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ABSTRACT. Higson-Roe compactifications first arose in connection with C*-algebra ap-
proaches to index theory on noncompact manifolds. Vanishing and/or equivariant splitting
results for the cohomology of these compactifications imply the integral Novikov Conjecture
for fundamental groups of finite aspherical CW complexes. We survey known results on
these compactifications and prove some new results — most notably that the nt® cohomol-
ogy of the Higson-Roe compactification of hyperbolic space H™ consists entirely of 2-torsion
for n even and that the rational cohomology of the Higson-Roe compactification of R™ is
nontrivial in all dimensions 1 < k < n.

§1. THE HiGSON-ROE COMPACTIFICATION

Higson’s compactification X first appeared in [H] in connection with a K-theoretic
analysis of Roe’s index theorem for noncompact Riemannian manifolds. Higson defined
X to be to be the maximal ideal space of the commutative C*-algebra of smooth functions
whose gradient vanishes at infinity. In [R1], Roe modified Higson’s definition to make
sense for more general spaces. Here is Roe’s definition:

Definition. If M is a space and ¢ : M — C is a continuous function, define V,.(¢) :
M — R™T by

Vi(¢) = sup{|p(y) — ¢(z)| : y € Br(2)}

Then Cy (M) is the space of all bounded continuous functions ¢ : M — C so that for
each r > 0, V,.(¢) — 0 at infinity. Lemma 5.3 of [R1] proves that Cy (M) is a C*-algebra,
so it makes sense to define the Higson-Roe compactification, M of M to be the maximal
ideal space of Cy(M).
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An equivalent alternative definition is to define a map

L M — H C
¢PECH(M)

by t(m)y = ¢(m) and declare M to be the closure of ((M) in the infinite product. It
clear that M is generally nonmetrizable and that M is characterized by the fact that a
bounded continuous function ¢ : M — C extends to a continuous function ¢ : M — C if
and only if V,.(¢) — 0 at infinity. Such functions will be called slowly oscillating.

The Higson compactification of a metric space is a close relative of the Stone-Cech
compactification. It differs significantly from the Stone-Cech, though, in that X is not a
topological invariant of the underlying space X. It is, however, functorial under uniformly
continuous maps. The Higson corona is the space vX = X — X. The corona is functorial
under proper uniformly continuous maps between proper metric spaces. (Recall that a
metric space X is proper if every finite metric ball in X has compact closure and that a
map between metric spaces is proper if the inverse image of each compact set is compact.)
The space vX is a coarse invariant of X in the sense of Gromov. For details, we refer
the reader to chapters 2 and 5 of [R1].

While the Higson compactification of a noncompact metric space X is an interesting
object in its own right, it gains additional interest because of its relationship with the
Novikov and Gromov-Lawson Conjectures. In particular, the Principle of Descent says
that the Novikov Conjecture for the fundamental group of a finite aspherical complex
K follows from an appropriate Coarse Novikov Conjecture for the universal cover, K.
Moreover, this Coarse Novikov Conjecture is known to be true for K whenever K has a
compactification with nice properties.

Novikov’s Conjecture. If M is a topological n-manifold with n > 5, the Sullivan-Wall
surgery exact sequence of M is

oo = L1 (miM) — S(M,0M) — H,,(M;G/TOP) 25 L, (ZmM).
The map A in this sequence factors as
H,(M;G/TOP) — H,(BmM;G/TOP) — H,(Bm1M;L(e)) A, L (Zm M)

where H,( - ;G/TOP) and H,( - ;L(e)) denote homology with coefficients in the con-
nective and periodic L-spectra, respectively, M — Bwi M is the classifying map, and A
is the universal assembly map. The map A depends only on # = 71 M and is otherwise
independent of M. The classical Novikov Conjecture says that the map A is a rational
monomorphism for all groups .

