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Abstract. Higson-Roe compacti�cations �rst arose in connection with C�-algebra ap-
proaches to index theory on noncompact manifolds. Vanishing and/or equivariant splitting
results for the cohomology of these compacti�cations imply the integral Novikov Conjecture
for fundamental groups of �nite aspherical CW complexes. We survey known results on
these compacti�cations and prove some new results { most notably that the nth cohomol-
ogy of the Higson-Roe compacti�cation of hyperbolic spaceHn consists entirely of 2-torsion
for n even and that the rational cohomology of the Higson-Roe compacti�cation of Rn is
nontrivial in all dimensions 1 � k � n.

x1. The Higson-Roe Compactification
Higson's compacti�cation �X �rst appeared in [H] in connection with a K-theoretic

analysis of Roe's index theorem for noncompact Riemannian manifolds. Higson de�ned
�X to be to be the maximal ideal space of the commutativeC�-algebra of smooth functions
whose gradient vanishes at in�nity. In [R1], Roe modi�ed Higson's de�nition to make
sense for more general spaces. Here is Roe's de�nition:

De�nition. If M is a space and � : M ! C is a continuous function, de�ne Vr(�) :
M ! R+ by

Vr(�) = supfj�(y)� �(x)j : y 2 Br(x)g
Then Ch(M) is the space of all bounded continuous functions � : M ! C so that for
each r > 0, Vr(�)! 0 at in�nity. Lemma 5.3 of [R1] proves that Ch(M) is a C�-algebra,
so it makes sense to de�ne the Higson-Roe compacti�cation, �M of M to be the maximal
ideal space of Ch(M).
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An equivalent alternative de�nition is to de�ne a map

� :M !
Y

�2Ch(M)

C

by �(m)� = �(m) and declare �M to be the closure of �(M) in the in�nite product. It
clear that �M is generally nonmetrizable and that �M is characterized by the fact that a
bounded continuous function � :M ! C extends to a continuous function �� : �M ! C if
and only if Vr(�)! 0 at in�nity. Such functions will be called slowly oscillating.

The Higson compacti�cation of a metric space is a close relative of the Stone-�Cech
compacti�cation. It di�ers signi�cantly from the Stone-�Cech, though, in that �X is not a
topological invariant of the underlying spaceX. It is, however, functorial under uniformly
continuous maps. The Higson corona is the space �X = �X�X. The corona is functorial
under proper uniformly continuous maps between proper metric spaces. (Recall that a
metric space X is proper if every �nite metric ball in X has compact closure and that a
map between metric spaces is proper if the inverse image of each compact set is compact.)
The space �X is a coarse invariant of X in the sense of Gromov. For details, we refer
the reader to chapters 2 and 5 of [R1].

While the Higson compacti�cation of a noncompact metric space X is an interesting
object in its own right, it gains additional interest because of its relationship with the
Novikov and Gromov-Lawson Conjectures. In particular, the Principle of Descent says
that the Novikov Conjecture for the fundamental group of a �nite aspherical complex
K follows from an appropriate Coarse Novikov Conjecture for the universal cover, ~K.
Moreover, this Coarse Novikov Conjecture is known to be true for ~K whenever ~K has a
compacti�cation with nice properties.

Novikov's Conjecture. If M is a topological n-manifold with n � 5, the Sullivan-Wall
surgery exact sequence of M is

: : : �! Ln+1(�1M) �! S(M;@M) �! Hn(M ; G/TOP)
A�! Ln(Z�1M):

The map A in this sequence factors as

Hn(M ; G/TOP) �! Hn(B�1M ; G/TOP) �! Hn(B�1M ;L(e))
A�! Ln(Z�1M)

where Hn( � ; G/TOP) and Hn( � ;L(e)) denote homology with coe�cients in the con-
nective and periodic L-spectra, respectively, M ! B�1M is the classifying map, and A
is the universal assembly map. The map A depends only on � = �1M and is otherwise
independent of M . The classical Novikov Conjecture says that the map A is a rational
monomorphism for all groups �.

