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Abstract. We prove that if Xn , n ≥ 6, is a compact ANR homology n-manifold, we can
blow up the singularities of X to obtain an ANR homology n-manifold with the disjoint
disks property. More precisely, we show that there is an ANR homology n-manifold Y with
the disjoint disks property and a cell-like map f : Y → X.

1. Introduction

Homology n-manifolds are defined as (finite-dimensional, locally contractible) spaces whose
local homology H∗ (X,X − {x}) is isomorphic to H∗ (Rn,Rn − {0}) for every x ∈ X. Equiv-
alently, they can be described as spaces that satisfy a local form Poincaré duality: every open
set satisfies noncompact Poincaré duality between locally finite homology and cohomology.
Originally introduced as a natural setting for the study of Poincare duality, such spaces are
important basic objects in geometric topology and arise in many investigations of structural
properties of manifolds.

Until the 1990s, the only known non-manifold examples of homology manifolds were pro-
duced by singularizing manifolds: one would take disjoint, nearly contractible (technically,
cell-like) subsets of a manifold and collapse them to points to obtain interesting singular
spaces. Homology manifolds obtained in this manner are referred to as resolvable. A basic
question then arises: Can every homology manifold be resolved by a manifold? In other
words, given a homology n-manifold X, is there a topological n-manifold M and a surjective
map f : M → X that is cell-like? A map f is cell-like if the inverse image of each point is
contractible in every open neighborhood of itself. Quinn [22] showed that resolutions, if they
exist (for n > 4), are unique, and that existence is detected by an obstruction in H0(X;Z)
which is natural under restriction to open subsets. This implies that if a connected X has
even a single manifold point, then it is resolvable.

A celebrated theorem of Edwards [12] asserts that a resolvable homology n-manifold, n > 5,
is a topological n-manifold if and only if it has a modicum of general position: continuous
maps f, g : D2 → X of 2-disks into X can be approximated by maps with disjoint images.
This is known as the disjoint disks property, DDP. In other words, for resolvable homology
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manifolds, the DDP provides a geometric characterization of manifolds. In [3], it was shown
that the DDP leads to general position properties in all dimensions.

In earlier work, [4], we showed that nonresolvable homology manifolds exist and can be
classified, up to s-cobordism, by a variant of surgery theory. We also conjectured that
DDP homology manifolds share many geometric features with topological manifolds, notably,
homogeneity. The first main goal of this paper is to show that all homology manifolds of
dimension ≥ 6 can be resolved by DDP homology manifolds. (In [4], we showed that they are
all simple homotopy equivalent to DDP homology manifolds.) Even though the homogeneity
conjecture remains open, one should view the “desingularization” in this paper as taming
singularities by a resolution.

Alongside the DDP, which reflects a basic geometric characteristic of manifolds, another
property that distinguishes manifolds among resolvable homology manifolds is the UV 1-
approximation property. If one takes a degree-k map Sn → Sn, one naively expects a
typical point inverse image to have at least k components. The truth (see [1]) is rather the
opposite. If n > 4, then f is homotopic to a map with simply connected point inverses. This
is predicted by the high connectivity of the homotopy fiber of the map. The point is that,
rather than the usual strategy of approximating maps by smooth maps, it is sometimes more
useful to consider approximations by maps that behave like space-filling “curves”, which are
closer models of the underlying abstract homotopy theory. The original construction of
nonresolvable homology manifolds used this approach very strongly, and it is one of the
themes of this paper.

Theorem A. Every homology n-manifold X, n ≥ 6, is the cell-like image of a DDP homology
n-manifold that has the UV 1-approximation property.

(We shall not discuss here the sense in which the UV 1 map approximates a given map:
smooth maps cannot be C0-close to UV 1 maps in the case of degree > 1 self maps of the
sphere.)

An intriguing question presents itself of whether DDP is equivalent to the UV 1-approximation
property in general. These are different types of conditions, but they both seem to pick out
the nonsingular examples. In any case, the explicit focus on this property was critical to the
constructions of resolutions of this paper, even if one was only interested in the DDP.

Technically, this paper also proves a “squeezing” theorem in controlled geometric topology,
which is new even in the case of manifolds.

Theorem B. Suppose that f : Y → Z is a UV 1 map between compact, locally contractible,
finite-dimensional spaces so that the inverse image of each open subset of Z is a (usually
noncompact) n-dimensional Poincaré space, n ≥ 6. Then, there is a total surgery obstruction
σ ∈ Hn−1(Z, Y ; L) that vanishes if and only if there exist a DDP homology n-manifold X
and a map g : X → Y that is an ε-homotopy equivalence over Z, for every ε > 0. Moreover,
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there is an ε0 > 0 depending on Z so that σ vanishes if there is an ε0-equivalence gε0 : X → Y
for some compact locally contractible homology n-manifold X.

Note that if f : Y → Z is the identity map, then this theorem reduces to our resolution
theorem.

No doubt, the restriction to UV 1 maps can be substantially weakened. It is a very interesting
question to wonder about how much. If the map Y → Z is a fibration, then the equivalence
of the epsilon and the controlled statement (in the manifold case) is equivalent to the theorem
of Chapman-Hughes [7, 17] that maps between manifolds that have an ε-homotopy lifting
property are near approximate fibrations. We expect that π1 uniformity should suffice for
the conclusion of our theorem, but we will not explore this aspect here.

Many of the ideas of this paper were already present in some form in our earlier paper,
including the extensive use of controlled Poincaré duality, controlled surgery and the UV 1

approximation property of manifolds. However, the constructions here are both more efficient
(we avoid Gromov-Hausdorff convergence of embeddings in Euclidean space and take a more
conceptual approach to convergence problems) and more intricate (note the complexity of
the statement of Theorem 8.1). The immediate technical problem to be confronted is that
the sequence of approximate resolutions that were built in our previous paper in principle
have different domains, and there is no immediate connection between them. A similar
problem occurs in trying to produce controlled homotopy equivalences even for manifolds:
the approximations are only close from the perspective of the control space, not from the
perspective of the range. Essentially, we use some form of squeezing, the α-approximation
theorem or the thin h-cobordism theorem to gain the extra control needed.

2. Controlled maps

Our first goal is to describe a class of metric spaces that we shall refer to as excellent
spaces. These are ANR homology manifolds obtained by a variation of the construction
presented in [4]. They are inverse limits of ever finer Poincaré duality spaces, have the
disjoint disks property and other useful properties. We begin by reviewing some basic facts
about controlled maps.

Definition 2.1.

(i) A compact metric space X is UV k if whenever X is embedded in a compact ANR,
for each neighborhood U of X there is a smaller neighborhood V of X such that if
α : S` → V , 0 ≤ ` ≤ k, there is an extension ᾱ : D`+1 → U . Lacher [19] shows that
this property can be checked on any given embedding of X into an ANR.

