graph with wires carrying some value in
{0, 1}, and these values are processed by gates computing certain prespecified boolean operations.

Example 2. For example, using the gates AND (∧), OR (∨) and NOT (¬), the function: f(x1, x2, x3) =
(x1 ∧ ¬x2) ∨ x3 is representable by a circuit with 3 gates.

Definition 3. A formula is a circuit where each gate has fan-out at most 1.

Formulas represent computation where the results of subcomputations cannot used more than once.

1

2.2 Branching Programs

Branching programs are used to model low-space computation. We will see some interesting re-
sults about the power of branching programs. We will also come across them when we study
pseudorandomness.

2.3 Data Structures

Data Structures are schemes for storing data in a way that we can answer questions about the data
quickly. A sample problem is to design a data structure for the SET MEMBERSHIP problem: We
are given a set S ⊆ [m] with |S| = n. We want to store something compactly in memory so that
we can answer questions of the form ”Is i ∈ S?” (where i ∈ [m]) by probing very few locations in
memory.

There is a trivial data structure that uses m bits of memory and allows us to answer questions with
just 1 probe to memory: Let the i’th bit of memory equal 1 iff i ∈ S. Then to answer whether
i ∈ S, we check the value of the i’th bit. This algorithm achieves minimum runtime, but requires
a lot of space (m bits).

What if we want to save as much space as possible? If we use s bits of space, then what is stored
in memory can take on at most 2s possible values. Now since what is stored in memory should
suffice to answer all the questions “is i ∈ S?”, what is stored in memory should determine S. Thus
2s ≥

(
m
n

)
and so the space required is at least log2

(
m
n

)
bits. This is because the query determines

whether i ∈ S for all i ∈ [m], so the query actually determines the subset S. The lower bound on the
space requirement then follows from the fact that there are

(
m
n

)
n-element subsets of [m]. A simple

algorithm that achieves the lower bound on space maps each choice of S to a unique sequence of⌈
log
(
m
n

)⌉
bits. The algorithm simply reads off the bits and uses the map to find the corresponding

set S and answer the query. This algorithm uses the minimal amount of space (
⌈
log
(
m
n

)⌉
bits), but

has a large query time of log
(
m
n

)
.

These algorithms seem to imply that there is a tradoff between space and query time. However,
we will see an algorithm that uses log

(
m
n

)
(1 + o(1)) bits with a query time of O(1).

2.4 Pseudorandomness

The other major theme of the class is pseudorandomness, or the generation of randomness.

What is randomness? How do we get it? How do we know when we’ve gotten it?

The big insight that starts the theory is that when we “want” randomness, it is for some purpose.
We then define pseudorandomness to be whatever suffices for that purpose.

Definition 4. A sequence of bits is pseudorandom if no algorithm of interest can distinguish
between it and truly random bits.

We will be much more concrete when the time comes, but this is the gist of it.

A good example of a randomized algorithms comes from graph connectedness. Given an undirected
graph G on n vertices, is G connected? Suppose only O(log n) space is allowed. It is not obvious

2

how to do this at all. The classical breadth-first-search (BFS) takes Ω(n) space.

There is a beautiful classical low-space algorithm for this problem:

For every pair of vertices (s, t), do:

1. Start a random walk on G starting at s.

2. Run it for n10 steps.

3. If you never see t, say DISCONNECTED.

If you never said DISCONNECTED, say CONNECTED.

On every graph, this randomized algorithm outputs the correct answer with probability greater
than 0.999. An amazing result of Reingold shows how to make this algorithm deterministic. It
involves taking a “pseudorandom walk”. We will prove this result in the course.

2.5 Hardness vs Randomness

If a problem is hard, then you can’t guess the answer, and so the answer is “random” to you.
Perhaps you can then use the answer to that problem as the random bits to feed into a randomized
algorithm. The theory of hardness versus randomness makes this rigorous. Roughly: if you can
give me f that is hard for some computational model C, then you can get pseudorandom generators
that generate bits that look random to C. We will prove versions of this and use it to get actual
pseudorandom generators for some interesting computational models.

