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Abstract. The main theorem of this paper is that compact metric spaces which are locally
n-connected and which have cohomological dimension � n for some n are precisely the spaces
which are cell-like images of �nite polyhedra. We show that this leads to a well-de�ned
simple homotopy theory for such spaces. We also show that these spaces are precisely the
compact metric spaces which are limits of polyhedra in Gromov's topological moduli spaces
M(n; �) for some choice of � and n. In addition, we prove that every precompact subset of
M(n; �) contains only �nitely many simple homotopy types. In the �nal section, we discuss
the problem of determining which metric spaces are limits of closed manifolds inM(n; �) for
some n and �.

1. Introduction

Definition 1.1. A space X is said to be LCk if for each point x 2 X and each neighbor-
hood U of x, there is a neighborhood V � U � X containing x so that �`(V )! �`(U) is
the zero map for all 0 � ` � k and for all choices of basepoint in V . X is said to be weakly
locally contractible if X is LCk for all k.

Definition 1.2. A metric space X is said to have cohomological dimension � n if for
each closed A � X, �Hn+1(X;A) = 0.

Remark 1.3. It is an easy consequence of the de�nition that the cohomological dimension
of a metric space is less than or equal to its covering dimension. The converse is true for
�nite-dimensional spaces. A nice explanation of this appears in [23]. The two notions of
dimension diverge for spaces of in�nite covering dimension { Dranishnikov [8], has produced
spaces which have �nite cohomological dimension and in�nite covering dimension. In
what follows, the word \dimension" will always mean covering dimension. We will use
\cohomological dimension" or \cdim" when we wish to refer to cohomological dimension.

Definition 1.4.

(i) A compact metric space X is cell-like if X can be topologically embedded in the
Hilbert cube Q in such a way that X contracts to a point inside of each of its
neighborhoods. An argument using the Tietze extension theorem shows that if such
an X is embedded into any ANR, then it contracts in each of its neighborhoods in
that ANR.

(ii) A map f : X ! Y is proper if f�1(K) is compact for each compact K � Y .
(iii) A map between metric spaces q : X ! Y is cell-like if it is a proper surjection and

q�1(y) is cell-like for each y 2 Y . See [17] for general properties of cell-like maps.
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Here is our �rst main result.

Theorem A. Let X be a compact metric space which is LCn and which has cohomological

dimension � n. Then X is the cell-like image of a �nite polyhedron.

Before stating our other theorems, we recall the de�nitions of the Gromov-Hausdor�
metric and some related concepts.

Definition 1.5. If Z is a compact metric space and X and Y are closed subsets of Z,
then the Hausdor� distance from X to Y in Z is

dHZ (X;Y ) = inff� > 0 j X � N�(Y ) and Y � N�(X)g:

Here, N�(X) denotes the set of points in Z whose distance from X is less than �. The
Gromov-Hausdor� distance from X to Y is

dGH(X;Y ) = infZfd
H
Z (X;Y ) j X and Y are embedded isometrically in Zg:

Let CM denote the set of isometry classes of compact Hausdor� spaces with the Gromov-
Hausdor� metric. CM is a complete metric space ([14]).

We wish to study collections of topological manifolds and polyhedra in CM. To in-
sure that spaces in our class which are close together have similar algebraic-topological
properties, we follow [2], [14], [20] by introducing the notion of a contractibility function.

Definition 1.6. A function � : [0; R)! [0;1) with �(0) = 0 is a contractibility function

if � is continuous at 0 and �(t) � t for all t. A compact metric space X is locally contractible

with contractibility function � if for each r < R, the ball Br(x) contracts to a point in
B�(r)(x). LetM(�; n) denote the subset of CM consisting of isometry classes of compact
metric spaces with Lebesgue covering dimension � n which have contractibility function
�.

Here are the statements of our other main theorems.

Theorem B. If X 2 CM, then X 2 M(n; �) for some n and � if and only if X is the

cell-like image of some �nite polyhedron K.

Corollary. If X 2 CM, then X 2 M(n; �) for some n and � if and only if there is a k

such that cdim(X) � k and X is LCk.

Definition 1.7. A subset S � CM is said to be precompact if S has compact closure in
CM. Since CM is complete, S is precompact if and only if it has a �nite cover by �-balls
for each �.

Theorem C. If S �M(n; �) is precompact for some n and �, then S contains only �nitely

many simple-homotopy types.

Remark 1.8. In [12], the author showed that f n 6= 3 and S is a precompact collection of
topological n-manifolds in M(n; �) for some �xed n and �, then S contains only �nitely
many homeomorphism types of topological manifolds. The analogous result in dimension
3 would imply the 3-dimensional Poincar�e Conjecture.
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Theorem D.