Coarse Novikov and Borel Conjectures. In case the universal cover of M is

contractible, Hn(M ;L(e))
�=�! Hn(B�1M ;L(e)) and we write the assembly map as
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A : Hn(M ;L(e)) ! Ln(Z�1M): In this case, the (rational) Coarse Novikov Conjec-
ture says that the bounded assembly map, see [F-P],

H`f
n ( ~M ;L(e))! Lbddn;M (e)

is a (rational) monomorphism. The (rational) Coarse Borel Conjecture says that this
map is a (rational) isomorphism. The Coarse Baum-Connes Conjecture, (6.28) of [R1],
is an analogous isomorphism statement in the language of C�-algebras. The relationship
between the topological and C�-algebra versions of the Novikov Conjecture is discussed
extensively in [Ros2]. These coarse conjectures invite generalizations to larger categories
of spaces. Such generalizations will be discussed later in this paper but for now we will
stick with universal covers of �nite aspherical polyhedra.

x2. Principle of Descent

Let Mn and Nn be closed1 aspherical manifolds and let f : M ! N be a homotopy
equivalence. Since tangentiality is not a�ected if we cross both manifolds with S1, we can
assume that we are in dimension � 5 and that both manifolds are covered by euclidean
space. We wish to show that f is topologically tangential. We pass to universal covers
and form the diagram:

~N ��
~N

~f�� ~f����! ~M ��
~M

proj1

??y proj1

??y
N

f����! M

Here � = �1M = �1N acts diagonally on ~M � ~M and ~N � ~N and the maps proj1 are
induced by projection onto the �rst factor. One can show that that ~N��

~N and ~M��
~M

are bundles with �ber ~N and ~M over N and M which are equivalent to the topological
tangent bundles of N and M , respectively. To show that f is tangential, it su�ces to
show that ~f ��

~f is proper homotopic to a �ber-preserving map which restricts to a
homeomorphism on each �ber. This approach goes back to Farrell-Hsiang [F-H].

One approach to this problem is via bounded surgery theory [F-P]. The map ~f ��
~f

restricts to a copy of ~f on each �ber. Thus, the problem of homotoping these maps to
homeomorphisms can be viewed as a parameterized bounded surgery problem. We can
proceed by induction on skeleta in N to boundedly homotop maps over each skeleton to
homeomorphisms. Assuming that we have succeeded over @�k, the obstruction to suc-

ceeding over the interior lies in Sbdd
0
@ ~M ��k

#
~M

rel @( ~M ��k)

1
A. The bounded surgery

1By a result of M. Davis [D, p. 215], the closed manifold case implies the more general-looking case
of groups � with B� �nite
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sequence which computes this is:

� � � ! Sbdd
0
@ ~M ��k

#
~M

rel @( ~M ��k)

1
A! H`f

n+k(
~M ; G/TOP)

! Lbdd
n+k; ~M

(e)! : : :

These structure sets vanish if and only if the coarse assembly maps

H`f
n+k(

~M ; G/TOP)! Lbdd
n+k; ~M

(e)

are isomorphisms. Since ~M is homeomorphic to Rn, this amounts to showing that the
assembly maps induce isomorphisms

�k(G/TOP)! Lbdd
n+k; ~M

(e)

for all k. The de�nitions of \bounded" and \Lbdd" depend on the metric on ~M , so we
cannot simply replace ~M by Rn on the right hand side.

If ~M admits an equivariant compacti�cation, we can follow [C-P] and use continuously
controlled surgery theory [AnCFK], [C-P], [F-P] in place of bounded surgery theory in
this construction. Suppose, for instance, that M [ X = �M is an L-acyclic metrizable
compacti�cation of ~M such that compact subsets of ~M become small near X { see [C-P]
for a precise version of these conditions. For this argument only, we will use �M to denote
something other than the Higson-Roe compacti�cation of M .

We can form ~M ��
�M and ~N ��

�N with projections to M and N . Here �N is the
induced compacti�cation ofN with remainderX. These are analogs of the closed tangent
disk bundles of M and N . To show tangentiality, we work through a similar induction
using continuously controlled surgery theory over X. In this case, the crucial assembly
assembly map turns out to be

H`f
n+k(

~M ; G/TOP)! LccX;n+k(e):

The advantage here is that the continuously controlled L-groups can be computed. It
turns out that LccX;n+k(e)

�= �Hst
n+k�1(X;L(e)), where �Hst denotes reduced Steenrod

homology, and that the coarse assembly map is the composition

H`f
n+k(

~M ; G/TOP) �= �Hst
n+k(

�M;X; G/TOP)
@����! �Hst

n+k�1(X;L(e)):