2.6 Concrete pseudorandomness

I will just mention some words:

• Expander graphs

• ε-biased sets

• k-wise independent sets

• randomness extractors

3 Circuits and Formulas

Let f : {0, 1}n → {0, 1}. Recall that a circuit is built from wires carrying 0 or 1 and gates. There
are two common bases for the gates: the full binary basis and the de Morgan basis. The de Morgan
basis consists of ∧ (AND), ∨ (OR), and ¬ (NOT). The full binary basis consists of gates computing
all 16 functions b : {0, 1}2 → {0, 1}, and includes the de Morgan basis. Note that all basis elements
have fan-in≤ 2 (number of inputs into gate). The fan-out, the number of outputs out of a gate, is
unrestricted in circuits. In formulas, the fan-out for each gate is 1.

3

Observation 5. Every function has a formula.

To see this, note that for each y ∈ {0, 1}n, there is a δy : {0, 1}n → {0, 1}, which is expressible as a
∧ of n variables and complements of variables, such that δy(x) = 1 iff x = y. Writing

f(x) =
∨

y∈{0,1}n
f(y)=1

δy(x)

completes the proof.

We can use this proof to get an upper bound on the number of gates of f :

gates(f) ≤ (n− 1)(2n − 1) ≤ O(n · 2n).

3.1 Circuit size basics

Maybe every function has a circuit of size poly(n)? This is ruled out by the following fundamental
result.

Theorem 6 (Shannon). ∀ε > 0, most functions f : {0, 1}n → {0, 1} require circuits of size at least
2n

n (1− ε).

Proof. In 1 line: There are lots of functions, but not too many small circuits.

The total number of functions is 22
n
. Suppose we consider circuits of size (number of gates) at

most s. Each gate takes exactly two inputs that are either other gates or input bits. So there are
at most

(
s+n
2

)
ways to choose inputs for each gate. Since there are 16 binary functions in the full

binary basis, this gives at most 16
(
s+n
2

)
ways to choose a gate function and its inputs. Since there

are at most s gates, the number of circuits of size ≤ s is at most 16s
(
s+n
2

)s
.

Set s = 2n

n (1− ε). We want to show that the number of circuits of size at most s is much less than
the total number of functions.

16s
(
s+ n

2

)s
≤ 16s(s+ n)s

≤ 16s(2s)s

= 32sss

= 32
2n

n (1− ε)
(

2n

n
(1− ε)

) 2n

n
(1−ε)

=

(
32(1− ε)

n

) 2n

n
(1−ε)

22
n(1−ε)

< 22
n(1−ε)

� 22
n
.

4

Theorem 7 (Shannon and Lupanov). ∀ε > 0, ∀ functions f : {0, 1}n → {0, 1}, ∃ circuits of size
at most 2n

n (1 + ε).

We will only prove an upper bound of O(2
n

n).

Proof. First, we find a circuit of size O(2n) using the recurrence:

f(x1, ..., xn) = (x1 ∧ f(1, x2, . . . , xn)) ∨ (x1 ∧ f(0, x2, . . . , xn)).

⇒ size(n) ≤ 3 + 2 · size(n− 1)

⇒ size(n) = O(2n).

More explicitly, this gives us a sequence of representations of the function, in terms of residual
functions on fewer bits which we obtain by fixing the first few input bits to certain values:

f(x1, ..., xn) = (x1 ∧ f(1, x2, . . . , xn)) ∨ (x1 ∧ f(0, x2, . . . , xn)).

as

f(x1, ..., xn) =(x1 ∧ x2 ∧ f(1, 1, x3, . . . , xn)) ∨ (x1 ∧ x2 ∧ f(0, 1, x3, . . . , xn))

∨ (x1 ∧ x2 ∧ f(1, 0, x3, . . . , xn)) ∨ (x1 ∧ x2 ∧ f(0, 0, x3, . . . , xn)).

