Due Date: February 13, 2012.

Some quick reminders about O, o, Ω, ω, and Θ:

1. We write $f(n) = O(g(n))$ if there are positive constants c and n_0 such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

2. We write $f(n) = o(g(n))$ if, for any constant c, there is a constant n_0 such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

3. We write $f(n) = \Omega(g(n))$ if there are positive constants c and n_0 such that $0 \leq cg(n) \leq f(n)$ for all $n \geq n_0$.

4. We write $f(n) = \omega(g(n))$ if, for any constant c, there is a constant n_0 such that $0 \leq cg(n) \leq f(n)$ for all $n \geq n_0$.

5. We write $f(n) = \Theta(g(n))$ if there are positive constants c_1, c_2, and n_0 such that $0 \leq c_1g(n) \leq f(n) \leq c_2g(n)$ for all $n \geq n_0$.

6. For every constants $c, d > 0$,
 $$n^d = o(2^{cn}),$$
 $$n^d = \omega(\log^c n).$$

Questions

1. For each of the following pairs of functions, indicate whether the function on the left is O, o, Ω, ω, or Θ of the function on the right.

 \[
 \begin{array}{cc}
 n^2 & n^3 \\
 \log(n^2) & \log(n^3) \\
 2n & 3n \\
 2 & 3 \\
 2n + \sin(n) & n + 3 \\
 n^2 & 2\sqrt{n} \\
 n^3 \log_2 n & 3\log_2 n + 5 \\
 \log n & n \log \log n \\
 \log n & \log \log(n^n) \\
 2^{\log n} & (\log n)^{10} \\
 2^{2^{\log n}} & 2^n \\
 \end{array}
 \]
2. Show that $2^n = o(n!)$ and $n! = o(n^n)$.

3. If $f(n) = O(\log n)$, then does it follow that $2^{f(n)} = O(n)$? Why or why not?
 If yes, prove it. If not, what should be the condition on $f(n)$ to get this conclusion?

4. (a) Suppose $T: \mathbb{N} \rightarrow \mathbb{R}$ satisfies

 \[
 T(1) = 10 \\
 T(n) \leq T(\lfloor n/3 \rfloor) + n
 \]

 Prove by induction on n that $T(n) \leq 100n$.

 (b) Suppose $T(n) \leq 3T(\lfloor n/2 \rfloor) + n$. Prove by induction on n that $T(n) \leq O(n \log_3 2)$.

5. Given an n digit integer N as input, how quickly can you decide whether N is a perfect power or not (i.e., do there exist integers $M \geq 1$ and $k \geq 2$ such that $N = M^k$)?

6. You are given a two dimensional $k \times (26^k - 1)$ array, and you are told that it contains every possible string of capital letters of length k, except for one of them. It is easy to find the missing one by reading all $\Theta(k \cdot 26^k)$ entries of the array. Show that this task can in fact be done while reading only $\Theta(26^k)$ entries of the array.