That @ is an isomorphism follows immediately from the contractibility of �M and the long
exact sequence of ( �M;X) in Steenrod homology. Thus, in case ~M has a nice compacti-
�cation, the integral Novikov Conjecture holds for Z�1M .
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Suppose that ~M [N is a metrizable compacti�cation of ~M so that the \identity" map
~M ! ~M [N is slowly oscillating. Then there is a map �M ! ~M [N taking � ~M to N .
If ~M [N is L-acyclic, we have a commutative diagram

H`f
n ( ~M ;L(e))

@����! Hst
n�1(�( ~M);L(e))

�=

??y ??y
H`f
n ( ~M ;L(e))

@����!
�=

Hst
n�1(N ;L(e)):

We call these conditions { that an equivariant compacti�cation ~M [ N be metrizable,
that the \identity" map ~M ! ~M [N be slowly oscillating and that ~M [N be L-acyclic {
the Carlsson-Pedersen Conditions. If these conditions are satis�ed, then diagram above
shows that the boundary map

(�) H`f
n ( ~M ;L(e))

@����! Hst
n�1(�( ~M));L(e))

must be equivariantly split. This motivates the study of this boundary map in connection
with the Novikov Conjecture, with special interest in determining conditions under which
�M is L-acyclic, or under which the boundary map (�) is equivariantly split.

Unfortunately, the Higson-Roe compacti�cation of ~M is never acyclic for closed aspher-
ical Mn with �1(M) 6= 1. An argument of Keesling, [K], shows that the 1-dimensional
�Cech cohomology of �M must have in�nite rank. Since his argument for nontriviality is
simple, we sketch it here: Choose a point m0 2 ~M and let f : ~M ! S1 � C be the
function

f(m) = ei
p
d ~M (m;m0)

The function f is slowly oscillating, so f extends continuously to �f : �M ! S1. If �f were
nullhomotopic, �f would have to lift via the standard cover to a function f� : �M ! R.
Since no lift of f to R has compact image, this is impossible and �f must be essential.

This leaves room for hope, since Keesling's argument also shows that the �rst co-
homology of the Stone-�Cech compacti�cation of ~M must be nontrivial. In the case of
the Stone-�Cech compacti�cation, however, a theorem of Calder and Siegel says that the
higher cohomology of � ~M always vanishes for aspherical M . Also, an extension of the
descent argument above (see [F-W]) shows that to prove the integral Novikov Conjec-

ture it su�ces to �nd a metrizable equivariant compacti�cation ~M [N of ~M such that
compact sets get small at in�nity and such that the boundary map

(��) �Hst
n+k(M [N;N ; G/TOP)

@����! �Hst
n+k�1(N ;L(e))

has an equivariant splitting. This is a mild, but potentially useful, extension of the
Carlsson-Pedersen result quoted above. Moreover, in order to prove the rational Novikov
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conjecture for �1M with M a closed aspherical manifold, it su�ces to prove this same
statement rationally.

To recapitulate, in order to prove the Novikov Conjecture it su�ces to �nd a metriz-
able equivariant compacti�cation ~M [ N so that fundamental domains get small near
in�nity and so that (��) is equivariantly split. The existence of such a splitting for

any compacti�cation of ~M satisfying the Carlsson-Pedersen conditions implies that the
analogous boundary map for the Higson compacti�cation is equivariantly split, as well.

x3. Large Riemannian Manifolds

The Gromov-Lawson conjecture states that a closed aspherical manifold cannot carry
a metric of a positive scalar curvature [G-L]. This conjecture is a special case of the
Novikov conjecture discussed in the previous section. Large Riemannian manifolds come
into the picture when we consider universal covers of aspherical manifolds.

We recall that a metric space X; d is called uniformly contractible if for any number
R > 0 there is a greater number S such that the R-ball BR(x), centered at x can be
contracted to a point in the ball BS(x) of radius S for any point x 2 X.

Example. Let M be closed aspherical manifold with Riemannian metric d and let X
be its universal covering space, p : X ! M . Then X with the induced metric p�d is
uniformly contractible.