Coarse Novikov and Borel Conjectures. In case the universal cover of M is

contractible, H,(M;L(e)) — H,(BmiM;L(e)) and we write the assembly map as
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A : H,(M;L(e)) - Lp(ZmM). In this case, the (rational) Coarse Novikov Conjec-
ture says that the bounded assembly map, see [F-P],

H,J (M;L(e)) — Lyl (e)

is a (rational) monomorphism. The (rational) Coarse Borel Conjecture says that this
map is a (rational) isomorphism. The Coarse Baum-Connes Conjecture, (6.28) of [R1],
is an analogous isomorphism statement in the language of C*-algebras. The relationship
between the topological and C*-algebra versions of the Novikov Conjecture is discussed
extensively in [Ros2]. These coarse conjectures invite generalizations to larger categories
of spaces. Such generalizations will be discussed later in this paper but for now we will
stick with universal covers of finite aspherical polyhedra.

§2. PRINCIPLE OF DESCENT

Let M™ and N™ be closed! aspherical manifolds and let f : M — N be a homotopy
equivalence. Since tangentiality is not affected if we cross both manifolds with S*, we can
assume that we are in dimension > 5 and that both manifolds are covered by euclidean
space. We wish to show that f is topologically tangential. We pass to universal covers
and form the diagram:

Nxr N 2500 0r o i1

proji l proji l

N L5 M
Here I' = mM = m N acts diagonally on M x M and N x N and the maps proji are
induced by projection onto the first factor. One can show that that N xp N and M xp M
are bundles with fiber N and M over N and M which are equivalent to the topological
tangent bundles of N and M, respectively. To show that f is tangential, it suffices to

show that f X f is proper homotopic to a fiber-preserving map which restricts to a
homeomorphism on each fiber. This approach goes back to Farrell-Hsiang [F-H].

One approach to this problem is via bounded surgery theory [F-P]. The map fxrf
restricts to a copy of f on each fiber. Thus, the problem of homotoping these maps to
homeomorphisms can be viewed as a parameterized bounded surgery problem. We can
proceed by induction on skeleta in N to boundedly homotop maps over each skeleton to
homeomorphisms. Assuming that we have succeeded over dA¥*, the obstruction to suc-

M x A¥
ceeding over the interior lies in S?¥¢ 1 rel 8(]\;[ x AF) ]. The bounded surgery

M

IBy a result of M. Davis [D, p. 215], the closed manifold case implies the more general-looking case
of groups I' with BT finite
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sequence which computes this is:

M x AF ) )
. — Shdd L el (M x A%) | — HY, (M;G/TOP)
M
Lfffk M(e) — ...

These structure sets vanish if and only if the coarse assembly maps

oY

- +,C(M; G/TOP) — LV _(¢)

n+k, M
are isomorphisms. Since M is homeomorphic to R", this amounts to showing that the
assembly maps induce isomorphisms
bdd
7 (G/TOP) — L ik, izte)

for all k. The definitions of “bounded” and «pbdd» depend on the metric on M , SO we
cannot simply replace M by R"™ on the right hand side.

If M admits an equivariant compactification, we can follow [C-P] and use continuously
controlled surgery theory [AnCFK], [C-P], [F-P] in place of bounded surgery theory in
this construction. Suppose, for instance, that M U X = M is an L-acyclic metrizable
compactification of M such that compact subsets of M become small near X — see [C-P]
for a precise version of these conditions. For this argument only, we will use M to denote
something other than the Higson-Roe compactification of M.

We can form M xp M and N xp N with projections to M and N. Here N is the
induced compactification of N with remainder X. These are analogs of the closed tangent
disk bundles of M and N. To show tangentiality, we work through a similar induction
using continuously controlled surgery theory over X. In this case, the crucial assembly
assembly map turns out to be

Hn+k (M G/TOP) — gg,m—k (e)-

The advantage here is that the continuously controlled L-groups can be computed. It
turns out that L, . (e) = Hgt . (X;L(e)), where H*" denotes reduced Steenrod
homology, and that the coarse assembly map is the composition

Lf
Hn+k

(M G/TOP) = Hzt,, (N, X; G/TOP) —2— A%, | (X:L(e)).