(i) If K1 and K2 are �nite polyhedra and �1 : K1 ! X, �2 : K2 ! X are cell-like

maps, then there is a simple-homotopy equivalence f : K1 ! K2 so that �2 � f is

homotopic to �1.
(ii) If K1 and K2 are �nite polyhedra, �1 : K1 ! X1, �2 : K2 ! X2 are cell-like

maps, and f : X1 ! X2, then there is a homotopy �ft : K1 ! K2, 0 � t < 1, so
that limt!1 �2 � �ft = f � �1. If f is a weak homotopy equivalence, ft is a homotopy

equivalence for each t 2 [0; 1) and setting �(f) = �2#(�(f0)) 2Wh(Z�1X2) extends
the de�nition of Whitehead torsion to include weak homotopy equivalences between

cell-like images of �nite polyhedra.

At the end of the paper, we discuss a program for determining which topological spaces
are limits of closed topological manifolds in some M(n; �). If X is a weakly locally con-
tractible homology n-manifold, n � 6, with �nite cohomological dimension, this program,
when implemented, will give an obstruction lying in �n�1(fiber(H(X;G=TOP � Z) !
H(X; L(e)))) which vanishes if and only if X is the cell-like image of a closed ANR homol-
ogy manifold. Here, L(e) is the periodic L-theory spectrum of the trivial group..

2. The proof of Theorem A

It is classical that covering dimension and cohomological dimension agree for cdim = 1.
This implies that a space X which is LC1 with cdim(X) = 1 must be a 1-dimensional
ANR. By results of Quinn, [21], such a space X has a mapping cylinder neighborhood
in R

5 and is therefore the cell-like image of a 5-dimensional polyhedron. Thus, we may
assume that n � 2.

First, we need to show that our \cdim � n and LCn"space X is weakly locally con-
tractible. We begin by quoting a theorem of Hurewicz. A modern reference for this result
is [10] Corollary 3.3.

Proposition 2.1 (Hurewicz [16]). Suppose that X is a compact LCk metric space with

k � 1 and that for each neighborhood U of x 2 X there is a neighborhood V of x in U
with �Hk+1(V )! Hk+1(U) trivial. Then X is LCk+1.

The homology theory in this statement is �Cech homology:

Definition 2.2. If X = lim
 �

Ki is a compact metric space, written as an inverse limit

of �nite polyhedra, we de�ne �Hk(X) to be lim
 �

Hk(Ki). In general, we de�ne the �Cech

homology of a metric space to be the direct limit of the �Cech homologies of its compact
subsets.

Proposition 2.3. If X is a compact metric space with cdim(X) � n, then �Hk(X) = 0
for all k > n.

Proof: By a theorem of Alexandrov, we can write X = lim
 �

Ki, where the Ki's are �nite

polyhedra. For each i, we have a natural short exact sequence

0! Ext(Hk+1(Ki);Z)! Hk(Ki;Z)! Hom(Hk(Ki);Z)! 0:
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Since �Hk(X) = lim
�!

Hk(Ki) = 0 for k > n, we know that for each �xed k and i there

is a j(i) > i so that Hk(Ki) ! Hk(Kj(i)) is the zero map. It follows easily that the
composition Hk(Ki) ! Hk(Kj(i)) ! Hk(Kj�j(i)) is zero on homology. This, in turn,

shows that �Hk(X) = 0.

An easy induction using Hurewicz' theorem now gives the following.

Proposition 2.4. If X is a compact LCn metric space with cdim(X) � n, then X is

weakly locally contractible.

The principal tools used in proving Theorem A are theorems of R. D. Edwards and F.
Quinn. We begin the proof with the statement of Edwards' theorem.

Theorem (Edwards' Resolution Theorem [23]). If X is a compact metric space

with �nite cohomological dimension n, then there exist a compact n-dimensional metric

space Z and a cell-like map � : Z ! X.

Remark 2.5. In general, the space Z produced by Edwards' argument will not have good
local properties. The point of our Theorem A is to show that when X is weakly locally
contractible, then Z can be taken to be very nice indeed. Replacing the messy Z by
a polyhedral one costs us some dimensions. For n � 2, the polyhedral Z produced by
Theorem A will be 2n + 1-dimensional if X has cohomological dimension n. The author
does not know if this can be improved.

If X is a space of cohomological dimension n as in the statement of Theorem A, let
� : Z ! X be a cell-like map with Z n-dimensional. As remarked above, Z need not have
good local properties. By dimension theory, Z can be embedded in R2n+1 . In fact, the set
of embeddings is second category in the set of all maps Z ! R

2n+1 . This embedding of

Z into R2n+1 can be taken to miss [1i=1T
(2)
i , where Ti is a sequence of triangulations of

R
2n+1 with mesh tending to 0 and T

(2)
i is the 2-skeleton of Ti.

Form the adjunction space R
2n+1 [� X. Since X is weakly locally contractible, an

inductive argument as in pp 390-393 of [20] produces a compact manifold neighborhood
M of Z in R2n+1 and a homotopy rt : M [� X ! R

2n+1 [� X, 0 � t � 1, such that r0 is
the inclusion, r1(M [�X) = X, and rtjX = idX for all t. The idea here is to use the weak
local contractibility of X to construct a deformation from M [� X to X in R2n+1 [� X.