Proof. Let Z � X be a compact set with p(Z) =M and let d1 be the diameter of Z. For
any given R we consider a point x0 2 Z and the ball BR+d1(x0). Since M is aspherical,
X is contractible, and there is an S0 > 0 such that the ball BR+d1(xo) is contractible in
BS0(x0). Then for any x 2 X the ball BR(x) is contractible in BS(x) for S = S0 + d1.
Indeed, there is an element g 2 �1(M) such that g(x) 2 Z. Then BR(g(x)) is contained
in BR+d1(x0) and hence is contractible in BS0(x0) � BS(g(x)). Since the metric p�d is
�1(M)-invariant, BR(x) = g�1(BR(g(x))) is contractible in BS(x) = g�1(BS(g(x))). �

De�nition. An open Riemannian n-manifold M is called hypereuclidean (rationally
hypereuclidean) if there exists a Lipschitz map f : M ! Rn of degree one (nonzero
degree).

The Gromov-Lawson conjecture is proved in [G-L] for manifolds with hypereuclidean
universal covers. The following natural question is due to Gromov [G2]:

Problem. Is every uniformly contractible manifold hypereuclidean?

A positive answer to this question would imply the Gromov-Lawson conjecture. It
turns out that the answer is negative [D-F-W]: there is an uniformly contractible Rie-
mannian metric on R8 which is not hypereuclidean. Nevertheless that metric is rationally
hypereuclidean. Since the rational hypereuclideaness su�ces for the Gromov-Lawson
conjecture, the following conjecture is of a great importance.
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Conjecture. Every uniformly contractible manifold is rationally hypereuclidean.

It is possible that we should restrict ourselves here to uniformly contractible manifolds
with bounded geometry. This would also su�ce for Gromov-Lawson. See [H-R]. In this
paper we will refer to this conjecture as to the Gromov Conjecture. We compare the
Gromov Conjecture with the following:

Weinberger Conjecture [Ro1]. For every uniformly contractible metric space X with
a proper metric the boundary homomorphism @ : H��1(�X;Q) ! H�

c (X;Q) is an
epimorphism.

When X is a manifold of dimension n, the Weinberger conjecture states that

@ : Hn�1(�X;Q)! Hn
c (X;Q) = Q

is an epimorphism provided X is uniformly contractible. The Weinberger conjecture
implies the rational injectivity of a coarse assembly map [Ro1] and, in particular, the
Gromov-Lawson Conjecture.

One way to prove the Weinberger conjecture would be to show that the Higson compact-
i�cation of X is rationally acyclic, but this is not the case even when X is Euclidean
space Rn by the argument of Keesling quoted above. On the other hand, in [D-K-U] the
Weinberger Conjecture was checked for �-invariant metrics on contractible manifolds for
a broad class of �nitely presented groups �. The argument of the last section shows that
the Weinberger Conjecture holds for Euclidean spaces and for hyperbolic spaces, since
they have nice compacti�cations.

Theorem 3.1. For open n-manifolds M with n even, the Weinberger Conjecture is
equivalent to the Gromov Conjecture.

De�nition. Let f : R+ ! R+ be a positive function tending to zero as x approaches
in�nity. Denote by Cf (M) the algebra of bounded functions � on a metric space M
with the variation tending to zero as f or faster, i.e. for every � 2 Cf (M) and for every
R > 0 there exists a constant C such that V arR�(x) � Cf(d(x; x0)) where x0 2 M is
a �xed point. Then the Higson-Roe compacti�cation of growth f of a given space M is
the maximal ideal space �Mf for CF (M). The remainder �fM = �Mf nM is called the
Higson-Roe corona of M of growth f .

We recall that the Higson corona of M is the corona corresponding to the algebra
C1(M) of bounded functions on M with variation tending to zero at in�nity. It is clear
that Cf (M) � C1(M) and that there is therefore a map f : �M ! �Mf extending the
identity on M .

The open cone CY on a geodesic compact space Y with weight function � : R+ ! R+

is the standard quotient space Y � [0;1)= � with the metric

d�((y; t); (z; s)) = inf


l�(
)
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where 
 is a 'rectangular' path, de�ned by vertices (y0; t0) = (y; t), (y1; t1),...,(z; s)
such that ti = Ti+1 for even i and yi = yi+1 for odd i, joining (y; t) with (z; t), and
l�(
) =

P
i j ti+1 � ti j +�(xi)d(yi; yi+1).

Proposition 3.2. [Ro1, Example 5.28]. Let M = O�N be an open cone over N
with a weight function � that tends to in�nity. Then there exists a map to a closed cone
q : �M1=� ! C�N such that the restriction of q on M is the identity map.

Let Z be the remainder of a compacti�cation of an open oriented n-manifold, then
the degree of a map f : Z ! Sn�1 is the degree of the following homomorphism Z =

Hn�1(Sn�1)
f��! �Hn�1(Z)

@�! Hn
c (M) = Z.