That 0 is an isomorphism follows immediately from the contractibility of M and the long
exact sequence of (M, X) in Steenrod homology. Thus, in case M has a nice compacti-
fication, the integral Novikov Conjecture holds for Zm; M.
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Suppose that MUN is a metrizable compactification of M so that the ¢ ‘identity” map

M — M UN is slowly oscillating. Then there is a map M — MUN taking vM to N.
If M UN is L-acyclic, we have a commutative diagram

HY (M;L(e)) —2— Hgb, (v(M);L(e))

| 1

HY (M;L(e)) —2—  H3' (N;L(e)).

IR

We call these conditions — that an equivariant compactification M U N be metrizable,
that the “identity” map M — M UN be slowly oscillating and that MUN be L-acyclic —
the Carlsson-Pedersen Conditions. If these conditions are satisfied, then diagram above
shows that the boundary map

(+) HY (M;L(e)) —2— Hj',(v(M));L(e))

must be equivariantly split. This motivates the study of this boundary map in connection
with the Novikov Conjecture, with special interest in determining conditions under which
M is L-acyclic, or under which the boundary map (x) is equivariantly split.

Unfortunately, the Higson-Roe compactification of M is never acyclic for closed aspher-
ical M™ with 7m1(M) # 1. An argument of Keesling, [K|, shows that the 1-dimensional
Cech cohomology of M must have infinite rank. Since his argument for nontriviality is
simple, we sketch it here: Choose a point mg € M and let f: M — S' C C be the

function
f(m) — 61;‘ /d iz (m,mo)

The function f is slowly oscillating, so f extends continuously to f:M— St It f were
nullhomotopic, f would have to lift via the standard cover to a function f*: M — R.
Since no lift of f to R has compact image, this is impossible and f must be essential.

This leaves room for hope, since Keesling’s argument also shows that the first co-
homology of the Stone-Cech compactification of M must be nontrivial. In the case of
the Stone-Cech compactification, however, a theorem of Calder and Siegel says that the
higher cohomology of SM always vanishes for aspherical M. Also, an extension of the
descent argument above (see [F-W]) shows that to prove the integral Novikov Conjec-
ture it suffices to find a metrizable equivariant compactification M U N of M such that
compact sets get small at infinity and such that the boundary map

(%) H:' ((MUN,N;G/TOP) —— Hg', | (N;L(e))

has an equivariant splitting. This is a mild, but potentially useful, extension of the
Carlsson-Pedersen result quoted above. Moreover, in order to prove the rational Novikov
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conjecture for my M with M a closed aspherical manifold, it suffices to prove this same
statement rationally.

To recapitulate, in order to prove the Novikov Conjecture it suffices to find a metriz-
able equivariant compactification M U N so that fundamental domains get small near
infinity and so that (xx) is equivariantly split. The existence of such a splitting for
any compactification of M satisfying the Carlsson-Pedersen conditions implies that the
analogous boundary map for the Higson compactification is equivariantly split, as well.

§3. LARGE RIEMANNIAN MANIFOLDS

The Gromov-Lawson conjecture states that a closed aspherical manifold cannot carry
a metric of a positive scalar curvature [G-L]. This conjecture is a special case of the
Novikov conjecture discussed in the previous section. Large Riemannian manifolds come
into the picture when we consider universal covers of aspherical manifolds.

We recall that a metric space X, d is called uniformly contractible if for any number
R > 0 there is a greater number S such that the R-ball Br(z), centered at x can be
contracted to a point in the ball Bg(x) of radius S for any point z € X.

Example. Let M be closed aspherical manifold with Riemannian metric d and let X
be its universal covering space, p : X — M. Then X with the induced metric p*d is
uniformly contractible.

Proof. Let Z C X be a compact set with p(Z) = M and let d; be the diameter of Z. For
any given R we consider a point oy € Z and the ball Bry4, (o). Since M is aspherical,
X is contractible, and there is an S’ > 0 such that the ball B4, (x,) is contractible in
Bgsi(xg). Then for any z € X the ball Bg(x) is contractible in Bg(z) for S = S’ + d;.
Indeed, there is an element g € w1 (M) such that g(x) € Z. Then Bg(g(z)) is contained
in Bryd, (z9) and hence is contractible in Bg/(z9) C Bs(g(x)). Since the metric p*d is
w1 (M)-invariant, Bg(z) = ¢~ (Br(g(z))) is contractible in Bs(z) = g~ '(Bs(g(x))). O

Definition. An open Riemannian n-manifold M is called hypereuclidean (rationally
hypereuclidean) if there exists a Lipschitz map f : M — R™ of degree one (nonzero
degree).