(ii) Let X be a metric space. A proper map f : X → Y is UV k if f is surjective and
f−1(y) is UV k, for every y ∈ Y .

Remarks.
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(i) A proper map is UV 0 if and only if it is surjective and all of its point-inverses are
connected. A proper PL map is UV k if and only if it is surjective and its point-inverses
are k-connected.

(ii) Compositions and uniform limits of UV k maps are UV k.

We will need to use a characterization of UV k maps in terms of their lifting properties.

Definition 2.2. Let X be an ANR and p : Y → B a map from a space Y to a metric space
B. Given ε > 0, a proper map f : X → Y is said to be UV k(ε) over B if whenever (P,Q) is
a polyhedral pair with dim(P ) ≤ k + 1, α0 : Q→ X is a map and α : P → Y is a map with
f ◦ α0 = α|Q, there is a map ᾱ : P → X extending α0 so that f ◦ ᾱ is homotopic to α by a
homotopy whose tracks have diameter < ε in B.

This is the same as Quinn’s notion of a relatively (ε, k+1)-connected map over B (Definition
5.1 of [22]).

Lemma 2.3. Let X and Y be ANRs. A map f : X → Y is UV k if and only if f is UV k(ε)
over 1Y : Y → Y , for every ε > 0. The map f is cell-like iff f is UV k for all k ≤ dim(X).

Proof. See [19]
�

Definition 2.4. Let X and Y be topological spaces and let p : Y → B a map to a metric
space B. A map f : X → Y is an ε-homotopy equivalence over B if there exist a map
g : Y → X and homotopies ht : X → X, kt : Y → Y so that h0 = 1X , h1 = g ◦ f , k0 = 1Y ,
k1 = f◦g, diam{p◦kt(y)|0 ≤ t ≤ 1} < ε for every y ∈ Y , and diam{p◦f◦ht(x)|0 ≤ t ≤ 1} < ε
for every x ∈ X. The map g is called an ε−inverse for f .

By a 1-Lipschitz map between metric spaces we mean a Lipschitz map with Lipschitz constant
1, i.e., a map that does not increase distance.

Lemma 2.5.

(i) If α : X → Y in an ε-homotopy equivalence over Y with ε-inverse β, and β′ is δ-
homotopic to β over Y , then β′ is an (ε+ δ)-inverse for α.

(ii) If αi : Xi → Xi−1 is a 1-Lipschitz εi−1-equivalence, for 1 ≤ i ≤ n, then α1 ◦ . . . ◦
αn : Xn → X0 is a (3(εn−1 + . . .+ ε1) + ε0)-equivalence.

The proof of the lemma is a simple exercise.

3. Inverse systems

LetX1
α2←− X2

α3←− X3
α4←− . . . be an inverse sequence of compact metric spaces and continuous

maps, and let X = lim←−Xi be the inverse limit. We denote the projection X → Xi by pi, and
for i > j, we write αi,j for the composition αj+1 ◦ . . . ◦ αi : Xi → Xj. We denote the metric
on Xi by ρi and assume that diam(Xi) ≤ 1 for every i.
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We equip
∐
Xi, and hence the Xi’s themselves, with a new system metric d as follows:

d(x, y) =

{∑i
j=1

1
2j ρj (αi,j(x), αi,j(y)) , if x, y ∈ Xi;

d(αi,j(x), y) +
(

1
2j − 1

2i

)
, if x ∈ Xi, y ∈ Xj and i > j.

This metric on
∐
Xi allows us to compare sizes in different Xis. In [4], we accomplished this

by embedding all Xis under consideration in an euclidean space. Here, we achieve the same
goal by introducing the metric d that depends on the inverse system.

Let X+
i be the union of Xi and a disjoint basepoint ∗i whose distance from each point in Xi

is 1. For every i, the map

x→ (αi,1(x), αi,2(x), . . . , αi,i−1(x), x, ∗i+1, ∗i+2, . . .) ,

embeds Xi into
∏
X+
i and the images of the Xis are disjoint. These maps induce an isometric

embedding of (
∐
Xi, d) into

∏
X+
i . The closure of

∐
Xi in

∏
X+
i is the union of the Xis

with the inverse limit X = lim←−Xi. Hence, the completion of
∐
Xi with respect to this metric

is ZX = (
∐
Xi) ∪X. The induced metric on the inverse limit X is given by

d(x, y) =
∞∑
i=1

1

2i
ρi(pi(x), pi(y)).

Notice that the projections pi : X → Xi are 1-Lipschitz in the system metric.

If the bonding maps αi are εi−1-equivalences and
∑
εi <∞, let βi−1 : Xi−1 → Xi denote an

εi−1-inverse to αi. For i ≤ j, define maps γi,j : Xi → Xj inductively by setting γi,i = 1Xi
and

γi,j+1 = βj ◦ γi,j. Then,

d(γi,j, γi,j+1) =
1

2j+1
+ d(γi,j, αj+1 ◦ βj ◦ γi,j)

=
1

2j+1
+ d(1Xj

, αj+1 ◦ βj)

≤ 1

2j+1
+ εj.

Thus, for each i, the sequence {γi,j}∞j=i is Cauchy and converges to a map γi : Xi → X. Here,
we are abusing notation: Xi and X are viewed as subspaces of ZX . Combining these maps
for i ≥ 1, we obtain a retraction γ : ZX = (

∐
Xi) ∪X → X.

We form a space TX by inserting the mapping cylinder of αi : Xi → Xi−1 between Xi and
Xi−1 in the space ZX . Using the homotopy from βi ◦ αi+1 to the identity, we can extend
γi,i+1 to a retraction from the mapping cylinder of αi+1 onto Xi+1. Combining these, we can
extend γ to a retraction of TX onto X.
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Lemma 3.1. If the spaces Xi are ANRs and the maps αi are εi−1-homotopy equivalences in

the system metric with
∑
εi < ∞, then X is an ANR. Moreover, X is

(
3
∑∞

j=i+1 εj + εi

)
-

equivalent to Xi.

Proof. By [8], TX is an ANR. Since TX retracts to X, X is also an ANR. The second assertion
follows from Lemma 2.5 (ii). Given δ > 0, X is δ-equivalent to Xk for large k, which implies

that X is
(
3
∑k

j=i+1 εj + εi + 3δ
)
-equivalent to Xi for every δ > 0. The result follows.

�

We will find it useful to construct new inverse systems by passing to subsequences. Let
(Xi, αi)

∞
i=1 be an inverse system and let {ij}∞j=1 be a strictly increasing sequence of positive

integers. For each j, let ρ′ij be the metric on Xij induced by the system metric d on ZX .