· · ·

To get a circuit of size O(2
n

n), we stop the recursion after t steps (t to be determined later). At this
stage of the recurrence, for each (b1, . . . , bt) ∈ {0, 1}t we need to compute f(b1, . . . , bt, xt+1, . . . , xn),
thought of as a function on the last n− t bits. Now the total number of functions on the variables
xt+1, . . . , xn is 22

n−t
. The idea is this: if 22

n−t � 2t, then it is more economical to compute all the
22

n−t
functions once beforehand, rather than to compute the residual function for each of the 2t

branches of the recursion. So we compute all 22
n−t

functions on xt+1, . . . , xn and feed them to the
appropriate gates of the representation of f using t steps of the recursion. Call this circuit C.

Then size(C) ≤ 3 · 2t+ size required to compute all functions on n− t bits.

Claim 8. Size required to compute all functions on k bits ≤ 22
k
(1 + o(1)).

We prove the claim by induction on k. We first compute all functions on k−1 bits, which takes size
22

k−1
. For each f1 and f2 in this class, compute (xk∧f1(1, x2, . . . , xk−1))∨(xk∧f2(0, x2, . . . , xk−1)).

This gives all functions on k bits. Hence,

size(k) ≤
(

22
k−1
)2

+ 2 · 22k−1
+ 22

k−1
= 22

k
(1 + o(1)).

This completes the proof of the claim.

So size(C) ≤ 3 · 2t + 22
n−t

. Set t = n− log(n− log n). Then

5

size(C) ≤ 3 + 2 · 2n−log(n−logn) + 22
log(n−logn)

=
3 · 2n

n− log n
+ 2n−logn

= 3 · 2n

n− log n
+

2n

n

= O

(
2n

n

)
.

The best known lower bound on circuit size for an explicit function is only 5n. Yet we know
that there are functions out there (in fact most functions out there) whose smallest circuit has
exponential size. One of the biggest problems of complexity theory is to find an explicit such
function.

4 Formula size basics

We saw earlier that every function of size n can be computed by a circuit of size (1 + ε)2n/n,
and that relatively few functions can be computed by a circuit of size less than (1 − ε)2n/n. The
corresponding tight lower bound on the size of formulas for most functions is 2n/ log n.

Theorem 9 (Shannon). Most boolean functions on n variables cannot be computed by a formula
of size less than (1− ε)2n/ log n, for any ε > 0.

Theorem 10 (Lyupanov). Every boolean function on n variables can be computed by a formula of
size O(2n/ log n).

These theorems hold in both the full binary basis and the de Morgan basis.

Theorem 9 can be proved by the following counting argument; we won’t see a proof of 10.

Proof. We will compare a lower bound on the number of formulas of size s to the number of
functions of size n.

A formula of size s can be written as a binary tree with s internal nodes. Each internal node is
labeled by a gate, and each leaf is labeled by a variable, the complement of a variable, 0, or 1.

The number of binary trees with s internal nodes is given by the Catalan number Cs ≤ 4s. Each
internal node is labeled with one of the gates in our basis; if there are b gates in the basis, the
number of ways to do this labeling is bs; for any basis, this is at most 16s, for the full binary basis.
There are (2n+ 2) ways to label each leaf in the tree, and there are s+ 1 leaves.

Thus, the total number of formulas of size s is less than (2n+ 2)s+14s16s ≤ nscs for some constant
c > 1.

The number of functions from (0, 1)n to (0, 1) is 22
n
.

6

If s ≤ (1 − ε)2n/ log n for any ε > 0, then nscs << 22
n
. Thus, only a small fraction of all the

boolean functions on n variables can be computed by any formula of size (1− ε)2n/ log n.

5 The complexity class NC1

The class of functions computable by a formula of size poly(n) is the same as the class of functions
computable by a formula of size poly(n) and depth O(log n).

Theorem 11. Every formula of size s can be converted into an equivalent formula of depth O(log s).