The Gromov-Lawson conjecture is proved in [G-L] for manifolds with hypereuclidean
universal covers. The following natural question is due to Gromov [G2]:

Problem. Is every uniformly contractible manifold hypereuclidean?

A positive answer to this question would imply the Gromov-Lawson conjecture. It
turns out that the answer is negative [D-F-W]: there is an uniformly contractible Rie-
mannian metric on R® which is not hypereuclidean. Nevertheless that metric is rationally
hypereuclidean. Since the rational hypereuclideaness suffices for the Gromov-Lawson
conjecture, the following conjecture is of a great importance.
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Conjecture. Every uniformly contractible manifold is rationally hypereuclidean.

It is possible that we should restrict ourselves here to uniformly contractible manifolds
with bounded geometry. This would also suffice for Gromov-Lawson. See [H-R]. In this
paper we will refer to this conjecture as to the Gromov Conjecture. We compare the
Gromov Conjecture with the following:

Weinberger Conjecture [Rol]. For every uniformly contractible metric space X with
a proper metric the boundary homomorphism 9 : H*~'(vX;Q) — H*(X;Q) is an
epimorphism.

When X is a manifold of dimension n, the Weinberger conjecture states that
0:H' ' (vX;Q) — HI(X;Q) = Q

is an epimorphism provided X is uniformly contractible. The Weinberger conjecture
implies the rational injectivity of a coarse assembly map [Rol] and, in particular, the
Gromov-Lawson Conjecture.

One way to prove the Weinberger conjecture would be to show that the Higson compact-
ification of X is rationally acyclic, but this is not the case even when X is Euclidean
space R™ by the argument of Keesling quoted above. On the other hand, in [D-K-U] the
Weinberger Conjecture was checked for I'-invariant metrics on contractible manifolds for
a broad class of finitely presented groups I'. The argument of the last section shows that
the Weinberger Conjecture holds for Euclidean spaces and for hyperbolic spaces, since
they have nice compactifications.

Theorem 3.1. For open n-manifolds M with n even, the Weinberger Conjecture is
equivalent to the Gromov Conjecture.

Definition. Let f : R, — R, be a positive function tending to zero as = approaches
infinity. Denote by Cf(M) the algebra of bounded functions ¢ on a metric space M
with the variation tending to zero as f or faster, i.e. for every ¢ € C¢(M) and for every
R > 0 there exists a constant C' such that Varge(z) < Cf(d(x,z)) where g € M is
a fixed point. Then the Higson-Roe compactification of growth f of a given space M is
the maximal ideal space My for Cp(M). The remainder v;M = M; \ M is called the
Higson-Roe corona of M of growth f.

We recall that the Higson corona of M is the corona corresponding to the algebra
C1(M) of bounded functions on M with variation tending to zero at infinity. It is clear
that Cy(M) C C1(M) and that there is therefore a map f : M — M; extending the
identity on M.

The open cone CY on a geodesic compact space Y with weight function ® : Ry — R
is the standard quotient space Y x [0,00)/ ~ with the metric

da((y,1), (2,5)) = infla(7)
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where v is a ’rectangular’ path, defined by vertices (yo,t0) = (y,t), (y1,t1),-s(2,8)
such that t; = T;y; for even i and y; = y;41 for odd i, joining (y,t) with (z,¢), and
lo(v) =22 [tivr — ti [ +P(@i)d(yi; yiv1)-

Proposition 3.2. [Rol, Example 5.28]. Let M = OgN be an open cone over N
with a weight function ® that tends to infinity. Then there exists a map to a closed cone
q: Mo — CoN such that the restriction of q on M is the identily map.

Let Z be the remainder of a compactification of an open oriented n-manifold, then
the degree of a map f : Z — S™~! is the degree of the following homomorphism Z =

qr=r(s 1) L fgr-1z) S g (M) = 2.