Notation: Let �� : R2n+1 ! R
2n+1[�X be the quotient map and let �rt :M ! R

2n+1[�X
be the composition rt � ��. In particular, we have �r1 :M ! X with �r1jZ = �.

Definition 2.6. If Y is a metric space and X is a closed subset of Y , we say that X has
a mapping cylinder neighborhood in Y if there exist a space Z and a map p : Z ! X so
that the mapping cylinder M(p) of p is homeomorphic to a closed neighborhood of X in
Y . More precisely, we require that there be a map j :M(p)! Y so that jjX = id and so
that jj(M(p)� Z) is open.

The End Theorem
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By an end problem, we will mean a noncompact manifold M with compact boundary
together with a map p : M ! X, where X is a compact LC1 metric space. A compact

manifold completion ( �M; �p) of (M; p) is a compact manifold �M � M with �M �M � @ �M
and an extension of p to a map �p : �M ! X.

Quinn's End Theorem gives su�cient conditions for an end to admit a completion. In
particular, Theorem 1.4 of [21] says that if p :M ! X is a map such that p is onto, 0�LC,
1� LC, and tame (see below for de�nitions) then p admits a manifold completion.

Definition 2.7.

(i) p :M ! X is onto if p(M �K) = X for every compact K �M .
(ii) p is 0 � LC if for every x 2 X, compact K � M , and neighborhood V of x in X,

there is a compact K 0 � K and an open neighborhood V 0 of x in V so that points
in p�1(V 0) \ (M �K 0) can be joined by arcs in p�1(V ) \ (M �K).

(iii) p is 1�LC if, in addition,K 0 and V 0 can be chosen so that loops in p�1(V 0)\(M�K 0)
contract in p�1(V ) \ (M �K).

Definition 2.8. The map p : M ! X is tame provided that given any � > 0 and
compactum K � M there is a larger compactum K 0 � K and a homotopy ht : M ! M
such that h0 = id, htjK = id for all t, and h1(M �K) � K 0 �K. In addition, we require
that for each m 2M , diam(fp � ht(m)j 0 � t � 1g) < �.

Remark 2.9. We have stated a somewhat weakened version of Theorem 1.4 of [21]. In [21],
the theorem is stated for locally compact X and for a more general class of control maps
p. The interested reader is referred to that paper. That our end problem r :M � Z ! X
satis�es the 0� LC, and 1� LC conditions will follow immediately from basic properties
of cell-like maps. The tameness condition and the \onto" condition will require further
discussion.

We wish to apply Quinn's end theorem to the end �r1j : M � Z ! X to produce a
mapping cylinder neighborhood Q of X in R2n+1 [�X. The point is that if �r1j extends to
p : �M ! X, with �M =M [N , then N has a neighborhood homeomorphic to N � [0; 1] in
�M and M(p) �= N � [0; 1] [p X is a mapping cylinder neighborhood of X in R2n+1 [� X.

The inverse image, call it P , of this mapping cylinder neighborhood in R
2n+1 is the

desired polyhedron. By Quinn's construction, the boundary of P is a codimension-1 PL
submanifold of R2n+1 . The composition

P w
��j

CE
Q =M(p) w

proj
X

is a cell-like map from a polyhedron onto X. Thus, the proof of Theorem A will be
complete if we can show that the map �r1j :M �Z ! X is onto, 0�LC, 1�LC, and tame.
The proof is an adaptation of the proof from [21] that codimension-3 1- LCC embedded
ANRs have mapping cylinder neighborhoods. Our veri�cation of conditions (ii) and (iii)
of De�nition 2.7 will rely on the following properties of cell-like maps.

Three properties of cell-like maps

5



Proposition 2.10 ([17], p. 506.). Let X be an ANR, let Y be a compact metric space

and let q : X ! Y be a cell-like map. Suppose we are given a �nite polyhedron L, a
subpolyhedron L0 of L and maps f : L ! Y and f0 : L0 ! X so that q � f0 = f j L0.
Then for every � > 0, there is a map �f : L! X so that �f j L0 = f0 and d(f; q � �f) < �.

L0 w
f0

y

u

X

u

q

L
\
\
\\]�f

w
f

Y

Corollary 2.11. If f : X ! Y is CE with X an ANR, then f is a weak homotopy

equivalence.

The second basic property of cell-like maps shows that the LCk condition in the state-
ment of Theorem A is necessary.

Proposition 2.12 ([17], p. ???). Let X be a compact ANR and let f : X ! Y be a

cell-like map. Then Y is weakly locally contractible.

Theorem (Vietoris-Begle). If f : X ! Y is a cell-like map between metric spaces,

then f� : �Hk(Y )! �Hk(X) is an isomorphism for all k.

Returning to the proof of Theorem A, recall that we have an n-dimensional compactum
Z � R

2n+1 , a cell-like map � : Z ! X, and a retraction r1 : M [� X ! X, where M is a
compact PL manifold neighborhood of Z in R2n+1 .