The proof of Theorem 3.1 is based on a characterization of hypereuclidean manifolds
which is a modi�cation of a characterization due to J. Roe [Ro1].

Lemma 3.3. For an n-dimensional open manifold M the following conditions are equiv-
alent:

(1) M is hypereuclidean,
(2) there is a map g : �1=xM ! Sn�1 of degree one,

(3) there is a map g0 : �M ! Sn�1 of degree one.

Proof.
1))2). Let f : M ! Rn be a Lipschitz map of degree one. Then f induces a map
C1=x(R

n) ! C1=x(M) and hence a map �f : �M1=x ! Rn
1=x. Since Rn is a weighted

open cone OxS
n�1 over Sn�1, by Proposition 3.2 we have a map q : Rn

1=x ! CxS
n�1.

Consider g = q � �f j�1=xM : �1=xM ! Sn�1. The diagram

�Hn�1(�1=xM) ����! Hn
c (M)

g�
x?? =

x??
Hn�1(Sn�1) ����! Hn

c (R
n)

implies that deg(g) = 1.

2))3). There is a map h : �M ! �1=xM such that h jM= id. De�ne g0 = g � h, then
the diagram

�Hn�1(�M) ����! Hn
c (M)x?? id

x??
�Hn�1(�1=xM) ����! Hn

c (M)

g�
x?? =

x??
Hn�1(Sn�1) ����! Hn

c (R
n)
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implies the proof.

3)) 1). Lemmas 6.3, 6.4, 6.5 and Remark after in [Ro1] imply the proof. �

For rationally hypereuclidean spaces one can similarly prove the following

Lemma 3.4. For an n-dimensional open manifold M the following conditions are equiv-
alent:

(1) M is rationally hypereuclidean,
(2) there is a map g : �1=xM ! Sn�1 of nonzero degree,

(3) there is a map g0 : �M ! Sn�1 of nonzero degree.

Proof of Theorem 3.1. If the Gromov Conjecture holds for n-dimensional manifold M ,
then by Lemma 3.4 there is a map f : �M ! Sn�1 of nonzero degree. By the de�nition
of this degree it follows that @(f�(e)) rationally generates the group Hn

c (M ;Q), where e
is the fundamental cohomology class on the sphere Sn�1.

Assume that the Weinberger conjecture holds for M . Then there exists a map f :
�M ! K(Q; n � 1) which de�nes an element � 2 �Hn�1(�M ;Q) with nontrivial image
�(�) 2 Hn

c (M) = Q. By virtue of Serre's theorem on the �niteness of higher homotopy
groups of odd-dimensional spheres, an Eilenberg-MacLane complex K(Q; n� 1) can be
chosen as a telescope of spheres. Since �M is compact, f(�M) lies in a �nite stage
sphere in the telescope. Thus, we have nonzero degree map of the Higson corona onto
n� 1-sphere. By Lemma 3.4, M is rationally hypereuclidean. �

x4. Cohomology of the Higson-Roe compactification of Euclidean space

Although the Weinberger conjecture holds for Rn, the n-dimensional cohomology
group �Hn(Rn;Q) of the Higson compacti�cation is nontrivial. It follows immediately
that �Hn(�Rn;Q) 6= 0, as well.

Theorem 4.1. For every n, �Hn(Rn;Q) 6= 0.

For the proof we need the following fact.

Proposition 4.2. For every n � 1 there is a locally trivial bundle p : E ! Sn+1 with
(n + 1)-connected the total space ( �k(E) = 0 for k � n + 1) with �ber a CW complex
F containing a homotopy equivalent subcomplex M with (n + 1)-dimensional skeleton
M (n+1) homeomorphic to the n-sphere Sn.

Proof. For n = 1, the Hopf bundle h : S3 ! S2 satis�es all the conditions. For n > 1 we

can take Milnor's model [Ad] for the Serre �bration � 
Sn+1����! Sn+1. In that model the
�ber F = FSn is the free nonabelian topological group generated by the sphere Sn.