The sequence
(
Xij , αij ,ij−1

)∞
j=1

forms an inverse system of metric spaces and continuous maps

with respect to the metrics ρ′ij . The system metric d′ for the subsystem is defined using the

metric ρ′ij on Xij , for all j.

Remark. A similar argument shows that if each bonding map αi is a UV k-map, then each
projection map X → Xi is a UV k-map.

Lemma 3.2. If the maps αi are εi−1-equivalences in the system metric d, then the bonding

maps αij+1,ij of the subsystem are
(
3
∑ij+1−1

k=ij+1 εk + εij

)
-equivalences with respect to the metric

d′.

Proof. Notice that d′(x, y) ≤ d(x, y), for any x, y ∈
∐
Xij , since the bonding maps of any

inverse system are 1-Lipschitz in the system metric. Hence, the result follows from Lemma
2.5 (ii).

�

4. Controlled Poincaré duality

Let f : E → B be a continuous map from a topological space to a compact connected metric
space. Let E(f) = {(e, ω) ∈ E × BI |f(e) = ω(0)}. Given b ∈ B, let ωb denote the constant
path at b. We can identify E with a subspace of E(f) via the map e 7→ {(e, ωf(e))} . There
is a projection Pf : E(f)→ B given by (e, ω)→ ω(1) and the diagram

E
� � //

f ��?
??

??
??

? E(f)

Pf}}{{
{{

{{
{{

B

is commutative. Pf is a Hurewicz fibration known as the path fibration associated to f . The
fiber of Pf is called the homotopy fiber of f .
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Definition 4.1. f : E → B is an ε-fibration if there is a retraction r : E(f) → E such that
d(f ◦ r,Pf ) < ε. The map f : E → B is an approximate fibration if it is an ε-fibration
for every ε > 0. More generally, if q : B → Z is a map to a metric space Z, we say that
f : E → B is an ε-fibration over Z if d(q ◦ f ◦ r, q ◦ Pf ) < ε.

Lemma 4.2. A map f : E → B is an ε-fibration over the metric space Z if and only if for
any commutative diagram

X × {0} α0 //

��

E

f

��
X × I α //

ᾱ

;;

B
q // Z

there is a map ᾱ : X × I → E such that ᾱ|X×{0} = α0 and d(q ◦ α, q ◦ f ◦ ᾱ) < ε.

Proof. (⇒) There is a lift α′ : X × I → E(f) such that Pf ◦ α′ = α and α′|X×{0} = α0. Let
ᾱ = r ◦ α′. Then,

d (q ◦ f ◦ ᾱ, q ◦ α) = d(q ◦ f ◦ r ◦ α′, q ◦ Pf ◦ α′) ≤ d(q ◦ f ◦ r, q ◦ Pf ) < ε.

(⇐) Consider the diagram

E(f)× {0}α0 //

��

E

f

��
E(f)× I α //

ᾱ

::uuuuuuuuuuu

B
q // Z,

where α(e, ω, t) = ω(t), α0(e, ω) = (e, ωf(e)) and ᾱ is an ε-lift of α over Z. Let r(e, ω) =
ᾱ(e, ω, 1). The map r is a retraction because we can arrange as in [11] that constant paths
lift to constant paths. Since α(e, ω, 1) = Pf (e, ω), it follows that d(q ◦ f ◦ r, q ◦ Pf ) < ε.

�

Let X be a compact ANR. A pair (N,X) is an abstract mapping cylinder neighborhood of
X if N is a compact topological manifold containing X in its interior, and there is a UV 1

map p : ∂N → X such that (N,X) is homeomorphic to (Cp, X), where Cp is the mapping
cylinder of p.

Definition 4.3. A finite-dimensional ANR X is an ε-Poincaré duality space if X has an
abstract mapping cylinder neighborhood (N,X) such that p : ∂N → X is an ε-fibration with
homotopy fiber homotopy equivalent to Sk, for some k ≥ 2. If p : ∂N → X is an approximate
fibration, then X is said to be a controlled Poincaré duality space over itself.

Proposition 4.4 (Daverman-Husch [10]). Let X be a finite-dimensional compact ANR. If
X is a controlled Poincaré duality space over itself, then X is a homology manifold.
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The converse statement is also valid, but will not be needed in this paper.

The next ingredient is a slight rewording of Proposition 4.6 of [4]. The only difference
between the two versions is that this version is an “ε − δ” statement while the previous
version is a “Tε − ε” statement for some constant T . This change is needed because the
control space in the present version is a compact ENR rather than a finite polyhedron.

Proposition 4.5 (BFMW [4]). Let X be a compact ENR and let n be given. For every
ε > 0 there is a δ > 0 so that if

i. (M1, ∂M1) and (M2, ∂M2) are orientable n−manifolds,
ii. p1 : M1 → X and p2 : M2 → X are UV 1−maps with pi|∂Mi a UV 0−map for i = 1, 2.
iii. h : ∂M1 → ∂M2 is an orientation-preserving δ−equivalence over X with p2◦h δ−close

to p1.

then there is a UV 1−map p : M1 ∪M2 → X that is an ε−Poincaré duality space over X.
Moreover, p is ε−close to pi for i = 1, 2.

5. Excellent metric spaces

Definition 5.1. Let B be a compact metric space. A pleasant ε-controlled 2-patch space
over B is a pair (X, p), where p : X → B is a UV 1 map and X = S ∪f T is a space obtained
by gluing together two compact manifolds S and T (the patches of X) by a UV 1 ε-homotopy
equivalence f : ∂S → ∂T (over B) of their boundaries. We also require that the maps p|T ,
p|∂T and the composition S → X = S ∪f T → B be UV 1.

Definition 5.2. A compact metric space X is excellent if there exist a sequence {εi} with
εi > 0 and

∑
εi <∞, and an inverse system (Xi, αi) such that:

(i) X = lim←−(Xi, αi), where each (Xi, αi) is a pleasant εi-controlled 2-patch space Xi =
Si ∪fi

Ti over Xi−1;
(ii) Each αi is a UV 1 εi−1-equivalence.

Here, all sizes are measured using the system metric d.

Lemma 5.3. If Mn and Nn are compact manifolds with boundary, n ≥ 5, and f : ∂M → ∂N
is a UV 1 map, then X = M ∪f N has the disjoint disks property.