The proof of Theorem 3.1 is based on a characterization of hypereuclidean manifolds
which is a modification of a characterization due to J. Roe [Rol].
Lemma 3.3. For an n-dimensional open manifold M the following conditions are equiv-
alent:

(1) M is hypereuclidean,
(2) there is a map g : v1/, M — S™71 of degree one,
(3) there is a map g' : vM — S™~! of degree one.

Proof.
1)=2). Let f: M — R™ be a Lipschitz map of degree one. Then f induces a map

Ci/z(R") — Ci/;(M) and hence a map f : My, — R’f/m. Since R™ is a weighted
open cone 0,S"~! over S"~!, by Proposition 3.2 we have a map q : R}, — C,S" 1.

Consider g = g o f |, ,, m: v1/sM — "1, The diagram

H" Yvy/yM) —— HM(M)
Hn—l(sn—l) s Hn(Rn)

implies that deg(g) = 1.

2)=3). There is a map h : vM — vy, M such that h |py= id. Define g’ = g o h, then
the diagram
H" Y(vM) ——— H»(M)

I ]
(

FI"—l(yl/mM) - s H©

-] .

Hn—l(sn—l) s Hn(Rn)
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implies the proof.

3)= 1). Lemmas 6.3, 6.4, 6.5 and Remark after in [Rol] imply the proof. [

For rationally hypereuclidean spaces one can similarly prove the following

Lemma 3.4. For an n-dimensional open manifold M the following conditions are equiv-
alent:

(1) M is rationally hypereuclidean,
(2) there is a map g : v1/, M — S™1 of nonzero degree,
(3) there is a map g' : vM — S™™1 of nonzero degree.

Proof of Theorem 3.1. If the Gromov Conjecture holds for n-dimensional manifold M,
then by Lemma, 3.4 there is a map f : vM — S™~! of nonzero degree. By the definition
of this degree it follows that d(f*(e)) rationally generates the group H?(M;Q), where e
is the fundamental cohomology class on the sphere S™~1.

Assume that the Weinberger conjecture holds for M. Then there exists a map f :
vM — K(Q,n — 1) which defines an element o € H* ' (vM; Q) with nontrivial image
d(a) € HY (M) = Q. By virtue of Serre’s theorem on the finiteness of higher homotopy
groups of odd-dimensional spheres, an Eilenberg-MacLane complex K(Q,n — 1) can be
chosen as a telescope of spheres. Since vM is compact, f(vM) lies in a finite stage
sphere in the telescope. Thus, we have nonzero degree map of the Higson corona onto
n — l-sphere. By Lemma 3.4, M is rationally hypereuclidean. []

§4. COHOMOLOGY OF THE HIGSON-ROE COMPACTIFICATION OF KUCLIDEAN SPACE

Althguguhe Weinberger conjecture holds for R", the n-dimensional cohomology
group H™(R"; Q) of the Higson compactification is nontrivial. It follows immediately
that H™(vR™; Q) # 0, as well.

Theorem 4.1. For every n, H"(R"™; Q) # 0.
For the proof we need the following fact.

Proposition 4.2. For every n > 1 there is a locally trivial bundle p : E — S™T1 with
(n + 1)-connected the total space ( 7p(E) = 0 for k < n+ 1) with fiber a CW complex
F containing a homotopy equivalent subcomplex M with (n + 1)-dimensional skeleton
MY homeomorphic to the n-sphere S™.

Proof. For n = 1, the Hopf bundle h : S3 — S? satisfies all the conditions. For n > 1 we

n+1
can take Milnor’s model [Ad] for the Serre fibration x 257, §n+1. In that model the
fiber ' = F'S™ is the free nonabelian topological group generated by the sphere S™.

This bundle is defined by the twisting map & : S™ x FS™ — FS™ defined by the

formula &(z,w) = 7 w. Here w = z{'x5? ... x5 is a word in the alphabet S™ and their

inverses (so, z; € S™, ¢; = 1 or —1 ) and x~!w is an element of F'S™ represented by a
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word obtained from w by adding the letter z=! from the left. It is clear that for every
x € S™ the multiplication by ! defines a homeomorphism of F'S™ to itself. Thus, the
map ¢ defines a bundle by gluing the two natural charts on S™t! over the equator S™.

