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We will now see a way of producing some very interesting examples of graphs.

Definition 1. Let H be a group and let S ⊆ H. The Cayley graph of H generated by S, denoted
Cay(H,S), is the directed graph G = (V,E) where V = H and E = {(x, xs) | x ∈ H, s ∈ S}.

If S = S−1 (i.e., S is closed under inverse), then Cay(H,S) is an undirected graph.

For example, if H = Zn and S = {+1,−1}, then Cay(H,S) is the cycle of length n.

1 Spectrum of Cayley Graphs

The spectrum of a Cayley graph can be very conveniently expressed in terms of the representation
theory of the underlying group. Here we will restrict ourselves to the case of finite Abelian groups.

Let H be a finite abelian group. A character of H is a homomorphism ψ : H → C×.

Lemma 2. If ψ is a character of H, then ψ is an eigenvector of the adjacency matrix of G =
Cay(H,S), with eigenvalue

∑
s∈S ψ(s).

Proof. Let AG be the adjacency matrix of G.

We have:

(AG · ψ)(x) =
∑
y∈Γ(x)

ψ(y) =
∑
s∈S

ψ(xs) = ψ(x) ·

(∑
s∈S

ψ(s)

)
.

If H is a finite abelian group, then we know that H =
⊕k

i=1 Zni for some integers ni. In this case
we have a simple description of all the characters of H. For each a = (a1, . . . , ak) ∈

⊕
Zni , we have

a character ψa : H → C, given by

ψa(h1, . . . , hk) =
k∏
i=1

ωaihini
,

where ωt = e2πi/t.

These characters are orthogonal to each other: for distinct a,b, we have∑
x∈H

ψa(x)ψb(x) =
∑
x∈H

ψa−b(x) = 0.

Since there are
∏
ni = |H| such characters, this gives a complete description of the eigenvalues of

H.
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2 A constructive lower bound on R(3, k)

We now see an example of how spectral techniques and Cayley graphs can come together in very
concrete situations.

We will demonstrate an explicit graph which has no triangles and no large independent sets. This
graph will be a Cayley graph of some group; both these conditions will translate into concrete
additive-combinatorial properties of the group.

Let p be a large prime. Let H = Z3
p. Let S ⊆ Z3

p be given by:

S =

{
(xy, xy2, xy3) | x ∈ Z, y ∈ Zp \ {0},

p

3
< x <

2p

3

}
.

(Note that S is closed under inverse).

Let G = Cay(H,S). Let n = |H|.

Theorem 3. G satisfies the following properties:

1. G does not contain any triangles,

2. G does not contain any independent sets of size Ω(n2/3 log n).

This is a simplified version of a beautiful construction due to Alon, which shows how to construct
triangle-free graphs with no independent set of size Ω(n2/3). (We saw an even more simplified and
even weaker version in class).

The following variant of this construction yields graphs as good as those of Alon. Let H ′ = F3
2t and

S′ = {(xy, xy2, xy3) | x, y ∈ F2t ,Tr(x) = 1}. Then Cay(H ′, S′) is triangle free and does not contain
any independent sets of size Ω(n2/3). The proof of this is completely analogous to the proof below.

Proof. We first prove part 1. It is easy to see that Cay(H,S) is triangle-free if and only if 0 6∈
S + S + S. Suppose G was not triangle free. Then we have some p/3 < x1, x2, x3 < 2p/3 and
y1, y2, y3 ∈ Zp \ {0} such that:

(x1y1, x1y
2
1, x1y

3
1) + (x2y2, x2y

2
2, x2y

3
2) + (x3y3, x3y

2
3, x3y

3
3) = 0.

If y1 = y2 = y3, then we have x1 + x2 + x3 = 0, and this is clearly impossible. Otherwise, we have
a nonzero linear combination of at most three vectors of the form (y, y2, y3) equalling 0, but this is
impossible because such vectors are linearly independent (Vandermonde determinant).

Now for part 2. We will show that G has no large independent sets by studying its spectrum. The
eigenvalues of AG are given by:

λa =
∑
s∈S

ψa(s) =
∑

p/3<x<2p/3

∑
y∈Zp

ωa1xy+a2xy2+a3xy3 .

Rewriting this, we see that:

λa =
∑
y∈Zp

∑
p/3<x<2p/3

ωx·(a1y+a2y2+a3y3).
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If a = (0, 0, 0), then λa = |S|, and this is the largest eigenvalue.

For any other a, we will show that |λa| � p log p. If z ∈ Zp, by summing the geometric series we
have the following basic bound:

|
∑

p/3<x<2p/3

ωxz| < min{p/3, 2

|ωz − 1|
}.

Let P (Y ) = a1Y + a2Y
2 + a3Y

3. Then

|λa| �
∑
y∈Zp

min{p/3, 2

|ωP (y) − 1
}.

Note that P (Y ) is a nonconstant polynomial of degree at most 3, and hence for any fixed z ∈ Zp,
the equation P (Y ) = z has at most 3 solutions. Thus:

|λa| �
∑

−p/6<z<p/6

min{p/3, 2

|ωz − 1|
}.

For |z| < p we have the bound |ωz − 1| � |z|
p .

Thus

|λa| � O(p/3) + p ·O(

p/6∑
z=1

1

z
)� p log p.

We now plug this in to Hoffman’s bound on the size of the largest independent set, and tells us
that the size of the largest independent set is at most:

−λn
|S| − λn

· n� p log p

p2 +O(p log p)
· p3 � p2 log p.

3 Graphs of high girth

Now we will see an explicit example of a graph with few edges and high girth (we already saw a
probabilistic construction of such graphs).

Let H = SL2(p) (this is the multiplicative group of 2 × 2 matrices over Zp with determinant 1).
Let n = |H| (which is Θ(p3)). Let S = {A,A−1, B,B−1}, where

A =

(
1 1
0 1

)
,

B =

(
1 0
1 1

)
.

Theorem 4. The graph G = Cay(H,S) has girth Ω(log n).
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Proof. We need the following well-known fact: the matrices A andB (treated as matrices in SL2(Z))
generate a free group. (This fact is proved by demonstrating a set X and two subsets XA, XB such
that SL2(Z) acts on X, and for every integer m 6= 0, we have Am ·XA ⊆ XB and Bm ·XB ⊆ XA;
the existence of such X,XA, XB implies the freeness of the group generated by A, B.)

Given this fact, let us see why Cay(H,S) has large girth. Suppose there was a cycle x1, . . . , xg in
G. For each i, Let di = x−1

i+1xi ∈ S and let dg = x−1
1 xg. Since the xi are distinct, we have that

di and di+1 are not inverses of each other. Then
∏g
i=1 di = I mod p, and so we get a relation

Am1Bm2 · · ·Amk = I mod p where
∑
|mi| = g.

On the other hand, by the freeness we know that Am1Bm2 · · ·Amk 6= I (in SL2(Z)). This implies
that Am1Bm2 · · ·Amk must have some entry which is at least as large as p in absolute value. On
the other hand, the largest entry of Am1Bm2 · · ·Amk is at most 2|m1|+...+|mk| = 2g. This implies
that g ≥ Ω(log p), as desired.

4