Proof. Let α1, α2 : D2 → X be continuous maps. The singular set of X has a neighborhood
homeomorphic to ∂M × [−1, 0] ∪f ∂N × [0, 1]. By making the image of the disks transverse
to ∂M × {−ε} and pushing along the product structure in the positive direction, one may
arrange that the intersection Ki of αi(D

2) and the singular set is 1-dimensional, i = 1, 2.
PushingK1 andK2 apart in ∂N×{0}, use the lifting property of UV 1 maps and the estimated
homotopy extension theorem [4] to extend this homotopy to obtain small deformations ᾱ1

and ᾱ2 of α1 and α2, respectively, with the property that ᾱ1(D
2)∩ ᾱ2(N2) = ∅ and ᾱ2(D

2)∩
ᾱ1(N1) = ∅, where Ni is a small regular neighborhood of Ki in D2, i = 1, 2. Now, using the
DDP on the complement of the singular set of X gives us a small separation of the disks in
X.

�
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Proposition 5.4. If X is an excellent metric space of dimension n ≥ 5, then X is an ANR
homology n-manifold with the disjoint disks property.

Proof. Let {Xi, αi} be an inverse system of 2-patch spaces exhibiting X as an excellent
metric space, where αi+1 : Xi+1 → Xi an εi-equivalence. By Lemma 3.1, X = lim←−Xi is an

ANR. It is easy to check that the inverse limit of ANRs with the DDP and UV 1 maps has
the DDP. Hence, X has the DDP since, by Lemma 5.3, each Xi has the DDP. To complete
the proof of the proposition, we need to show that X is a homology manifold. The argument
will be similar to the one presented in section 5 of [4].

Embed TX tamely in a high-dimensional euclidean space and let W1 be a mapping cylinder
neighborhood. For each i, let TXi

be the part of TX between Xi and X, and let Wi be a small
mapping cylinder neighborhood of TXi

with Wi ⊂ Wi−1. For any i > 1, the region between
W1 and Wi has a product structure. Let {δi, i ≥ 1} be a sequence of positive real numbers
with

∑
δi < ∞. If i2 < i3 are large enough positive integers, by the thin h-cobordism

theorem [22], the region between Wi2 and Wi3 has a δ1-controlled product structure over X1

since αi3,i2 : Xi3 → Xi2 is a fine equivalence over X1. Arguing inductively and passing to an
appropriate subsequence, one can assume that the region Vi between Wi and Wi+1 has a δi-
controlled product structure over Xi−1, for i > 1. Deforming W1− int(Wi) to ∂Wi along the
product structures on V1, . . . , Vi−1 and composing with the regular neighborhood projection
Wi → Xi, we obtain a spherical fine approximate fibration structure on ρ′i : ∂W1 → Xi that
induces a mapping cylinder structure on the neighorhood W1 of Xi.

Let ρi : ∂W1 → X denote the composition ∂W1

ρ′i−→ Xi
γi−→ X. Since

∑
δi <∞, the sequence

ρi converges to a map ρ : ∂W1 → X that induces a controlled Poincaré duality structure on
X, since, by Proposition 4.6 of [4], each Xi is a fine Poincaré space over Xi−1. Hence, by
Proposition 4.4, X is a homology manifold.

�

6. Constructing UV k maps

A deformation theorem of Bestvina and Walsh states that, below middle and adjacent di-
mensions, (k + 1)-connected mappings of manifolds to polyhedra can be deformed to UV k

mappings. The proof of our main result uses a controlled analogue of this result. We will
first present an alternative proof of the Bestvina-Walsh theorem and then show how the
arguments can be modified to yield a controlled version. Kawamura [18] remarks that this
controlled theorem can also be proven using the techniques of Bestvina and Walsh.

Definition 6.1. A map f : X → Y is k-connected if f∗ : π`(X) → π`(Y ) is an isomorphism
for ` < k and an epimorphism for ` = k. This is the same as saying that π`(f) = π`(Cf , X) =
{0}, for 0 ≤ ` ≤ k, where Cf is the mapping cylinder of f .
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Theorem 6.2 (Bestvina and Walsh [1]). Let Mm be a compact manifold and K a polyhedron.
If f : M → K is a (k + 1)-connected map and f |∂M is UV k, then f is homotopic rel (∂M)
to a UV k map, provided that k ≤

[
m−3

2

]
.

Other results of this type are due to Keldyš, Anderson, Wilson, Walsh, Černavskii and Ferry.
We begin the proof by recalling a theorem of Černavskii.

Theorem 6.3 (Černavskii [6]). If Mm is a manifold and k ≤
[
m−3

2

]
, then there is a UV k

map p : M →M × I. Moreover, for any ε > 0, we can choose p so that proj ◦ p is ε-close to
1M : M →M .

Iterating Černavskii’s construction, we obtain UV k maps of M onto M × I`, for any `, and
also onto any disk bundle E over M . This last follows from writing E as a direct summand
of a trivial bundle, mapping M onto the trivial bundle and then projecting back to E.

Proof of the absolute case of the Bestvina-Walsh theorem. Let f : M → K be as in the state-
ment of the theorem and let N(K) be a regular neighborhood of K in some euclidean space
Rn, n ≥ 2m+3. Compose f with the inclusion K ↪→ N(K) to obtain a map g : M → N(K).
After a homotopy, we may assume that g is an embedding and that g(M) has a normal
disk bundle E in N(K) [16]. Using Černavskii’s process, construct a UV k map φ : M → E.
Since compositions of UV k maps are UV k, we will be done if we can construct UV k map
ψ : E → N(K), because composing ψ ◦ φ with the cell-like regular neighborhood collapse
N(K)→ K will give a UV k map M → K homotopic to f .

N(K)E

f(M)

By Lemma 6.4 below, the inclusion ∂E → N(K)−
◦
E is (k+1)-connected. The usual handle-

trading lemma (Lemmas 6.14–6.16 of [25]) implies that we can find a handle decomposition

N(K)−
◦
E ∼= ∂E × I ∪ {(k + 2)− handles} ∪ {(k + 3)− handles} ∪ . . .

To complete the proof of the theorem, we use the fact that there is a simple UV r map from
a manifold V n+1 to the same manifold with an (r + 2)-handle attached to the boundary.
Write V as V ∪ (Sr+1 ×Dn−r−1 × I) and collapse Sr+1 ×Dn−r−1 × I to V ∪ (r+ 2)−handle
by a map whose only non-trivial point-inverses are spheres of dimension r + 1.
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Composing such maps for the handles of the decomposition of N(K) −
◦
E given above, we

obtain a UV k map E → N(K).
�

Lemma 6.4. The inclusion ∂E → N(K)−
◦
E is (k + 1)-connected.