To see that �r1j :M �Z ! X is 0�LC, let K be a compact subset of M and let V be a
neighborhood of x in X. Since X is LC0, we can choose a neighborhood V 0 with �V 0 � V
so that any two points in V 0 can be connected by a path in V .

Let � > 0 be the minimum of distance from �V 0 to X � V and distance from K to X in

R
2n+1 [�X. Choose K 0 so that diam(f�rt(m)j0 � t � 1g) and diam(f�r1 � �rt(m)j0 � t � 1g)

are less than �=3 for all m 2M �K 0.

If m1;m2 2 (�r�11 (V 0)\ (M �K 0�Z)), we can join m1 to m2 in �r�11 (V )\ (M �K 0�Z)
by using the paths �rt(mi) to get from mi to �r1(mi) and then going from �r1(m1) to �r1(m2)
by a path in V . To complete this phase of the argument, we need to push this path, call
it !0, o� of X by a small move. By Proposition 2.10, we can �nd a path ! connecting m1

and m2 in R
2n+1 whose image in R

2n+1 [� X is as close as we like to !0. By simplicial

approximation, we can assume that ! lies in [T
(2)
i , except for arbitrarily short paths near

m1 and m2. This implies, in particular, that ! misses Z. The desired path from m1 to m2

is this !, thought of as a path in R2n+1 [� X. The proof that �r1 :M � Z ! X is 1� LC
is entirely similar.

The \onto" condition of Quinn's End Theorem is not automatically satis�ed.

Example 2.13. Let [�1; 1] = [�1; 1]� f0g � R
2 and let r : R2 ! [�1; 1] be a retraction.

Let � : R2 ! [0; 1] be a map so that ��1(0) = [�1; 1]. Then s(x) = (1� �(x)) � r(x) is a
retraction from R

2 to [�1; 1] so that s(R2 � [�1; 1]) 6= [�1; 1].
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Fortunately, the weaker condition that �r1(M �K � Z) be dense in X for all compact
K � M , su�ces for the proof of the End Theorem. With a little work, one could always
replace such a \dense" end by an \onto" end without disturbing the the LC�0 and LC�1
conditions. At the cost of another dimension { which doesn't matter for the main results of
this paper { we can use an easy trick to alter our construction to produce \onto" ends. Let
j : Z � R

2n+1 and r1 :M [� X ! X be an embedding and retraction as above. Including
into R2n+1 � R = R

2n+2 , we can de�ne r�1 : M � R ! X be �r1 � proj. The restriction
r�1 j(M � [�1; 1]� (j(Z)� f0g)) is an \onto" end replacing �r1. It is easy to check that the
LC�0 and LC�1 conditions are undisturbed by this modi�cation.

Tameness

If p : M ! X is an end problem which is 0 � LC and 1 � LC, we will say that p is
homologically tame if for every open V � X, open V 0 with V 0 � �V , and compact K �M ,
there exists a compact K 0 with K � K 0 �M so that

H�(p
�1(V ); p�1(V ) \K)! H�(p

�1(V 0); p�1(V 0) \K 0)

is zero. In x5 of [21], Quinn proves that a 0�LC and 1�LC end which is homologically tame
is tame. Thus, it su�ces to verify homological tameness for our map �r1j :M � Z ! X.

Given open V; V 0 with V � �V � V 0 � X, and a codimension-0 PL submanifold M1 of
M withM �M1 compact, we need to �nd a codimension-0 submanifold M2 of M1 so that
M1 �M2 is compact and

(�) H�(�r1j
�1(V ); �r1j

�1(V ) \M �M1)! H�(�r1j
�1(V 0); �r1j

�1(V 0) \M �M2)

is the zero map. We can rewrite the left side of (�):

H�(�r1j
�1(V ); �r1j

�1(V ) \M �M1) �= H�(�r
�1
1 (V ) \M1 � ��1(V ); �r�11 (V ) \ @M1)

�= �Hn��
c (�r�11 (V ) \M1; �

�1(V ))

�= �Hn��(�r�11 ( �V 0) \M1; �
�1( �V 0) [ �r�11 ( �V 0 � V ) \M1)

where the passage from the �rst to second lines uses Alexander duality and the cohomology
groups in the second and third lines are �Cech cohomology. Similarly, we can rewrite the
right hand side of (�) as

H�(�r1j
�1(V 0); �r1j

�1(V 0) \M �M2) �= H�(�r
�1
1 (V ) \M2 � ��1(V 0); �r�11 (V 0) \ @M2)

�= �Hn��
c (�r�11 (V 0) \M2; �

�1(V 0))

�= �Hn��(�r�11 ( �V 0) \M2; �
�1( �V 0) [ �r�11 ( �V 0 � V 0) \M2):

We therefore need to check that the inclusion-induced map

�Hn��(�r�11 ( �V 0) \M1; �
�1( �V 0) [ (�r�11 ( �V 0 � V ) \M1)) �!

