1. a. (7 pts) Find the equation of the plane which contains the points \(A(1, 1, 1) \), \(B(2, -1, 3) \) and \(C(-1, 2, 1) \).

b. (4 pts) What is the area of \(\triangle ABC \)?

\[
\mathbf{AB} = \langle 1, -2, 2 \rangle, \quad \mathbf{AC} = \langle -2, 1, 0 \rangle, \quad \mathbf{AB} \times \mathbf{AC} = \langle -2, -4, -3 \rangle,
\]
so the equation of the plane is
\[
-2(x - 1) - 4(y - 1) - 3(z - 1) = 0.
\]
The area of the triangle is \(\frac{\sqrt{29}}{2} \).

2. (11 points) Find a vector equation for the line through \((1, 3, -1) \) which is parallel to the line of intersection of the planes \(x + y + z = 1 \) and \(2x - y + 3z = 6 \).

The line is parallel to the cross product of the two normal vectors. \(\langle 1, 1, 1 \rangle \times \langle 2, -1, 3 \rangle = \langle 4, -1, -3 \rangle \), so the equation is \(\mathbf{r}(t) = (1, 3, -1) + t(4, -1, -3) \).

3. (11 points) Find the arc length of the curve \(\mathbf{r}(t) = (\cos t + t \sin t) \mathbf{i} + (t \cos t - \sin t) \mathbf{j} + t^2 \mathbf{k} \) from \(t = 0 \) to \(t = \pi/2 \).

\[
\mathbf{r}'(t) = \langle t \cos t, -t \sin t, 2t \rangle, \quad |\mathbf{r}'(t)| = \sqrt{5t^2} \quad \text{and} \quad L = \int_0^{\pi/2} \sqrt{5t} \, dt = \frac{\pi \sqrt{5}}{8}.
\]

4. (11 points) Find the tangential and normal components of the acceleration vector if \(\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k} \).

\[
a_T = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|} = \frac{4t + 18t^3}{\sqrt{1 + 4t^2 + 9t^4}}.
\]

\[
a_N = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|} = \frac{\sqrt{36t^4 + 36t^2 + 4}}{\sqrt{1 + 4t^2 + 9t^4}}.
\]

5. a. (7 points) Find \(\frac{\partial z}{\partial x} \) if \(e^{x^2+y^3+z^5} = xyz \).

b. (4 points) Find \(\frac{\partial z}{\partial x} \) if \(z = (\sin y)^{\cos x} \).

a. \(F(x, y, z) = e^{x^2+y^3+z^5} - xyz, \) so \(\frac{\partial z}{\partial x} = -\frac{F_z}{F} = -\frac{2xe^{x^2+y^3+z^5} - yz}{5ze^{x^2+y^3+z^5} - xy} \).

b. \(\frac{\partial z}{\partial x} = (\sin y)^{\cos x} \ln(\sin y)(-\sin x) \).
6. (11 points) Find \(\lim_{(x,y) \to (0,0)} \frac{(x+y)^2}{x^2+y^2} \) or show that the limit does not exist.

If \(x = 0, y = t \), \(\lim_{t \to 0} \frac{t^2}{t^2} = 1. \)

If \(x = t, y = t \), \(\lim_{t \to 0} \frac{(t+t)^2}{t^2+t^2} = 2. \)

Therefore, the limit does not exist.

7. (11 points) The pressure, volume, and temperature of a mole of an ideal gas are related by the equation \(PV = 8.31T \), where \(P \) is measured in kilopascals, \(V \) in liters, and \(T \) in kelvins. Use differentials to find the approximate change in pressure if the volume increases from 12 L to 12.3 L and the temperature decreases from 310 K to 305 K.

\[P = \frac{8.31 T}{V}, \text{ so } dP = 8.31 \frac{dT}{V} - 8.31 \frac{T}{V^2} \quad \text{and} \quad \Delta P \approx 8.31 \left(-\frac{5}{12} \right) - \frac{8.31 \cdot 310}{12^2} \cdot .3 = -8.83 \]

8. (11 points) Find the equations of the tangent plane and normal line to the surface described by the function \(f(x, y, z) = \frac{x}{y} + \frac{y}{z} \) at the point \((4, 2, 1) \).

\[\nabla f = \left\langle \frac{1}{y} - \frac{x}{y^2}, -\frac{1}{z} \right\rangle = \langle 1/2, 0, -2 \rangle, \text{ so the equation of the tangent plane is} \]
\[\frac{1}{2}(x - 4) - 2(z - 1) = 0. \text{ The equation of the normal line is } r(t) = (4, 2, 1) + t(1/2, 0, -2). \]

9. (12 points) If \(z = f(x, y) \), where \(x = r \cos \theta \) and \(y = r \sin \theta \), find \(\frac{\partial z}{\partial r} \) and \(\frac{\partial z}{\partial \theta} \) and show that
\[
\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 = \left(\frac{\partial z}{\partial r} \right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta} \right)^2
\]

\[
\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta
\]
\[
\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial z}{\partial x} (-r \sin \theta) + \frac{\partial z}{\partial y} (r \cos \theta)
\]
\[
\left(\frac{\partial z}{\partial r} \right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta} \right)^2 = \left(\frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta \right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial x} (-r \sin \theta) + \frac{\partial z}{\partial y} (r \cos \theta) \right)^2
\]
\[
= \left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2
\]