Proof. Let α : (Ds, ∂Ss)→ (N(K)−
◦
E , ∂E) be a map, 0 ≤ s ≤ k+1. Including in (N(K), E)

and using the (k+1)-connectivity, we obtain a homotopy ᾱt : (Ds, ∂Ds)→ (N(K), E) so that
ᾱ0 = α, ᾱ1(D

s, ∂Ds) ⊆ E and ᾱt|∂E = α|∂E for all t. By general position, we may assume
that ᾱt(D

s) ∩ f(M) = ∅ for all t. Composing ᾱ with the retraction r : N(K) − f(M) →
N(K)−

◦
E gives a homotopy which shows that [α] is trivial in πs(N(K)−

◦
E , ∂E).

�

We now state our controlled analogue of the Bestvina-Walsh theorem.

Theorem 6.5. For any non-negative integers m, k and d satisfying k ≤
[
m−3

2

]
, there is

a constant C(m, k, d) > 0 such that if Mm is a compact connected manifold and K is a
connected d-dimensional polyhedron, then every map f : M → K that is UV k(δ) over some
metric space B is C(m, k, d) · δ-homotopic over B to a UV k map.

Proof. Suppose that f : M → K is a UV k(δ) map over B. Let N ′(K) be a regular neigh-
borhood of K in R2d+1. Thicken N ′(K) by taking a product with I2m+1 to obtain a regular
neighborhood N(K) of K in R2m+2d+2 and a projection c : N(K) → K. We abuse nota-

tion and refer to the composition M
f−→ K ↪→ N(K) as f . We can perturb f along the

I2m+1-coordinate to an embedding f ′. This ensures that c ◦ f ′ = f . Let E be a disk bundle
neighborhood of f ′(M) in N(K).

Claim. If E is chosen to be a thin enough neighborhood of f ′(M), then (N(K)−
◦
E , ∂E) is

(δ, k + 1)-connected over B in the following sense: if α : (Ds+1, Ss)→ (N(K)−
◦
E , ∂E) is a

map and 0 ≤ s ≤ k, then there is a homotopy αt starting with α and ending with a map

α1 : (Ds+1, Ss) → (∂E, ∂E) ⊂ (N(K) −
◦
E , ∂E) such that the tracks of the homotopy have

diameter < δ when projected to B.

To prove the claim, first note that f : M → N(K) is UV k(δ) over B. Given a polyhedral
pair (P,Q) and maps β0 : Q → M and β : P → N(K) with the property that f ′ ◦ β0 = β,
consider the composition c ◦ β. By the UV k(δ) property , there is a map β̄ : P → M that
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δ-lifts c ◦ β. Since c : N(K) → K is UV ` for every `, we can lift the homotopy from K
to N(K), completing the first part of the argument. The rest of the proof of the claim

follows the proof of Lemma 6.4. Given a map α : (Ds+1, Ss)→ (N(K)−
◦
E , ∂E), construct

a nullhomotopy in (N(K), E). Use general position to move the homotopy off of f ′(M) and

then retract the nullhomotopy to (N(K)−
◦
E , ∂E). This establishes the claim.

Continuing with the proof of the theorem, we choose a fine handlebody structure on (N(K)−
◦
E , ∂E) and trade handles to eliminate all handles of index ≤ k+1. By Theorem 6.1 of [22],
this can be accomplished at the cost of raising the size of the remaining handles to at most
D(k) · δ as measured in B, where D(k) is a constant. We now map M to E, and E onto
E(K) as in the proof of Theorem 6.2. This relaxes the control to C(m, k, d) · δ.

�

Remarks.

(i) This argument works equally well if the target space is a finite-dimensional ANR
Xd. Embed X into R2d+1, take a mapping cylinder neighborhood N(X) of X, and
proceed as above. The argument also extends to infinite-dimensional compact ANRs
by crossing with the Hilbert cube and triangulating.

(ii) We can remove the dependency of the constant C(m, k, d) on m and d. Take a fine

subdivision of N(K) −
◦
E and obtain a small handlebody decomposition by taking

regular neighborhoods of vertices in the second derived. Given µ > 0, we can find a
UV k map from ∂E × I ∪ {0− handles} ∪ . . . ∪ {(k + 2)− handles} to N(K) that is
µ-close to the inclusion over K. Since handle trading through dimension k + 1 only
reorganizes the handle structure on ∂E×I∪{0− handles}∪. . .∪{(k + 2)− handles},
we can trade handles and obtain a UV k map from ∂E×I onto ∂E×I∪{0− handles}∪
. . . ∪ {(k + 2)− handles} whose control depends on δ and k. The composition is a
UV k map whose control only depends on k and δ.

We close this section with an application of Theorem 6.5. We show that if Mn is a compact
manifold, K is a polyhedron, and f : M → K is a map whose homotopy fiber has finite
skeleta (i.e., is homotopy equivalent to a CW complex with finite n skeleton, for every n),
then f is homotopic to a map with the approximate homotopy lifting property for polyhedra
of dimension ≤

[
n−3

2

]
.

Definition 6.6. Let B be a metric space. A map p : E → B has the approximate homotopy
lifting property (AHLP) with respect to a compact space Z if for any homotopy f : Z×I → B,
map F0 : Z → E with the property that p ◦ F0 = f |Z × {0}, and ε > 0, there is a map
F : Z×I → E such that F0 = F |Z×{0} and d(p◦F (z, t), f(z, t)) < ε, for each (z, t) ∈ Z×I.
Theorem 6.7. Let M be a compact topological n-manifold and K a compact polyhedron.
If f : M → K is a map whose homotopy fiber has finite skeleta, then f is homotopic to
a map with the approximate homotopy lifting property with respect to compact polyhedra of
dimension ≤

[
n−3

2

]
.
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Proof. Let V be a mapping cylinder neighborhood of M in some large euclidean space with
projection p : V → M . The homotopy fiber of the composition f ◦ p : V → K has finite
skeleta, since p is cell-like. By Theorem 2′ of [14], there is a polyhedron V ′, a CE-PL
map c : V ′ → V and a PL map f ′ : V ′ → K such that f ′ has the AHLP for compacta of
dimension ≤

[
n−3

2

]
and f ◦ p ◦ c ' f ′.

Let γ′ : M → V ′ be a homotopy inverse to p ◦ c. By Theorem 6.5, γ′ is homotopic to a UV k

map, where k =
[
n−3

2

]
. Notice that since p ◦ c is CE, we can choose γ so that the homotopy

p ◦ c ◦ γ ' 1M has tracks whose diameters are as small as we wish.

V ′

c

CE

~~}}
}}

}}
}}

f ′

��=
==

==
==

==
==

==
==

==
=

V
p

CE   A
AA

AA
AA

A

M
f //

γ

OO

K

The composition f ′◦γ is homotopic to f , since f ′◦γ ' (f◦p◦c)◦γ = f◦(p◦c◦γ) ' f◦1M = f .
Moreover, f ′ ◦ γ has the desired approximate homotopy lifting property for polyhedra of
dimension ≤ k, since γ is UV k and f ′ has the AHLP for compacta of dimension ≤ k.