�Hn��(�r�11 ( �V 0) \M2; �
�1( �V 0) [ (�r�11 ( �V 0 � V 0) \M2))
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is zero for some choice of M2. Choose V
00 open with �V 0 � V 00 � X. Then we have

�Hn��(�r�11 ( �V 0) \M1; �
�1( �V 0) [ (�r�11 ( �V 0 � V ) \M1)) =

�Hn��(�r�11 ( �V 00) \M1; �
�1( �V 00) [ (�r�11 ( �V 00 � V ) \M1))

so it su�ces to check that

�Hn��(�r�11 ( �V 00) \M1; �
�1( �V 00) [ (�r�11 ( �V 00 � V ) \M1)) �!

�Hn��(�r�11 ( �V 0) \M2; �
�1( �V 0) [ (�r�11 ( �V 0 � V 0) \M2))

is zero. By the Vietoris-Begle Theorem, this is the same as checking that

�Hn��(r�11 ( �V 00) \ ��(M1); �V
00 [ (r�11 ( �V 00 � V ) \ ��(M1))) �!

�Hn��(r�11 ( �V 0) \ ��(M2); �V
0 [ (r�11 ( �V 0 � V 0) \ ��(M2)))

is zero. But if M2 is a su�ciently small neighborhood of Z, the homotopy rt deforms
��(M2) into X by a homotopy (rel X) keeping r�11 ( �V 0) \ ��(M2) inside of r

�1
1 ( �V 00) \ ��(M1)

and r�11 ( �V 0 � V 0) \ ��(M2) inside of r
�1
1 ( �V 00 � V ) \ ��(M1). This shows that the induced

map on cohomology is zero, as desired. This completes the proof of Theorem A.

Remark 2.14.

(i) The \Borsuk Conjecture" says that if X is a compact ANR, then X is homotopy
equivalent to a �nite polyhedron. This was proved by West in [24]. Our Theorem A
generalizes this by showing that every weakly locally contractible compact metric
space with �nite cohomological dimension is weak homotopy equivalent to a �nite
polyhedron. If we replace cohomological dimension by topological dimension and
drop the \weak," this becomes the Borsuk Conjecture for �nite-dimensional ANRs.

(ii) The argument above uses an Alexander duality isomorphism for noncompact mani-
folds with boundary which says that if M is an orientable noncompact manifold
with boundary @M and X is a closed subset of M with @M \ X = ;, then
Hk(M �X; @M) �= �Hn�k

c (M;X).1 To see this isomorphism in the case where M is
PL, we start by proving the analogous result for a compact orientable PL manifold
P containing a closed subset X. We write X = \Ni, where fNig is a nested se-
quence of compact PL manifolds meeting @P regularly. Let Q be a codimension-0
submanifold of @P with Q \X = ;. Then

Hk(P �X;Q) �= lim
�!

Hk(P �
�

N i; Q)

�= lim
�!

Hn�k(P �
�

N i; @(P �
�

N i)�
�

Q)

�= lim
�!

Hn�k(P; (@P �
�

Q) [Ni)

�= �Hn�k(P; (@P �
�

Q) [X):

1The argument on page 286 of [21] uses an incorrect form of this duality.
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Returning to the noncompact case, if we write M = [Pi, where fPig is a nested
sequence of compact PL manifolds with boundary and Qi = @Pi\@M is a subman-
ifold of @Pi, we have

Hk(M �X; @M) �= lim
�!

Hk(Pi � (Pi \X); Qi)

�= lim
�!

�Hn�k(Pi; (@Pi �Qi) [ (Pi \X))

�= lim
�!

�Hn�k(M; (M � Pi) [ (Pi \X))

�= �Hn�k
c (M;X):

3. The proof of theorem B

To prove Theorem B, we need to show

(i) If X is the cell-like image of a �nite polyhedron, then X 2 M(n; �) for some n and
�.

(ii) If X 2 M(n; �) for some n and �, then X is weakly locally contractible.

(iii) If X 2 M(n; �) for some n and �, then cdim(X) � k for some k.

Proofs of these facts already appear in papers of Borsuk, Moore, and Petersen. For the
�rst, here is the statement of Theorem 1 from [19].

Definition 3.1. If � : [0; R) ! R is a contractibility function, we will say that a space
X is in class LGCn(�) (LGC stands for locally geometrically contractible) if for every
� > 0 and map � : @�k ! X, 0 � k � n, with diam(�(@�k)) < t < R, there is a map
�� : �k ! X extending � with diam(��(�k)) < �(t).

Theorem. If Mn is a closed n-dimensional manifold and f : M ! X is a cell-like map,

then there is a contractibility function � and a continuous path w : [0; 1] ! LGCn(�) so
that w(t) is homeomorphic to M for 0 � t < 1 and w(1) = X.

