MA 491 Problem set #9

Power series

1. Let \(p \) and \(q \) be real numbers with \(1/p - 1/q = 1, \) \(0 < p \leq 1/2. \) Show that
\[
p + \frac{1}{2}p^2 + \frac{1}{3}p^3 + \ldots = q - \frac{1}{2}q^2 + \frac{1}{3}q^3 - \ldots
\]

2. Find the power series expansion for
\[
\frac{1}{(x^2 + 5x + 6)}.
\]
(Hint: Partial fractions.)

3. Prove that the value of the \(n \)th derivative of \(x^3/(x^2 - 1) \) for \(x = 0 \) is zero if \(n \) is even and \(-n!\) if \(n \) is odd and greater than 1.

4. Show that the functional equation
\[
f \left(\frac{2x}{1 + x^2} \right) = (1 + x^2)f(x)
\]
is satisfied by
\[
f(x) = 1 + \frac{1}{3}x^2 + \frac{1}{5}x^4 + \frac{1}{7}x^6 + \ldots, \quad |x| < 1.
\]

Easy Putnam Problems

5. Let \(\{x\} \) denote the distance between the real number \(x \) and the nearest integer. For each positive integer \(n, \) evaluate
\[
S_n = \sum_{m=1}^{6n-1} \min \left(\left\{ \frac{m}{6n} \right\}, \left\{ \frac{m}{3n} \right\} \right).
\]
(Here \(\min(a,b) \) denotes the minimum of \(a \) and \(b. \))

6. A right circular cone has base of radius 1 and height 3. A cube is inscribed in the cone so that one face of the cube is contained in the base of the cone. What is the side-length of the cube?

7. Let \(s \) be any arc of the unit circle lying entirely in the first quadrant. Let \(A \) be the area of the region lying below \(s \) and above the \(x \)-axis and let \(B \) be the area of the region lying to the right of the \(y \)-axis and to the left of \(s \). Prove that \(A + B \) depends only on the arc length and not on the position of \(s \).

Harder Putnam Problems

8. Let \(f \) be a twice-differentiable real-valued function satisfying
\[
f(x) + f''(x) = -xg(x)f'(x),
\]
where \(g(x) \geq 0 \) for all real \(x. \) Prove that \(|f(x)| \) is bounded.
9. Let $a_{m,n}$ denote the coefficient of x^n in the expansion of $(1 + x + x^2)^m$. Prove that for all integers $k \geq 0$,

$$0 \leq \sum_{i=0}^{\left\lfloor \frac{k}{4} \right\rfloor} (-1)^i a_{k-i,i} \leq 1.$$

10. Let f be a function on the real line with continuous third derivative. Prove that there exists a point such that

$$f(a) \cdot f'(a) \cdot f''(a) \cdot f'''(a) \geq 0.$$