�

7. The UV 1-approximation property

Definition 7.1.

(i) A space X is said to have the UV 1- approximation property if for every ε > 0, there
is a δ > 0 such that every map f : X → K to a polyhedron K that is UV 1(δ) over
some metric space B is ε-homotopic over B to a UV 1 map.

(ii) A spaceX is said to have the linear UV 1- approximation property if there is a constant
CX > 0 such that every map f : X → K to a polyhedron K that is UV 1(δ) over some
metric space B is CX · δ-homotopic over B to a UV 1 map.

In dimensions≥ 6, we will characterize excellent metric spaces as ANR homology n-manifolds
with the UV 1-approximation property.

Lemma 7.2. Let Xn be a compact metric ANR homology n-manifold X, n ≥ 6. Given
ε > 0, there is an ε-controlled 2-patch space φ : Xε → X such that φ is an ε-homotopy
equivalence with respect to the control map 1X : X → X.

Proof. This is essentially contained in [4]. Start with a degree-one normal map ψ : M → X,
where M is a topological manifold. The existence of ψ is guaranteed by [15]. There is
a µ0 > 0 such that, for any 0 < µ < µ0, the obstruction to doing surgery on ψ to a µ-
equivalence is an element σ = σ(ψ) ∈ Hn(X,L∗(e)) [21, 13]. After surgery below middle
dimension, using Theorem 6.5, we may assume that ψ is UV 1.
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Take a fine triangulation ofM and let T be a very thin regular neighborhood of the 2-skeleton
of M in this triangulation. Let C be the closure of the complement of T in M .

T

C

Using the controlled Bestvina-Walsh theorem, after a small homotopy, we may also assume
that ψ|T , ψ|C and ψ|∂T are all UV 1 maps.

Using the element −σ ∈ H∗(X,L(e)), do Wall realization on the identity map of V0 = ∂T =
∂C. This produces a cobordism (V, V0, V1) and a degree-one normal map g : V → V0 × I
such that

(i) g|V0 = 1V0 ;
(ii) f = g|V1 is a fine homotopy equivalence from V1 to V0 (the control can be as good as

we like over X and we may assume that this map is UV 1);
(iii) The controlled surgery obstruction of g relative to the boundary is −σ.

Form the space X ′
ε by pasting V to C along V0 and to T using the controlled equivalence

f = g|V1 : V1 → V0 = ∂T . The map ψ : M → X “extends” over V to a map ψ′ : X ′
ε → X

with trivial surgery obstruction. Do controlled surgery on ψ′ to obtain a fine homotopy
equivalence φ : Xε → X. Notice that since all surgeries are performed away from T , Xε is
a space of the form S ∪f T , where S is a compact manifold. The degree of control for the
equivalence φ depends on two things – the control on the homotopy equivalence f = g|V1 and
the fineness of the initial triangulation of M . The regular neighborhood T of the 2-skeleton
and the succeeding UV 1-maps should be constructed so that we can push codimension three
polyhedra in M and X ′

ε off of T by homotopies that have small tracks in X. The map
φ : Xε → X is already UV 1 when restricted to T and ∂T . After a small deformation, we
may assume that it is an ε-equivalence that restricts to UV 1 maps on the patches of Xε.

�

Theorem 7.3. Let X be an n-dimensional compact metric space, n ≥ 6. X is excellent if
and only if X is an ANR homology n-manifold with the UV 1-approximation property.

Proof. (⇒) By Proposition 5.4, X is an ANR homology n-manifold. Hence, it suffices to
show that X has the UV 1-approximation property. Let f : X → K be a UV 1(δ) map over
B, for some δ > 0. Write X = lim←−(Xi, αi) as in the definition of excellent metric spaces,
and let pi : X → Xi denote the projection onto Xi and γi : Xi → X denote the restriction to
Xi of the retraction γ : TX → X constructed in section 3.

For sufficiently large i, f ◦ γi is a UV 1(δ) map, so f ′ = f ◦ γi ◦ αi+1 : Xi+1 → K is UV 1(δ)
as well. Write Xi+1 = Si+1 ∪fi+1

Ti+1 as in the definition of excellent metric spaces. Since
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αi+1|∂Ti+1 is UV 1, f ◦ γi ◦ αi+1|∂Ti+1 is UV 1(δ) and can be C(1)δ-approximated by a UV 1

map. By the estimated homotopy extension theorem (see [4]), this homotopy can be extended
to a C(1)δ-homotopy of the map f ◦γi◦αi to a map f ′ : Xi+1 → K that is UV 1 ((2C(1) + 1)δ)
and restricts to a UV 1 map on ∂Ti+1. Using the relative version of the controlled Bestvina-
Walsh theorem, we can (2C2(1) +C(1))δ-deform f ′ over the patches of Xi+1 to a UV 1 map
f ′′ : Xi+1 → K. Notice that d(f ◦ γi ◦ αi+1, f

′′) ≤ (2C2(1) + 2C(1))δ. Here, C(1) is the
constant for UV 1 approximations as in the remark following the proof of Theorem 6.5.

Let f̄ denote the UV 1 map f̄ = f ′′ ◦ pi+1. We claim that, for i large enough, d(f, f̄) <
(2C2(1) + 2C(1) + 1)δ. Indeed, first observe that d(f, f ◦ γi ◦ αi+1 ◦ pi+1) < δ, for i large
enough. Then,

d(f, f ′′ ◦ pi+1) ≤ d(f, f ◦ γi ◦ αi+1 ◦ pi+1) + d(f ◦ γi ◦ αi+1 ◦ pi+1, f
′′ ◦ pi+1)

≤ δ + d(f ◦ γi ◦ αi+1, f
′′)

≤ δ + (2C2(1) + 2C(1))δ = (2C2(1) + 2C(1) + 1)δ.

The map f̄ is the desired UV 1 approximation to f .

(⇐) By Lemmas 7.2 and 2.5, and the assumption that X has the UV 1-approximation prop-
erty, given any ε > 0, we can construct an ε-controlled 2-patch space Xε and a UV 1 ε-
equivalence fε : Xε → X with UV 1 ε-inverse gε : X → Xε. We may assume that fε restricts
to UV 1 maps on the patches of Xε. Thus, given a sequence {εi}, we can construct an inverse
system

X X1
f1oo X

g1oo X2
f2oo X

g2oo X3
f3oo X

g3oo · · ·oo

such that the fis and gis are εi-homotopy inverses in the system metric (with properties
similar to fε and gε). By Theorem 5.1 of [2], the maps fi and gi can be chosen so that the
inverse limit of the system is homeomorphic to X, since each fi ◦ gi is finely homotopic to
1X : X → X in the system metric. Passing to the subsequence

X1 X2
g1◦f2oo X3

g2◦f3oo X4
g3◦f4oo · · ·oo

exhibits X as an excellent metric space, provided that
∑
εi <∞.