As observed in [19], the proof given is valid for M a compact ANR. This proves part (i).
Part (iii) is a consequence of Theorem 2 from the same paper. We quote:

Theorem. If X is a compact metric space such that there are compact ANR's Xi 2
M(n; �) so that lim

i!1
Xi = X in CM, then X is the cell-like image of a compact, n-

dimensional metric space. More precisely, there exist a subsequence fXijg of fXig and
maps fij : Xij ! Xij�1 , so that there is a cell-like map p : Z ! X, where Z = lim

 �
(Xij ; fij ).

It is an immediate consequence of the Vietoris-Begle Theorem and the fact that coho-
mological dimension is less or equal to covering dimension that the cell-like image of an
n-dimensional metric space has cohomological dimension � n. This proves part (iii). In
[20], Petersen observed the closely related fact that if X is a limit of spaces inM(n; �) for
some n and �, then every �nite-dimensional subset of X has dimension � n. The reader
should be warned, however, that the theorem on p. 393 of [20] is incorrect. See [19] and
[12] for details.
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Finally, we need to know that if X is a limit of spaces inM(n; �), then X is LCn. This
is proven in x16 of [1].

Proposition 3.2. If X = lim Xi where each Xi is in M(n; �) for some �xed � and n,

then X is in LGCk(��) for all k if �� is any contractibility function with ��(t) > �(t) for all
t 2 (0; R).

This completes the proof of Theorem B.

4. The proof of Theorem C

The proof of Theorem C will be an argument by contradiction. Suppose that S is a
precompact subset ofM(n; �) for some �xed n and �. Let fXig1i=1 be a sequence of spaces
in S with no two simple-homotopy equivalent. By precompactness, we may assume that
limi!1Xi = X for some X 2 CM. By Proposition 3.2, X is weakly locally contractible.

We will obtain a contradiction by using a theorem of T. A. Chapman to prove that there
is an N > 0 so that Xi and Xj are simple-homotopy equivalent for all i; j > N . Here is
the theorem of Chapman which we will use.

Theorem (Theorem 10 of [4]). Let Z be a compact metric ANR and let p : Z ! X
be a map from Z to an LC1 compact metric space X. There is an �Z > 0 so that if

f : Y ! Z is a homotopy equivalence from another compact ANR to Z with a homotopy

inverse g : Z ! Y and homotopies kt : f � g ' idZ and ht : g � f ' idY so that for

each z 2 Z and y 2 Y , diam(fp � kt(z)g) < �Z and diam(fp � f � ht(y)g) < �Z , then
�(f) 2 ker(p# :Wh(Z�1Z)!Wh(Z�1X)).

Remark 4.1.

(i) The epsilon in Chapman's theorem depends on Z with its given metric. Chapman's
theorem is remarkable for the fact that there is no local hypothesis on the map p.

(ii) Simple-homotopy theory was �rst developed by Whitehead for homotopy equiva-
lences between �nite polyhedra. If f : K ! L is a homotopy equivalence between
�nite polyhedra, the theory gives an obstruction �(f) 2Wh(Z�1L) which vanishes
if and only if there is a homotopy commuting diagram

N(K) w
h N(L)

K

u

y

w
f

L

u

y

where N(K) and N(L) are closed regular neighborhoods of K and L in some high-
dimensional euclidean space and h is a PL homeomorphism. Standard references for
simple-homotopy theory include [7] and [18]. In [5], Chapman extended the theory
to include homotopy equivalences between compact ANRs.
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Chapman's theorem says that if a homotopy equivalence from X to Y has small tracks
when projected to Z, then the torsion of that homotopy equivalence lies in the kernel of
the induced map from WhZ�1X to WhZ�1Z. To apply this theorem to our �niteness
problem, we need to know that spaces inM(n; �) which are close together are homotopy
equivalent \with small homotopies."

Proposition 4.2.

(i) If X is a compact n-dimensional metric space and Y is a compact metric space

in LGCn�1(�), then for every � > 0 there is a � > 0 so that if d is a metric

on Z = X
`
Y so that dHZ (X;Y ) < �, then there is a map f : X ! Y with

d(x; f(x)) < � for all x 2 X.

(ii) If X and Y are in M(n; �), then for every � > 0 there is a � > 0 so that if d is

a metric on Z = X
`
Y so that dHZ (X;Y ) < �, then there are maps f : X ! Y ,

g : Y ! X, and homotopies ht : idX ' g � f , kt : idY ' f � g so that d(f(x); x) < �,
d(g(y); y) < �, d(ht(x); x), and d(kt(y); y) < � for all x, y, and t.

Proof: Part (i) is the proposition on page 390 of [20]. The second part is the theorem
on page 392 of the same paper. Closely related results appear in [1].

We can now complete the proof of Theorem C. If fXig is a sequence of spaces inM(n; �)
converging to X 2 CM, so X 2 LGC(2�). As in [14], we can �nd a metric on

Z = (
1a
i=1

Xi)
a

X

so that limXi = X in the Hausdor� metric on Z.