It is possible to show that the total space E of this bundle is contractible. Therefore
the fiber F'S™ is homotopy equivalent to the loop space QS™*t!. The free topological
group F'S™ contains the free topological monoid M S™. By James’ Theorem [J], M S™
is homotopy equivalent to QX.S™ = QS+ and hence, to F'S™. Moreover the inclusion
MS™ C FS™ induces that equivalence. We note that the (n+ 1)-skeleton of M S™ (James
infinite reduced product of S™) is homeomorphic to S™ for n > 2. O

Proposition 4.3. If f : S™ — S™ is a piecewise smooth degree m map from the unit
1

sphere to itself, then V(f) > E”f )

Proof. For each n and ¢, let vol(e,n) denote the volume of a ball of radius € in S™. Given
n and €, choose points x1,...,zy € S™ so that the open balls of radius < in S™ form a

2
maximal disjoint collection. We have an inequality:
€
vol(S™) > £ - vol (5, n)

Since the collection is maximal, the e-balls with the same centers cover S™ and since f
has degree m, the volume of the image of some e-ball centered at some z; must be at

least
m- V(zl(S") > (m ' v;l(S”)) (ﬁ :;)11(‘(3%)”)> =m - vol (%, n)

Therefore, since volumes of balls grow more slowly in S™ than in R", the image of some

some e-ball centered at x; is not contained in the (m!/™ - £)-ball centered at f(z;). This
1

implies that V.(f) > €2, as desired. [

Denote by B(m) the boundary of the cube in R"*! which is centered at the origin and
which has sides of length m parallel to the coordinate axes. Let h : R*T! — R"*! be
a radial contracting homeomorphism defined in the spherical coordinates by the formula
h(r, ) = (r®, ¢), where ;I3 < o < 1 and consider the subset M = h~H(Upe_; B(2m)) C
R"*! with the induced metric.

Proof of Theorem 4.1. For n =1 the theorem is proven in [K].

Assume that n > 1 and let ¢ : R**! — Rrtl/Zn+l = T7+! be the quotient map
onto the torus and let o : T"t! — S™*1 be the quotient map to the sphere. Consider
the map f = aogoh: R*"! — S§"*t1 where h is as defined above. Let zo € S"*! be
the quotient point, so that (a0 q)~(zg) is the set of points in R"™! with at least one
integral coordinate. This means, in particular, that (a o q)~!(z9) D M. Since B(m) is
centered at the origin, B(m) is not contained in (a0 q)~1(29) for m odd.
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The map f has an extension f : Rn+l — §"+1 since the gradient of f tends to zero
at infinity. Pulling back the fundamental class of S”*!, f defines an element of integral
Cech cohomology of the Higson compactification R?+1. We will show that this element
is of infinite order.

Assume the contrary. Then there exists a number d such that the composition g4 o f
is nullhomotopic, where g4 : S®T1 — 87! is a map of degree d. Then there is a map
f': Rntl — E such that po f' = g4 0 f, where p : E — S™*1! is the bundle introduced
in Proposition 4.2. This follows from the fact that nullhomotopic maps always lift.

We may assume that gq(20) = 29. Note that f(M) = zy and g4(f(M)) = 2o, so
f'(M) C p~1(2) = FS™. The exact sequence of the fibration p implies that the map f’
restricted to h=1(B(2m)) has the same degree as the quotient map

Gom : h1D(2m)/h~'B(2m) — S™T!

induced by gq o f |n-1(p(m)). Here B(2m) is the boundary of the cube D(2m). The
degree of go,, equals d - (2m)™+! which is equal to d times the number of unit cubes in
D(2m).

