Problems on Analysis and Geometry

1. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function such that for every a, b, if $\frac{f(a)+f(b)}{2} = f\left(\frac{a+b}{2}\right)$. Show that $f(x) = \alpha x + \beta$ for some α, β .

If we drop the condition that f is continous, does the same conclusion hold?

- 2. Let $x_0 = 1$. For each $n \ge 1$, let $x_n = (\sqrt{2})^{x_{n-1}}$. Show that $\lim_{n \to \infty} x_n$ exists, and find this limit.
- 3. Suppose $f: \mathbb{R} \to R$ is a *n*-times differentiable function, and suppose $a_1 < a_2 < \ldots < a_{n+1}$ are such that $f(a_i) = 0$ for each $i \in \{1, \ldots, n+1\}$. Show that there is some $b \in [a_1, a_{n+1}]$ such that $f^{(n)}(b) = 0$.
- 4. Show that there is a unique real number c such that for every differentiable function $f:[0,1]\to\mathbb{R}$ with f(0)=0 and f(1)=1, the equation f'(x)=cx has a solution.
- 5. Find all continuous functions f such that for every x > 0,

$$\int_{1}^{x} f(t)dt = \int_{x}^{x^{2}} f(t)dt.$$

- 6. Does there exist a collection \mathcal{F} of uncountably many subsets of \mathbb{N} such that for every $A, B \in \mathcal{F}$, either $A \subset B$ or $B \subset A$?
- 7. If the angle A of a triangle ABC is doubled, but the lengths of the sides AB and AC are kept the same, the area of the triangle ABC stays the same. Find the angle A.
- 8. Show that $\sqrt{2} + \sqrt{3}$ is irrational. Show that $\sqrt{2} + \sqrt{3} + \sqrt{5}$ is irrational. Bonus (very hard!): Show that $\sqrt{2} + \sqrt{3} + \sqrt{5} + \sqrt{7}$ is irrational.
- 9. In a triangle ABC with side lengths a, b, c, angle A is twice angle B. Show that $a^2 = b(b+c)$.
- 10. Prove that if one angle of a triangle is equal to 120 degrees, then the triangle formed by the feet of the angle bisectors is right angled.
- 11. Show that any rectangle inscribed in an ellipse has its sides parallel to the axes of the ellipse (unless the ellipse is a circle).