1. If \(f(x) = \frac{1}{x} \), find the number \(c \) promised by the Mean Value Theorem on the interval \([1, 3]\). Don’t forget to check the hypotheses of the MVT!

\[
\begin{array}{c|c}
c & \sqrt{3} \\
\end{array}
\]

MVT If \(f(x) \) is continuous on \([a, b]\) and differentiable on \((a, b)\), then there is a \(c \) in \((a, b)\) so that

\[
f'(c) = \frac{f(b) - f(a)}{b - a}.
\]

\[
f'(x) = \frac{-1}{x^2},
\]

\[
-\frac{1}{c^2} = \frac{\frac{1}{3} - 1}{3 - 1} = \frac{\frac{2}{3}}{2} = -\frac{1}{3}.
\]

\[
c^2 = 3 \Rightarrow c = \sqrt{3}.
\]

\[
f'(c) = \frac{1}{\sqrt{3}} \text{ is differentiable on } (0, -).
\]

2. Find the equation of the tangent line to the curve \(x^2y^2 = x^2 + 2y^2 + 14 \) at \((2, 3)\).

Equation:

\[
\left(y - 3 \right) = -\frac{8}{3} \left(x - 2 \right)
\]

\[
2xy^2 + x^2y' + 2y^2y' = 2x + 2y y''
\]

\[
2\cdot2\cdot3^2 + 2^2\cdot2\cdot3y' = 2\cdot2 + 4\cdot3 y' \]

\[
3 \cdot 6 + 2\cdot4\cdot\frac{y'}{3} = 4 + 12y'
\]

\[
12y' = -32
\]

\[
y' = \frac{-32}{12} = -\frac{8}{3}
\]
3a. \[
\frac{d}{dx} \left(\frac{\tan 2x}{3x} \right) = \frac{(3x)\sec^2 2x \cdot 2 - (\tan 2x) \cdot 3}{(3x)^2} \cdot dx
\]

3b. If the cost of manufacturing \(q \) units of a product is \(C(q) = 3q^2 + q + 300 \), use marginal analysis to estimate the cost of producing the 17th item.

\[
\text{Cost} = 97
\]

\[
C'(q) = 6q + 1
\]

\[
C'(16) = 96 + 1 = 97
\]

4. a. Find \(\lim_{x \to \infty} \frac{e^{-2x} - 2}{e^{-3x} + 7} \).

\[
\lim_{x \to \infty} \frac{e^{-2x} - 2}{e^{-3x} + 7} = \frac{0 - 2}{0 + 7} = -\frac{2}{7}
\]

b. Find \(\lim_{x \to \infty} \frac{e^{-2x} - 2}{e^{-3x} + 7} \).

\[
\lim_{x \to \infty} \frac{e^{-2x} - 2}{e^{-3x} + 7} = 0
\]

\[
\lim_{x \to -\infty} \frac{e^{2x} - 2}{e^{-3x} + 7} = \frac{\infty}{\infty}
\]

\[
\lim_{x \to -\infty} \frac{-2e^{-2x}}{-3e^{-3x}} = \lim_{x \to -\infty} \frac{2}{3} \cdot \frac{e^x}{0} = 0
\]
5. Find the absolute maximum and minimum of the function \(f(x) = \frac{4x}{x^2 + 4} \) on the interval \([1, 10]\). Please give both \(x \) and \(y \) values.

<table>
<thead>
<tr>
<th>Absolute maximum:</th>
<th>((2, 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute minimum:</td>
<td>((10, \frac{10}{104}))</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\frac{\text{f}'(x)}{x^2+4} & = \frac{(x^2+4)(4) - (4x)(2x)}{(x^2+4)^2} = \frac{-4x^2 + 16}{(x^2+4)^2} \\
\text{Crit. } x = \pm 2 \quad \text{Only } x = 2 \text{ is in } [1, 10] \ .
\end{align*}
\]

\[
\begin{align*}
\text{f}(1) & = \frac{4}{5} = 0.8 \\
\text{f}(2) & = \frac{8}{8} = 1 \\
\text{f}(10) & = \frac{40}{104} < 0.4
\end{align*}
\]

\[
\text{f}(x) = \frac{4x}{x^2+4} \quad \text{is a rational function that is defined everywhere, so it is continuous for all values of } x .
\]

This part was not required, but it's not a bad idea to think it through.
6. The function \(f(x) = (2x - 1)e^{4x} \) has \(f'(x) = (8x - 2)e^{4x} \) and \(f''(x) = 32xe^{4x} \). Find the intervals where \(f \) is increasing and decreasing and concave up and concave down. Find the \(x \)-coordinates of all relative extrema.