Proof. To prove this theorem, we need the following lemma:

Lemma 12. In any rooted binary tree with s vertices, there is a vertex g such that the tree rooted
at g has between s/3 and 2s/3 vertices.

Proof. A vertex that is the root of a subtree with more than 2s/3 vertices has a child that is the
root of a subtree with at least s/3 vertices. We can use this fact to design a simple algorithm to
find a vertex that is the root of a subtree with between s/3 and 2s/3 vertices.

Start with the root as the current vertex. Select the child of the current vertex that has at least
s/3 vertices in its subtree. If this vertex has at most 2s/3 vertices, we’re done. Otherwise, set this
vertex as the current vertex, and repeat the process.

Now we’ll use this lemma to prove theorem 11 The proof will be by induction; the base case is
trivial. The inductive hypothesis is that for any s′ < s every formula of size s′ can be expressed as
a formula of depth ≤ c log s′ + d (for constants c, d).

Given a formula F , we can use the lemma to find a sub-formula Fg with size in the range [s/3, 2s/3].
We can also find two formulas F0 and F1, which are F with the sub-formula Fg replaced by 0 and
1, respectively. These formulas also have size in the range [s/3, 2s/3].

It is easy to check that F = (Fg ∧F1)∨ (¬Fg ∧F0). Thus, by applying the inductive hypothesis, we
can replace F with an equivalent formula of depth 2 + c log(2s/3) + d ≤ c log(s) + d (for suitable
c, d).

The largest possible size of a formula of depth d is 2d. Thus, a formula with logarithmic depth
must have polynomial size.

Theorem 11 shows that all formulas with size O(nc) have equivalent formulas with size O(nc
′
)

and depth O(log n). Thus, there is a single complexity class that captures all functions that have
formulas with polynomial size, and all functions that have formulas with polynomial size and
logarithmic depth. This is the class NC1.

If we begin with a circuit with the fan-in bounded by 2 and depth d, an upper bound on the size of
the formula computing the function would be 2d. To do this, simply replace any sub-circuit having
more than one output with several copies of that sub-circuit, each having a single output.

7

Thus, NC1 also equals the class of all functions that have circuits of polynomial size and logarithmic
depth.

6 Upper bounds on formula size for specific functions

Several specific problems are known to be in NC1.

PARITY is the family of boolean functions that evalute to 0 if the sum of the inputs is even and to
1 if the sum of inputs is odd.

Theorem 13. PARITY ∈ NC1.

Proof. In the full binary basis, we can calculate the parity function on {0, 1}n as PARITY{0, 1}a ⊕
PARITY{0, 1}n−a. Thus, we can use binary divide and conquer to calculate the parity function
with a formula of size O(n).

In the de Morgan basis, x1⊕x2 can be expressed as (x1 ∨x2)∧¬(x1 ∧x2). Using this substitution,
we can calculate the parity function with a circuit of size O(n). In order to convert this circuit
to a formula, we need to duplicate each input to the xor gate so that no gate has more than one
output.

Let F (n) be the minimal size of a formula, counting only or and and gates, for PARITY of n
bits in the de Morgan basis. Using the construction described in the previous paragraph, F (n) ≤
3 + 2F (bn/2c) + 2F (dn/2e). Thus, F (n) ≤ O(n2).

We can also do operations on integers with small formulas. All integers are assumed to be nonneg-
ative and written in base 2. We first show that we can add two n bit integers using a formula of
size poly(n).

Theorem 14. Integer addition is in NC1.

Proof. We’ll assume binary inputs and use the full binary basis for the formula we build.

If we can compute the ith carry bit ci, then we can compute the ith bit of the solution as

si = xi ⊕ yi ⊕ ci,

where xi and yi are the ith bits of the input. The last bit of the solution will be

sn+1 = cn+1.

The ith bit of the carry will be 1 iff there exists a j < i such that xj = yj = 1, and for all j < k < i
it is not the case that xk = yk = 0. This condition is directly expressible as a formula:

ci =
∨
j<i

xj ∧ yj ∧ ∧
j<k<i

(xj ∨ yj)

 .