�

The following results are consequences of the proof of Theorem 7.3.

Corollary 7.4. If a compact ANR homology n-manifold, n ≥ 6, has the UV 1-approximation
property, then it has the linear UV 1-approximation property.

Corollary 7.5. If X is an excellent compact metric space, then for any sequence {εi} with∑
εi < ∞, X can be written as the inverse limit of an inverse sequence lim←−(Xi, αi) that
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exhibits X as an excellent metric space, where each Xi is an εi−1-controlled 2-patch space
over Xi−1.

8. Some controlled topology

We begin with a control improvement theorem for maps defined on patch spaces. This result
improves control in two ways, by lifting control over X to control over B, and by improving
the control from size δ to size µ.

Theorem 8.1. Suppose that n ≥ 6 and that we are given a compact ENR X. Then for
every ε > 0 there is a δ > 0 so that for every µ > 0, if we are given a compact ENR B and a
UV 1 homotopy equivalence q : B → X, there exists η1, such that if we are given a diagram

B

q

��

X1

p1oo

p
~~||

||
||

||

X

where p1 : X1 → B is an n-dimensional η1-Poincaré duality space over B and p = q ◦ p1,
then there exists η2 so that if f : X2 → X1 is an n-dimensional η2-controlled 2-patch space
over X1 and a δ−homotopy equivalence over X, then f is ε-homotopic over X to a map fµ
that is a UV 1 µ-homotopy equivalence over B. Moreover, fµ : X2 → X1 is an n-dimensional
η2-controlled 2-patch space over X1

B

q

��

X1

p1oo

p
~~||

||
||

||
X2

foo

X

Proof. By the stability theorem for controlled surgery parameterized by UV 1 maps, [13, 21],
there is a well-defined surgery obstruction σ(f) ∈ Hn(B; L) for sufficiently small η1 and η2.
The vanishing of σ(f) implies that f is normally cobordant to a µ-equivalence over B. This
is proven in [13, 21] for the case in which X2 is a manifold and the modification for 2-patch
spaces such as X2 was discussed in [4]. The basic idea is that surgery involves manipulations
up to the middle dimension and in a space such as X2 all spheres can be pushed off of the
singular set by small moves. At this stage of the construction, the constants ηi depend only
on B and µ.

Since f : X2 → X1 is a δ-homotopy equivalence over X, its controlled surgery obstruction
is zero in Hn(X; L), provided that δ is small enough, depending on B, q, and X. Since
q is a UV1 homotopy equivalence, naturality of surgery obstructions implies that σ(f) ∈
Hn(B; L) ∼= Hn(X; L) is also zero. Hence, we can perform surgery on f away from the
singular set to obtain a (singular) normal bordism

F : (V1, X2, X
′
2)→ (X1 × I,X1 × {0}, X1 × {1}),
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where F |X2 = f and where f1 = F |X′
2
: X ′

2 → X1 is a µ-homotopy equivalence over B.

We may assume that µ is small enough so that both f and f1 are δ-homotopy equivalences
overX. Let σ ∈ Hn+1(X; L) be the controlled surgery obstruction of F rel X2tX ′

2. Using the
stability of simply-connected controlled surgery groups and the Wall realization procedure
[26], we can construct a normal bordism

G : (V2, X
′
2, X

′′
2 )→ (X1 × I,X1 × {1}, X1 × {2}),

such that G|X′
2

= f1, f
′
2 = G|X′′

2
: X ′′

2 → X1 is a µ-equivalence over B, and σ(G) = −σ as an
element of Hn+1(B; L). Stacking V1 and V2 we obtain a normal map

H : (V,X2, X
′′
2 )→ (X1 × I,X1 × {0}, X1 × {2}),

where H|X2 = f and HX′′
2

= f2 is a µ-equivalence over B, and σ(H) ∈ Hn+1(X; L) is zero.

Notice that all constructions were performed away from the singularities of X2 so that we
may assume that V is a product on a small neighborhood N of the singular set of X2. We

may also assume that M = X2\
◦
N is a compact manifold. Since 0 = σ(H) ∈ Hn+1(X; L), we

can do surgery on H away from N × I rel X2 tX ′′
2 and assume that V is a finely controlled

h-cobordism over X rel ∂M × I. A simple general position argument shows that V \ (
◦
N) is

also a controlled h-cobordism over X, which, by the thin h-cobordism theorem [22], admits
an ε-product structure rel ∂M × I if δ is small enough. Gluing N × I back in, we obtain an
ε-deformation over X of the map f to a µ-homotopy equivalence over B as desired. �

9. Resolution of singularities

Theorem 9.1. If X is a compact ANR homology n-manifold, n ≥ 6, then there exist an
excellent ANR homology n-manifold Y and a cell-like map φ : Y → X.

Proof. Let X be a compact ENR homology manifold of dimension ≥ 6. Our goal is to
construct a diagram

X

id
��

X1

β1oo

α1

~~||
||

||
||

X2

β2oo

α2

vvmmmmmmmmmmmmmmmm X3

α3

ttiiiiiiiiiiiiiiiiiiiiiiiii
β3oo . . .β4oo

X

so that for i ≥ 2 there are sequences{εi}, {τi}, {γi} of positive numbers so that

i. Each βi is UV 1 εi−1−equivalence over Xi−2 in the system metric.
ii. Each Xi is an εi−Poincaré duality space over Xi−1.
iii. d(αi−1 ◦ βi, αi) < τi−1.
iv. Each αi is a UV 1 γi−equivalence.
v.

∑
εi <∞,

∑
τi <∞, and lim γi = 0.
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This will prove the theorem. The inverse limit Z = lim←−{Xi, βi} is an excellent metric space,
so by Proposition 5.4, Z is an ANR homology manifold with the disjoint disk property. For
each i, there is a projection pi : Z → Xi. By condition (iii), the maps αi ◦ pi converge to a
map α : Z → X. By condition (iv), α is an ε−equivalence for every ε > 0, so by Lemma 2.3,
α is cell-like. Let {εi} be any sequence of positive numbers with

∑
εi <∞.

Letting ε = ε1 and µ = ε2 in Theorem 8.11, there is a δ1 > 0 so that there exists η1, such
that if we are given a diagram

X

id
��

X1

β1oo

α1=β1~~||
||

||
||

X

where β1 : X1 → X is an n-dimensional η1-Poincaré duality space over X, then there exists
η′2 so that if f1 : X2 → X1 is an n-dimensional η′2-controlled 2-patch space over X1 and a
δ1−equivalence over X, then f1 is ε1-homotopic over X to a UV 1 ε2-homotopy equivalence
over X.