By part (i) of the above, given any � > 0, there is an N > 0 so that each Xi with
i � N admits a map pi : Xi ! X with d(x; pi(x)) < � in this metric. Moreover, this N
can be chosen so that if i; j � N there are maps fij : Xi ! Xj and gij : Xj ! Xi with

homotopies kijt : id ' fij � gij, h
ij
t : id ' gij � fij so that d(fij(x); x) < �, d(gij(x); x) < �,

d(hijt (x); x), and d(kijt (y); y) < � for all x, y, and t.

Let �X > 0 be the number in Chapman's theorem with X replacing Z. If we choose
� < �X

5 , the conditions of Chapman's theorem are satis�ed with respect to the control map
pj : Xj ! X. It follows that the torsion of fij is in the kernel of (pj)#. But for � small,
pj induces an isomorphism on �1 and, therefore, an isomorphism of Whitehead groups {
if � is a loop in X, we can take a �ne subdivision of � and choose points in Xj �-close to
the vertices. The points in Xj corresponding to adjacent vertices will be no more than 2�

apart and can be connected by small arcs using the LC0 condition in Xj . This gives a loop

�0 in Xj whose image under pj is close to �. The LC
0 condition in X gives us paths from

the vertices of � to the corresponding vertices of pj(�
0) and the LC1 condition lets us �ll

in to get a homotopy from � to pj(�
0). This shows that pj induces an epimorphism on �1.

A similar argument using the LC2 condition shows that pj induces a monomorphism, as
well. For n � 2, this proves that Xi and Xj are simple homotopy equivalent for i; j � N , a
contradiction which completes the proof of Theorem C. For n = 1, the Whitehead groups
are trivial and the theorem is true by default. The reader who would like to see more
details of this argument is referred to pages 390{393 of [20].
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Remarks and extensions

Theorem C could also be proven using the machinery of [21]. For i and j large, the
homotopy equivalence fij has a controlled torsion lying in the controlled Whitehead group
of X, which vanishes. There is a forgetful homomorphism from the controlled Whitehead
group to the ordinary Whitehead group taking controlled torsions to ordinary torsions, so
the homotopy equivalence fij is simple. This yields a better result than Theorem C, since
it shows that the controlled torsion, not just the ordinary torsion, vanishes.

The proof via Chapman's theorem has the advantage of accessibility. Short �nite-
dimensional proofs that CE maps between �nite polyhedra are simple-homotopy equiv-
alences appear in [6] and [17]. These proofs generalize to recover the �-Approximation
Theorem of [11]. See [13] or the references in [4]. Chapman's Theorem 10 is an immediate
consequence of this �-Approximation Theorem. See [4] for details.

Chapman's paper gives a second approach to certain consequences of Theorem A, as well.
After Moore [19] showed that limits of polyhedra in Gromov-Hausdor� space were spaces of
�nite cohomological dimension which were weakly locally contractible, it became natural to
ask whether every such space has the weak homotopy type of an a �nite polyhedron. This
reduces immediately to the question of whether the geometric realization of the singular
complex of such a space is homotopy equivalent to a �nite complex.

If we form �� :M !M[�X as in the proof of Theorem A and a retraction �r1 :M[�X !
X, we have a homotopy equivalence jS(M)j �= jS(M [�X)j and a retraction j�r1j : jS(M [�
X)j ! jS(X)j. This shows that jS(X)j is a �nitely dominated CW complex. Theorem 20

of [4] shows that controlled �nitely dominated CW complexes with control maps inducing
isomorphisms on �1 have the homotopy types of �nite complexes. While jS(X)j does not
appear to be controlled �nitely dominated, the homotopy equivalent subcomplex jS�(X)j
consisting of simplices of diameter � � is controlled �nitely dominated over X. This shows
that jS(X)j has the homotopy type of a �nite complex.

5. The proof of Theorem D

The proof of part (i) of Theorem D is an application of Theorem C together with
Proposition 2.10. If �1 : K1 ! X and �2 : K2 ! X are CE maps from �nite complexes to
X, Proposition 2.10 applies to the diagram

K2

u

�2

K1

\
\
\\]f

w
�1 X

to produce a map f making the diagram �-commute for � as small as we like. Since X
is weakly locally contractible, this implies that the diagram homotopy commutes. The
maps �i are weak homotopy equivalences by Corollary 2.11, so f induces isomorphisms on
homotopy and is a homotopy equivalence.
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To see that f is simple requires a bit more geometry. Reversing the roles of K1 and K2

produces a map g : K2 ! K1 so that �1 � g is �-close to �2. The map �1 is 2�-close to
�1 � g � f , so the two maps are homotopic by weak local contractibility of X. Lifting this
homotopy rel the identity map and g � f on the ends, we have a homotopy from g � f to id
which projects to a small homotopy in X. Symmetry gives a similar homotopy from f � g
to id. Applying Chapman's Theorem 10 or the results of [21] to this homotopy equivalence
as in the proof of Theorem C shows that f is simple. The argument also shows that any
f : K1 ! K2 making the diagram �-commute for small � is simple.