8

The number of gates needed to compute the carry is thus
∑n+1

i=1

∑i−1
j=1(3 +

∑i−1
k=j+1 2) ≤ O(n3).

The number of additional gates required to calculate the solution from the carry and the inputs is
O(n), so addition of two n bit numbers can be performed by a formula in the full binary basis with
O(n3) gates.

It is also possible to add n numbers, each n bits long, using a formula of size poly(n).

Theorem 15. Iterated integer addition is in NC1.

Proof. For any three integers, X,Y , and Z, we will show how to find two numbers S and C such
that X+Y +Z = S+C using a formula with constant depth. Using this procedure, we can reduce
the problem of adding n integers to the problem of adding 2 integers with a formula with depth
O(log3/2 n). Finally we can add two integers using the previous theorem.

For an integer A, let Ai denote its i’th bit (corresponding to the coefficient of 2i). The trick is
the following: define Si = Xi ⊕ Yi ⊕ Zi, and define Ci+1 = Majority(Xi, Yi, Zi). These are the
“sum” and “carry” respectively when we add the three bits Xi, Yi, Zi. It is easy to check that
S + C = X + Y + Z.

Corollary 16. Integer multiplication is in NC1.

MAJ is the family of boolean functions on an odd number of input bits that outputs the majority
value of its input bits.

Theorem 17. MAJ ∈ NC1.

This follows immediately from theorem 16, since we can compute the sum of the bits of the input
(treated as 1-bit integers) and compare it to n/2 using a formula of polynomial size.

7 Lower Bounds for Formulas

A few specific, non-trivial lower bounds are known for formulas. Krapchenko proved that parity
requires a formula of size Ω(n2) in the de Morgan basis. Subbotovskaya and Andreev found explicit
functions having no formulas of size o(n2.5) in the de Morgan basis. Nechiporuk proved an Ω(n2)
lower bound in the full binary basis. H̊astad proved an Ω(n3) lower bound for an explicit function;
we will not cover this result in detail.

7.1 Krapchenko’s Lower Bound

Krapchenko’s method uses “formal complexity measures”. A formal complexity measure FC assigns
real numbers to boolean functions such that it has the following properties:

1. FC(xi) = 1.

2. FC(f) = FC(¬f).

9

3. FC(f ∨ g) ≤ FC(f) + FC(g).

Properties 2 and 3 together imply

4. FC(f ∧ g) ≤ FC(f) + FC(g).

Formal complexity measures are a powerful tool to prove lower bounds in the de Morgan basis.
Let L(f) be the formula complexity of f ; that is, the size of the smallest formula in the deMorgan
basis for the function f .

Theorem 18. Any formal complexity measure FC satisfies

FC(f) ≤ L(f).

Proof. We will proceed by induction on L(f). The base case L(f) = 1 follows from property 1.

Consider the smallest formula for f . If f = f1 ∨ f2, then

L(f) = L(f1) + L(f2)

≥ FC(f1) + FC(f2)

≥ FC(f1 ∨ f2) = FC(f).

The case f = f1 ∧ f2 follows in the same manner, using property 4 rather than property 3.

Theorem 19 (Krapchenko). PARITY requires a formula of size Ω(n2) in the de Morgan basis.

We will prove this theorem in the next class.

The main tool is the following formal complexity measure:

FC(f) = max
A⊆f−1(0)
B⊆f−1(1)

e(A,B)2

|A||B|
,

where e(A,B) is the number of pairs (x, y) ∈ A × B such that x and y differ in exactly one
coordinate.

In the next class we will show that it is indeed a formal complexity measure.

For PARITY, let us show that FC(PARITY) ≥ Ω(n2). Consider A = f−1(0) and B = f−1(1).
Then |A| = |B| = 2n−1, and e(A,B) = n2n−1. So FC(PARITY) ≥ n2, and so L(PARITY) ≥ n2.

10

