
MATH 642:491–Fall, 2013

Problems on 2-way counting and inclusion-exclusion

1. A frog hops on the number line from 0 to n. If he is on position i, then he can either
hop to i + 1 or to i + 2. Let Fn be the number of ways he can get from 0 to n. Show
that Fn = Fn−1 + Fn−2.

2. How many diagonals does a regular n-gon have?

3. n letters are put in n addressed envelopes. Let dn be the number of ways this can be
done such that no letter goes into its designated envelope. Show that dn = dn−1 + (n−
1)dn−2.

4. L is a set of n lines in R2. P is a set of n points in R2. For each point p ∈ P , let d(p)
be the number of lines in L passing through p. Show that∑
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Bonus: Use this to show that ∑
p∈P
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√
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2
.

5. Prove that
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6. By interpreting both sides of the equation as “the number of ways of ”, show that
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)
2k = 3n.

7. How many positive integers less than 10000 are relatively prime to 10000?

8. How many positive integers less than 10000 are relatively prime to 30?

9. Show that
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10. Show that (
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(You may either do this directly using what you know about binomial coefficients, or
by 2-way counting).

11. How many n letter strings can you form that uses each of the 26 letters of the alphabet
at least once?
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