<table>
<thead>
<tr>
<th>Increasing:</th>
<th>((0, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreasing:</td>
<td>((-\infty, \frac{1}{4}))</td>
</tr>
<tr>
<td>Concave up:</td>
<td>((0, \infty))</td>
</tr>
<tr>
<td>Concave down:</td>
<td>((-\infty, 0))</td>
</tr>
<tr>
<td>Relative Maxima:</td>
<td>None</td>
</tr>
<tr>
<td>Relative Minima:</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>

7. At noon, a flatbed truck leaves Winslow, Arizona, traveling north at 65 miles per hour. At 2 pm, a Volkswagen bus leaves the same corner traveling west at 60 miles per hour. How fast is the distance between the two vehicles changing at 5 pm? You do not need to multiply out any big numbers.

\[
\text{Rate} = \frac{180(60) + 325(65)}{\sqrt{180^2 + 325^2}}
\]

\[
x^2 + y^2 = z^2
\]

\[
\frac{dx}{dt} + \frac{dy}{dt} = z \frac{dz}{dt}
\]

\[
\frac{dz}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}
\]

\[
\Delta t = 5 \text{ pm}, \ x = 180, \ y = 325
\]

\[
\frac{dx}{dt} = 60, \ \frac{dy}{dt} = 65
\]

\[
z = \sqrt{180^2 + 325^2}
\]
8. A rectangular parcel has a square base of side \(x \) and a third side of length \(y \). Postal regulations say that the perimeter of the square plus the length of side \(y \) cannot exceed 102. Find the volume of the largest parcel allowed by these regulations.

\[
4x + y = 102
\]

\[
y = 102 - 4x
\]

\[
V = x^2 y = x^2 (102 - 4x)
\]

\[
= 102x^2 - 4x^3
\]

\[
\frac{dV}{dx} = 204x - 12x^2 = 12x (17 - x)
\]

Crit #3 \(x = 0, x = 17 \quad 0 \leq x \leq \frac{102}{4} \)

\[
f(0) = 0
\]

\[
f(17) = 102 \cdot 17^2 - 4 \cdot 17^3 = 17^2 (102 - 4 \cdot 17)
\]

\[
= 17^2 (102 - 68)
\]

\[
= 17^2 \cdot 34
\]

Volume = 17^2 \cdot 34
9. Let \(f(x) = \frac{2x + 5}{4x + 2} \). Find intervals where \(f \) is increasing and decreasing, and concave up and concave down. Find all horizontal and vertical asymptotes and find all relative maxima, minima, and inflections. Sketch the graph for 1 pt extra credit.

<table>
<thead>
<tr>
<th>Intervals where increasing:</th>
<th>NONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervals where decreasing:</td>
<td>((-\infty, -2) \cup (-2, \infty))</td>
</tr>
<tr>
<td>Intervals where concave up:</td>
<td>((-\frac{1}{2}, \infty))</td>
</tr>
<tr>
<td>Intervals where concave down:</td>
<td>((-\infty, -\frac{1}{2}))</td>
</tr>
<tr>
<td>Horizontal asymptotes:</td>
<td>(y = \frac{1}{2})</td>
</tr>
<tr>
<td>Vertical asymptotes:</td>
<td>(x = -\frac{1}{2})</td>
</tr>
<tr>
<td>Inflections:</td>
<td>NONE</td>
</tr>
<tr>
<td>Relative maxima:</td>
<td>NONE</td>
</tr>
<tr>
<td>Relative minima:</td>
<td>NONE</td>
</tr>
</tbody>
</table>

\[
f'(x) = \frac{(4x + 2) \cdot 2 - (2x + 5) \cdot 4}{(4x + 2)^2} = \frac{4 - 20}{(4x + 2)^2} = -\frac{16}{(4x + 2)^2}
\]

\[
f''(x) = \frac{(-16)(-2)}{(4x + 2)^3} \cdot 4 = \frac{128}{(4x + 2)^3}
\]

No unit #’s
10a. If \(y = (\cos x)^{\sin x} \), find \(y' \).

\[
y' = \left(\cos x \right)^{\sin x} \left[\cos x \ln(\cos x) - \frac{\sin^2 x}{\cos x} \right]
\]

\[
\ln y = \ln \left((\cos x)^{\sin x} \right) = \sin x \ln(\cos x)
\]

\[
\frac{1}{y} y' = \cos x \ln(\cos x) + \sin x \cdot \frac{1}{\cos x} \cdot (-\sin x)
\]

\[
y' = \left(\cos x \right)^{\sin x} \left[\cos x \ln(\cos x) - \frac{\sin^2 x}{\cos x} \right]
\]

10b. Use linear approximation or differentials to estimate \(\sqrt{3.97} \).

\[
L(x) = f(a) + f'(a)(x-a)
\]

\[
f(x) = \sqrt{x} \quad a = 4, \ x = 3.97
\]

\[
f'(x) = \frac{1}{2} x^{-\frac{1}{2}}
\]

\[
f(4) = 2
\]

\[
f'(4) = \frac{1}{4}
\]

\[
L(3.97) = 2 + \frac{1}{4} (3.97 - 4)
\]

\[
= 2 + \frac{-0.03}{4}
\]

\[
= 2 - 0.0075
\]