The Quadratic Formula

If $a \neq 0$, then the solutions to the equation $ax^2 + bx + c = 0$ are given by the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Exact Trigonometric Values

$\begin{array}{c c} \sin\theta & 0\\ \cos\theta & 1\\ \tan\theta & 0 \end{array}$	$\frac{1/2}{\sqrt{3}/2}$	$\frac{\sqrt{2}/2}{\sqrt{2}/2}$	$\sqrt{3}/2$ 1/2	1 0 undofined

Sum and Difference Formulas

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$
$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$
$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

Obscure Trigonometric Functions

 $\cot \theta = \cos \theta / \sin \theta, \quad (\cot x)' = -\csc^2 x.$ $\csc \theta = 1 / \sin \theta, \quad (\csc x)' = -\csc x \cot x.$

Exponential Growth and Compounding

A quantity is said to undergo exponential growth if the amount P(t) at time t is given by a function of the form P_0e^{kt} for some constants P_0 and k. (If k < 0, the term exponential decay is used.)

An amount of money P_0 invested at an annual interest rate of r compounded n times a year will have grown to

$$P_0 \left(1 + \frac{r}{n}\right)^{nt}$$

after t years. If the compounding is continuous, the amount is P_0e^{rt} .

Areas, Volumes, Etc

Circumference of a circle, $2\pi r$. Area of a circle, πr^2 . Area of a triangle, bh/2. Area of a sphere, $4\pi r^2$. Volume of a sphere, $4\pi r^3/3$. Volume of a cylinder with circular base, $\pi r^2 h$. Volume of a cone with circular base, $\pi r^2 h/3$.