1 Introduction to Lattices

Definition 1. A lattice is a set $L \subset \mathbb{R}^n$ that is a discrete, additive group.

For example, \mathbb{Z}^n is a lattice. Note that $S = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ is an additive group, but is not a lattice because it is not discrete. One can find nonzero elements of S arbitrarily close to 0.

Definition 2. If $L \subset \mathbb{R}^n$ is a lattice and $\dim_{\mathbb{R}}(L) = n$ we say L is a full rank lattice.

Theorem 3. Every full rank lattice $L \subseteq \mathbb{R}^n$ is of the form $M \cdot \mathbb{Z}^n$ where M is a full rank $n \times n$ matrix.

Proof. We first show that L is finitely generated as an abelian group.

Let $v_1, \ldots, v_n \in L$ be such that their \mathbb{R}-span equals \mathbb{R}^n. Observe that there is a constant C such that every $x \in \mathbb{R}^n$ is C-close to the integer span of $\{v_1, \ldots, v_n\}$. To see this, write $x = \sum \alpha_i v_i$ where each $\alpha_i \in \mathbb{R}$; then x is C close to $\sum_i [\alpha_i] v_i$ for some C depending only on v_1, \ldots, v_n.

Suppose we have an infinite sequence $v_1, v_2, \ldots \in L$ such that each v_i is not in the integer span of v_1, \ldots, v_{i-1}. Then for each $i > n$, v_i is C-close to some element w_i in the integer span of v_1, \ldots, v_n. Then $v_i - w_i \in B_C$, the ball of radius C around 0. We also have $v_i - w_i \in L$. Finally, we notice that $v_i - w_i$ are all distinct. Thus the collection of points $v_i - w_i$, which all lie in L, have a limit point. This contradicts the discreteness of L. Thus such an infinite sequence does not exist, and so L is a finitely generated group.

Now we show that L is contained in the \mathbb{Q}-linear span of v_1, \ldots, v_n.

Let $w \in L$, so we can uniquely write $w = \sum_{i=1}^n c_i v_i$. If the c_i are all rational, we are done. Otherwise we will contradict discreteness. Let $\epsilon > 0$. By an application of Dirichlet’s pigeonhole principle, there exists an integer q such that qc_i is within ϵ of an integer (this is called a simultaneous diophantine approximation). Thus we have that $qw = u + \sum_{i=1}^n \delta_i v_i$ where $|\delta_i| < \epsilon$ and $u \in L$. But $qw - u \in L$, and $\|qw - u\| = \|\sum_{i=1}^n \delta_i v_i\| \leq \sum_{i=1}^n \|\delta_i v_i\| \leq \epsilon \sum \|v_i\|$. Since, this holds for arbitrary ϵ, we see that L has vectors arbitrarily close to 0. This contradicts discreteness.

So after a change of basis, we have that L is a finitely generated subgroup of \mathbb{Q}^n. Let v_1, \ldots, v_m $(m > n)$ be a set of vectors whose integer span equals L. By the Hermite Normal Form theorem from last class, there is a set of n vectors whose integer span equals L.

To represent a lattice, we can then give a basis $b_1, \ldots, b_n \in \mathbb{R}^n$. Then $L = \{\sum_i a_i b_i : a_i \in \mathbb{Z}\}$, i.e. is the integer linear span of this set of vectors. For computational problems we will often assume that the $b_i \in \mathbb{Q}^n$ or even in \mathbb{Z}^n.

Scribe: Danny Scheinerman
There are two fundamental hard problems in the theory of lattices. They are

1. The Shortest Vector Problem (SVP): Given a lattice \(L \) (represented by basis vectors \(b_1, \ldots, b_n \)) find a nonzero vector of shortest length. Note that this vector need not be unique. If \(L = \mathbb{Z}^n \) then \(\pm e_i \) where \(e_i \) is the standard basis vector has shortest nonzero length.

2. The Closest Vector Problem (CVP): Given a lattice \(L \) and a vector \(y \), find \(x \in L \) such that \(\|x - y\| \) is minimized.

Both of these problems are known to be NP-hard. These problems are not NP-hard if the dimension is fixed, however. To be precise: let \(n \) be the dimension that the lattice lives in and if every coordinate in the presented basis of \(L \) has absolute value \(\leq A \), then the input size is \(\leq n^2 \log(A) \).