This bundle is de�ned by the twisting map � : Sn � FSn ! FSn de�ned by the
formula �(x;w) = x�1w. Here w = x�11 x

�2
2 : : : x�nn is a word in the alphabet Sn and their

inverses (so, xi 2 Sn, �i = 1 or �1 ) and x�1w is an element of FSn represented by a
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word obtained from w by adding the letter x�1 from the left. It is clear that for every
x 2 Sn the multiplication by x�1 de�nes a homeomorphism of FSn to itself. Thus, the
map � de�nes a bundle by gluing the two natural charts on Sn+1 over the equator Sn.

It is possible to show that the total space E of this bundle is contractible. Therefore
the �ber FSn is homotopy equivalent to the loop space 
Sn+1. The free topological
group FSn contains the free topological monoid MSn. By James' Theorem [J], MSn

is homotopy equivalent to 
�Sn = 
Sn+1 and hence, to FSn. Moreover the inclusion
MSn � FSn induces that equivalence. We note that the (n+1)-skeleton ofMSn (James
in�nite reduced product of Sn) is homeomorphic to Sn for n � 2. �

Proposition 4.3. If f : Sn ! Sn is a piecewise smooth degree m map from the unit

sphere to itself, then V�(f) � �m
1
n

2 .

Proof. For each n and �, let vol(�; n) denote the volume of a ball of radius � in Sn. Given
n and �, choose points x1; : : : ; x` 2 Sn so that the open balls of radius �

2 in Sn form a
maximal disjoint collection. We have an inequality:

vol(Sn) � ` � vol
� �
2
; n
�

Since the collection is maximal, the �-balls with the same centers cover Sn and since f
has degree m, the volume of the image of some �-ball centered at some xi must be at
least

m � vol(Sn)
`

�
�
m � vol(Sn)

`

� 
` � vol � �2 ; n�
vol(Sn)

!
= m � vol

� �
2
; n
�

Therefore, since volumes of balls grow more slowly in Sn than in Rn, the image of some
some �-ball centered at xi is not contained in the (m1=n � �2 )-ball centered at f(xi). This

implies that V�(f) >
�m

1
n

2 , as desired. �

Denote by B(m) the boundary of the cube in Rn+1 which is centered at the origin and
which has sides of length m parallel to the coordinate axes. Let h : Rn+1 ! Rn+1 be
a radial contracting homeomorphism de�ned in the spherical coordinates by the formula
h(r; �) = (r�; �), where n

n+1 � � < 1 and consider the subset M = h�1([1m=1B(2m)) �
Rn+1 with the induced metric.

Proof of Theorem 4.1. For n = 1 the theorem is proven in [K].

Assume that n > 1 and let q : Rn+1 ! Rn+1=Zn+1 = Tn+1 be the quotient map
onto the torus and let � : Tn+1 ! Sn+1 be the quotient map to the sphere. Consider
the map f = � � q � h : Rn+1 ! Sn+1, where h is as de�ned above. Let z0 2 Sn+1 be
the quotient point, so that (� � q)�1(z0) is the set of points in Rn+1 with at least one
integral coordinate. This means, in particular, that (� � q)�1(z0) � M . Since B(m) is
centered at the origin, B(m) is not contained in (� � q)�1(z0) for m odd.
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The map f has an extension �f : Rn+1 ! Sn+1, since the gradient of f tends to zero
at in�nity. Pulling back the fundamental class of Sn+1, �f de�nes an element of integral
�Cech cohomology of the Higson compacti�cation Rn+1. We will show that this element
is of in�nite order.

Assume the contrary. Then there exists a number d such that the composition gd � �f
is nullhomotopic, where gd : Sn+1 ! Sn+1 is a map of degree d. Then there is a map
f 0 : Rn+1 ! E such that p � f 0 = gd � �f , where p : E ! Sn+1 is the bundle introduced
in Proposition 4.2. This follows from the fact that nullhomotopic maps always lift.

We may assume that gd(z0) = z0. Note that f(M) = z0 and gd(f(M)) = z0, so
f 0(M) � p�1(z) = FSn. The exact sequence of the �bration p implies that the map f 0

restricted to h�1(B(2m)) has the same degree as the quotient map

q2m : h�1D(2m)=h�1B(2m)! Sn+1

induced by gd � f jh�1(D(m)). Here B(2m) is the boundary of the cube D(2m). The

degree of q2m equals d � (2m)n+1 which is equal to d times the number of unit cubes in
D(2m).