For part (ii), if f : X1 ! X2 is a weak homotopy equivalence between weakly locally
contractible compacta with �nite cohomological dimension, we can �nd �nite polyhedra
K1 and K2 with CE maps to X1 and X2. Lifting in the diagram

K2

u

�2

K1

((
((
((
()�f

w
�1 X1 w

f
X2

produces a homotopy equivalence �f : K1 ! K2. We de�ne the torsion of f in Wh(Z�1X2)
to be (�2)#(�(f)). An easy application of part (i) shows that this is well-de�ned.

Remark 5.1. This argument also applies to de�ne the Whitehead torsion of any shape
morphism f : X1 ! X2 which induces isomorphisms on homotopy groups. The point is
that by weak local contractibility the shape morphism f � �1 is represented by a map, so
we can follow the same procedure as above, lifting to get a map �f : K1 ! K2 and setting
�(f) = (�2)#(�( �f)).

6. Homology manifolds

We now consider limits of closed topological n-manifolds inM(n; �). As in [15], one see
that such limits are weakly locally contractible homology manifolds with cohomological
dimension n. Two questions suggest themselves.

Question 6.1. Is every weakly locally contractible homology manifold with cohomolog-
ical dimension n a limit of closed ANR homology manifolds in someM(n; �)?

Question 6.2. Is every weakly locally contractible homology manifold with cohomolog-
ical dimension n the cell-like image of a closed ANR homology manifold?

We ask these questions with \closed ANR homology manifold" rather than \topological
manifold" because of examples in [3].

Even with this modi�cation, both questions are false as stated. In [9], Dranishnikov and
the author produce examples of nonhomeomorphic closed topological manifoldsM1 andM2

which admit CE maps �1 and �2 onto the same compactum X. Forming M(�1)[X M(�2)
and doubling along M1 [M2 gives a closed weakly locally contractible homology manifold
with cdim = n which admits no resolution. If such a resolution existed, it could be taken to
be the identity near M1[M2, so the inverse imageM(�1)[XM(�2) would be a cobordism
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from M1 to M2. By the material in the previous section, this cobordism would be an
s-cobordism and M1 would be homomorphic to M2, a contradiction. A similar argument
using the �-Approximation Theorem shows that this is a counterexample to Question 6.2,
as well. Thus, Questions 6.1 and 6.2 should be modi�ed to ask what the obstructions are
to approximating such spaces by closed ANR homology manifolds.

It is not hard to conjecture the answer to this question. If X is such a space and
p : M ! X is a CE map from a codimension zero submanifold of R2n+2 to X as in
the proof of Theorem A, M is a controlled Poincar�e duality space over X and we have a
controlled surgery problem

M

u

p

X:

Assuming a version of Ranicki's total surgery obstruction ([22]) for controlled surgery over
X, we expect a �bration sequence of spectra

S

�
M

#

X

�
!H(M; L(e)) !H(X; L(e))

and a total surgery obstruction �

�
M

#

X

�
2 �n�1S

�
M

#

X

�
. Here, L(e) is the periodic L-

theory spectrum of the trivial group. Since M is n-dimensional, �n�1H(M; L(e)) �=
�n�1H(M;G=TOP � Z) �= H(X;G=TOP � Z). This last uses the fact that the Vietoris-
Begle theorem is true for homology theories which are bounded below. Thus, our putative
total surgery obstruction will live in the (n� 1)st homotopy group of the �ber of the map

H(X;G=TOP � Z)!H(X; L(e))

and will vanish if and only if X can be resolved to a closed ANR homology manifold.
Assuming the existence of such a theory, we have:

(Conjectural) Corollary. If X is a weakly locally contractible homology manifold

with cohomological dimension n and H�(X;Z) has no odd torsion, then X admits a reso-

lution by a closed ANR homology manifold.

The point is that the L-theory spectrum is nearly a product of Eilenberg-MacLane
spectra. One can use this to show that if H�(X;Z) lacks odd torsion, then H(X;G=TOP�
Z)!H(X; L(e)) is a homotopy equivalence and the obstruction group vanishes.

The total surgery obstruction suggests that there should be two classes of counterexam-
ples to Questions 6.1 and 6.2. The �rst class is detected by the failure of any resolution
to have a suitable tangent bundle, while the second is analogous to Quinn's resolution
obstruction. See [3] for references. The example constructed above is of the �rst kind.
One would expect examples of the second kind to be constructed analogously to the ex-
amples in [3] with double mapping cylinder singularities like the ones above replacing the
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mapping cylinder constructions of [3]. The sequence above also suggests that weakly lo-
cally contractible homology manifolds with �nite cohomological dimension should have
most of the rational attributes of topological manifolds, including an appropriate theory
of rational characteristic classes. An interesting question in this regard is whether the po-
tential lim

 �
1 term in H(X; L(e)) is ever realized. Realization of this lim

 �
1 would presumably

lead to some very strange examples of nonresolvable weakly locally contractible homology
manifolds with �nite cohomological dimension.
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