X

id
��

X1

β1oo

α1=β1~~||
||

||
||

X2

f1oo

X

We choose X1 and β1 : X1 → X so that β1 is a UV 1 δ1−equivalence and so that X1 is
η1−Poincaré over X. We set α1 = β1. Here, we may assume that δ1 < ε0. In choosing this
and future δi’s, we should take care that

∑
δi <∞.

Letting ε = ε2 and µ = ε3 in Theorem 8.1, there is a δ2 > 0 so that there exists η′′2 , such that
if we are given a diagram

X1

α1

��

X2

β2oo

α1◦β2}}{{
{{

{{
{{

X

where β2 : X2 → X1 is an n-dimensional η′′2 -Poincaré duality space over X1, then there exists
η′3 so that if f2 : X3 → X2 is an n-dimensional η′3-controlled 2-patch space over X2 and a
δ2−equivalence over X, then f2 is ε2-homotopic over X to a UV 1 ε3-homotopy equivalence
over X1.

1This case of Theorem 8.1 is degenerate, but applying the theorem syntactically helps to establish the
pattern of our induction, especially in choosing the constants η1.
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X1

α1

��

X2

β2oo

α1◦β2}}{{
{{

{{
{{

X3

f2oo

X

We set η2 = min(η′2, η
′′
2). We have now collected enough data to proceed with the construc-

tion of X2, α2, and β2. Our construction is a modification of the construction in Lemma
7.2.

Start with a degree-one normal map ψ : M → X, where M is a topological manifold and
do surgery below the middle dimension on ψ. There is a ω0 > 0 such that, for any 0 <
ω < ω0, the obstruction to doing surgery on ψ to a ω-equivalence is an element σ = σ(ψ) ∈
Hn(X,L∗(e)).

X1

α1

��
X M

ψ1=ᾱ1◦ψ
aaBBBBBBBB
ψoo

Let ᾱ1 be a δ1−inverse for α1 and let ψ1 = ᾱ1 ◦ψ. The map ψ1 is homotopic to a UV 1-map,
so we replace ψ1 by a UV 1−map and replace ψ by α1 ◦ ψ1.

Take a fine triangulation ofM and let T be a very thin regular neighborhood of the 2-skeleton
of M in this triangulation. Let C be the closure of the complement of T in M .

T

C

Using the controlled Bestvina-Walsh theorem, after a small homotopy, we may also assume
that ψ|T , ψ|C and ψ|∂T are all UV 1 maps. Since α1 is a homotopy equivalence, there is an
element σ′ ∈ H∗(X1, L(e)) such that α1∗(σ1) = σ ∈ H∗(X, L(e)).

Using the element −σ′ ∈ H∗(X1, L(e)), do Wall realization on the identity map of V0 = ∂T =
∂C. Proceed as in the proof of Lemma 7.2 to produce a 2-patch space X ′

2 with a UV 1-map
ψ′ : X ′

2 → X1 such that the controlled surgery obstruction of α1 ◦ψ′ is zero. We can arrange
that X ′

2 is a η2−Poincaré duality space over X1. Do surgery on α1 ◦ψ′ : X ′
2 → X to obtain a

2-patch space X2 and an equivalence α2 : X2 → X that is at least a δ2−equivalence and is,
in any case, so fine that ᾱ1 ◦ α2 : X2 → X1 is a δ1−equivalence over X. We have a diagram
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X

id
��

X1

β1oo

α1

~~||
||

||
||

X2

f1oo

α2

vvmmmmmmmmmmmmmmmm

X

where f1 = ᾱ1 ◦ α2. The surgeries that produced X2 from X ′
2 were performed on the

complement of the set T , so by estimated homotopy extension, we can arrange that f1 = ψ1

on a small neighborhood of T . Since the Poincaré duality of X2 over X1 depends only on
the degree of control of the gluing map on the singular set, X2 is an η2−Poincaré duality
space over X1.

By our choices of δ1 and η2, the map f1 is ε1-homotopic over X to a UV 1−map β2 : X2 → X1

that is an ε2−equivalence over X.2

Letting ε = ε3 and µ = ε4 in Theorem 8.1, there is a δ3 > 0 so that there exists η′′3 , such that
if we are given a diagram

X2

α2

��

X3

β3oo

α2◦β3}}{{
{{

{{
{{

X

where β3 : X3 → X2 is an n-dimensional η′′3 -Poincaré duality space over X2, then there exists
η′4 so that if f3 : X4 → X3 is an n-dimensional η′4-controlled 2-patch space over X3 and a
δ3−equivalence over X, then f3 is ε3-homotopic over X to a UV 1 ε4-homotopy equivalence
over X2.

X2

α2

��

X3

β3oo

α2◦β3}}{{
{{

{{
{{

X4

f3oo

X

We set η3 = min(η′3, η
′′
3). As in the previous stage of the construction, we obtain a 2-patch

space X3 with an at least δ3 fine UV 1 homotopy equivalence α3 : X3 → X and a UV 1 map
f2 : X3 → X2 so that f2 is a δ2−equivalence over X and so that X3 is η3−Poincaré over
X2. It follows that f2 is ε2−homotopic over X to a UV 1 map β3 : X3 → X2 that is an
ε3−equivalence over X1. The composition α2 ◦ β3 is (ε2 + δ2)−close to α3. The rest of the
construction follows this same pattern. �

The proof of Theorem B is similar to the proof of Theorem 9.1. If the total surgery ob-
struction of Y → Z is zero, then there is a degree one normal map f : M → Y so that

2Again, this is a degenerate case. The next stage of the construction represents the general inductive step.
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the controlled surgery obstruction of f lies in the image of Hn(Y,L) in Hn(Z,L). This ob-
struction dies if and only if f is normally bordant to an ε−equivalence over Z for sufficiently
small ε. As in the proof of Theorem 9.1, we can kill this obstruction by replacing M by a
controlled 2-patch space Y1. Iterating this process as in the proof of Theorem 9.1 gives us a
diagram

Y

id
��

X1

β1oo

α1

~~}}
}}

}}
}}

X2

β2oo

α2

vvnnnnnnnnnnnnnnnn X3

α3

ttiiiiiiiiiiiiiiiiiiiiiiiii
β3oo . . .β4oo

Y

��
Z

where the maps αi and βi satisfy conditions i-v in the proof of Theorem 9.1. In the limit,
we obtain a DDP ANR homology manifold X together with a map g : X → Y that is an ε
equivalence for every ε > 0. A related result for topological manifolds, was proven on p. 221
of [15].
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