Since the inclusion MSn � FSn is homotopy equivalence, there is a homotopy of
f 0 j �M to a map f 00 : Rn+1 ! E with f 00( �M) � MSn. By [D-K-U], the closure of M in

Rn+1 is �M , the Higson-Roe compacti�cation of M , so this notation is consistent. Since
the (n+1)-skeleton of CW-complex MSn is Sn and Rn+1 is (n+1)-dimensional, we can
assume that f 00( �M) � Sn, so f 00 jM must be slowly oscillating. We will see that this is
impossible, a contradiction which will complete the proof of Theorem 4.1.

Let k : Sn ! h�1(B(2)) be a Lipschitz map (the radial projection will do) with
Lipschitz constant L. For each m we have a composition cm

Sn
k����! h�1(B(2))

�m
1
�����! h�1(B(2m))

f 0����! Sn:

By Proposition 4.3, V�(cm) > (d(2m)n+1)1=n � �=2. This implies that

VLm1=��(f
00) > (d(2m)n+1)1=n � �=2

and we get

V�(f
00) > (d(2m)n+1)1=n � �

2Lm
1
�

=
d
1
n 2

1
n

L
m(n+1n � 1

� )�

Since the exponent of m is non-negative, V�(f
00 jM) does not go to zero with increasing

m and f 00 cannot be slowly oscillating. �

Corollary 4.4. Hk(Rn) 6= 0 for all 1 � k � n.

Proof. The retraction r : Rn ! Rn�1 induces a retraction �r : Rn ! Rn�1. The result
follows by induction and Theorem 4.1. �
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x5. Cohomology of the Higson-Roe compactification of hyperbolic space

We begin this section by proving

Theorem 5.1. For the hyperbolic plane H2, �H2( �H
2
) = 0:

Lemma 5.2. Let S3 � R4 be the unit 3-sphere and let S1 � S3 be a great circle. Let
p�S1 : N�S

1 ! S1 denote the projection from an �-tubular neighborhood of to S1. Then
p�S1 is a Lipschitz map with Lipschitz constant K� where lim�!0K� = 1.

Proof. This follows from the proof of the tubular neighborhood theorem provided that
the normal vector �eld is taken perpendicular to the great circle S1. �

Proof of Theorem 5.1. Since dim �H
2
= 2 [D-K-U], every element of �H2( �H

2
) can be

represented by a map f : �H
2 ! S2. Since any map of a 2-dimensional compactum into

S3 is nullhomotopic, to show that f is nullhomotopic it su�ces to lift f with respect to

the Hopf bundle h : S3 ! S2. Hence, it su�ces a slowly oscillating map g : �H
2 ! S3 such

that h � g = f . Since g is nullhomotopic, its composition with h will be nullhomotopic,
as well.

Let x0 be a �xed point in H2 and let S(n) be a sphere of radius n centered at x0. Let
�m : H2 ! B(m) be the geodesic retraction onto the ball B(m). It is clear that �m
restricted to B(m+1) moves points not further than by one. There is a constant C < 1
such that �m jS(m+1) is a Lipschitz map with Lipschitz constant C for all m. (In fact,
for large m, C is approximately 1=e.) Choose � > 0 so that C < 1=K�.

We de�ne a lift g : �H
2 ! S3 of f with respect to h as follows:

(i) Choose a ball B(R) of radius R centered at x0 so that for every two points
x; y 2 H n B(R) with dist(x; y) � 1, the great circle h�1(f(x)) lies in an �-
neighborhood of the great circle h�1(f(y)).

(ii) We will de�ne the lift g by induction. Begin with any Lipschitz lift g of f over
B(R).

(iii) Assuming that g is already de�ned on B(R + n), extend g to B(R + n + 1) by
setting

g(x) = p�h�1(f(x))(g(�R+n(x))):

Denote the Lipschitz constant of g restricted to S(r) by Lr and note that

LR+n+1 � LR+nCK� � LR(CK�)
n+1

This shows that the Lipschitz constant Lr goes to zero as n!1. This implies that g is
slowly oscillating at in�nity, completing the proof. �

Extensions. Using Hopf �brations S7 ! S4 and S15 ! S8, the argument above shows
that Hn(Hn) = 0 for n = 4 and n = 8. Replacing the Hopf �bration by the unit tangent
bundle of Sn for n even shows that Hn(Hn) is at most 2-torsion for every even n. In
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fact, a slight extension of the argument (using, for instance, the �brations S2n+1 ! CPn

in the 2-dimensional case) shows that

H2(Hn) = H4(Hn) = H8(Hn) = 0

for every n. �
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