The following are known

- There is no algorithm to solve SVP or CVP in time \(\text{poly}(n^2 \log(A)) \).
- There exists an algorithm in time \(2^{\text{poly}(n)} \cdot \text{poly}(\log(A)) \).

2 Gauss’ Algorithm for SVP in 2 Dimensions

It is worth noting that the SVP is already interesting in two dimensions. For example, let \(L \) be the lattice given by the integer column space of \(M = \begin{bmatrix} 39129 & 26790 \\ 69680 & 47707 \end{bmatrix} \). It is perhaps not obvious that the columns of \(M \) span the same lattice as the columns of \(M' = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \). Below is Gauss’ algorithm:

1. Start with \(u, v \in \mathbb{Z}^2 \). Assume (or swap to make true) that \(\|u\| \leq \|v\| \).

2. Let \(m = \left\lfloor \frac{\langle v, u \rangle}{\|u\|^2} \right\rfloor \). Note that \(\frac{\langle v, u \rangle}{\|u\|^2} u \) is the projection of \(u \) onto \(v \). So this is an integer \(m \in \mathbb{Z} \) such that \(\|v - mu\| \) is minimized.

3. Set \(v = v - mu \)

4. If \(\|v\| \leq \|u\| \) then swap \(u \) and \(v \) and goto step 2. Otherwise terminate.

There are two things to show. One that when the algorithm stops, that \(u \) is the shortest vector, and two that the algorithm is efficient. The second concern will be illustrated in homework exercises. Below we show that upon termination, \(u \) is the shortest vector.

Observe that we have \(\|u\| \leq \|v\| \) and \(\left| \frac{\langle v, u \rangle}{\|u\|^2} \right| \leq \frac{1}{2} \) \((*)\). We want to show that for all \(a, b \in \mathbb{Z} \) not both zero that \(\|au + bv\|^2 \geq \|u\|^2 \). We can expand the left hand side as

\[
\begin{align*}
\|au + bv\|^2 &= a^2\|u\|^2 + b^2\|v\|^2 + 2ab\langle u, v \rangle \\
&\geq a^2\|u\|^2 + b^2\|v\|^2 - \|ab\|\|u\|^2 \quad \text{(using equation \(*\))} \\
&= \|u\|^2(a^2 + b^2 - |ab|)
\end{align*}
\]
Now observe that if a or b is zero then $a^2 + b^2 \geq 1$ and $ab = 0$, so we obtain $\|au + bv\|^2 \geq \|u\|^2$. If both are nonzero, assume without loss of generality that $|a| \geq |b|$ and we have $a^2 \geq |ab|$ so $a^2 + b^2 - |ab| \geq b^2 \geq 1$, and again we have $\|au + bv\|^2 \geq \|u\|^2$.

Next, we have a variation of Gauss’ algorithm that gives an “almost shortest vector” and can easily be seen to be efficient:

1. Start with $u, v \in \mathbb{Z}^2$. Assume (or swap to make true) that $\|u\| \leq \|v\|$.

2. Let $m = \left\lfloor \frac{\langle v, u \rangle}{\|u\|^2} \right\rfloor$. Note that $\frac{\langle v, u \rangle}{\|u\|^2} u$ is the projection of u onto v. So this is an integer $m \in \mathbb{Z}$ such that $\|v - mu\|$ is minimized.

3. Set $v = v - mu$

4. If $\|v\| \leq 0.9\|u\|$ then swap u and v and goto step 2. Otherwise terminate.

The length of the shorter vector decreases by a factor of at least 0.9 at each iteration and so the algorithm is fast. Upon termination we have $\|u\| \leq 1.1\|v\|$ and similar to above $\|au + bv\|^2 \geq \|u\|^2(a^2 + 0.9^2b^2 - |ab|)$ for all not both zero integers $a, b \in \mathbb{Z}$. Now in minimizing $a^2 + 0.9^2b^2 - |ab|$ we see that we may as well have $ab \geq 0$ so it suffices to consider $a, b \geq 0$. In this case, the expression becomes $a^2 + 0.9^2b^2 - ab$. If a or b is zero then we either obtain 1 or $0.9^2 = 0.81$. If both are positive then observe $a^2 + 0.9^2b^2 - ab = (a - 0.9b)^2 + 0.8ab \geq 0.8$. So we have shown $\|au + bv\|^2 \geq 0.8\|u\|^2$. So u is within a small factor of the shortest vector.