Since the inclusion MS™ C F'S™ is homotopy equivalence, there is a homotopy of
f" |y to amap f”: R+l — E with (M) ¢ MS™. By [D-K-U], the closure of M in
Rn+1 is M, the Higson-Roe compactification of M, so this notation is consistent. Since
the (n + 1)-skeleton of CW-complex MS™ is S™ and Rn"+1 is (n + 1)-dimensional, we can
assume that f”(M) C S™, so f” | M must be slowly oscillating. We will see that this is
impossible, a contradiction which will complete the proof of Theorem 4.1.

Let k : S® — h~!(B(2)) be a Lipschitz map (the radial projection will do) with
Lipschitz constant L. For each m we have a composition c¢,,

1
@

sr —E L pY(B(2) XM py(B(2m) —L s s,

By Proposition 4.3, V.(c,,) > (d(2m)"+t1)1/™ - ¢/2. This implies that
Vigirae(f") > (d(2m)" )" - e/2
and we get,
€ dw 2%
2Lma L

Since the exponent of m is non-negative, V.(f” | M) does not go to zero with increasing
m and f” cannot be slowly oscillating. [

Corollary 4.4. H*(R") # 0 for all 1 < k < n.

(n+1_1
n

L),

Ve(f") > (d(2m)"thHH/m.

m

Proof. The retraction » : R® — R™~! induces a retraction 7 : R® — R”—1. The result
follows by induction and Theorem 4.1. [
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§5 COHOMOLOGY OF THE HIGSON-ROE COMPACTIFICATION OF HYPERBOLIC SPACE
We begin this section by proving
Theorem 5.1. For the hyperbolic plane H?, I:IZ(I_Iz) =0.

Lemma 5.2. Let S3 C R* be the unit 3-sphere and let S' C S® be a great circle. Let
PG - N.S' — S denote the projection from an e-tubular neighborhood of to S*. Then
P 15 a Lipschitz map with Lipschitz constant K. where lim¢_,0 K, = 1.

Proof. This follows from the proof of the tubular neighborhood theorem provided that
the normal vector field is taken perpendicular to the great circle St. [

Proof of Theorem 5.1. Since dimH> = 2 [D-K-U], every element of fIz(f{2) can be
represented by a map f : H> - S2. Since any map of a 2-dimensional compactum into
S3 is nullhomotopic, to show that f is nullhomotopic it suffices to lift f with respect to
the Hopf bundle h : S3 — S2. Hence, it suffices a slowly oscillating map g : H - S3such
that hog = f. Since g is nullhomotopic, its composition with h will be nullhomotopic,
as well.

Let 2o be a fixed point in H? and let S(n) be a sphere of radius n centered at zo. Let
¢m : H2 — B(m) be the geodesic retraction onto the ball B(m). It is clear that &,,
restricted to B(m + 1) moves points not further than by one. There is a constant C' < 1
such that &, |g(m+1) is a Lipschitz map with Lipschitz constant C' for all m. (In fact,
for large m, C is approximately 1/e.) Choose € > 0 so that C' < 1/K..

We define a lift g : H — S of f with respect to h as follows:

(i) Choose a ball B(R) of radius R centered at xo so that for every two points
z,y € H\ B(R) with dist(z,y) < 1, the great circle h™!(f(z)) lies in an -
neighborhood of the great circle h=1(f(y)).

(ii) We will define the lift g by induction. Begin with any Lipschitz lift g of f over
B(R).

(iii) Assuming that g is already defined on B(R + n), extend g to B(R + n + 1) by
setting

9(2) = Ph=1(5(2)) (9(ER4n (2)))-
Denote the Lipschitz constant of g restricted to S(r) by L, and note that
Lpini1 < LrynCK. < Lr(CK.)"*!
This shows that the Lipschitz constant L, goes to zero as n — oco. This implies that g is

slowly oscillating at infinity, completing the proof. [

Extensions. Using Hopf fibrations S” — S* and S'® — S®, the argument above shows
that H"(H") = 0 for n = 4 and n = 8. Replacing the Hopf fibration by the unit tangent
bundle of S™ for n even shows that H™(H") is at most 2-torsion for every even n. In
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fact, a slight extension of the argument (using, for instance, the fibrations S?"*1 — C P
in the 2-dimensional case) shows that

H?*(H") = H*(H") = H}(H") = 0

for every n. [
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