Metric TVS topology comes from a metric.

Main Thm: Metrizable \iff has a countable local base.

- W balanced open balls
- @ origin
- $\&$ invariant

Additionally, if V is locally convex, we can arrange that all open balls are convex.

The hard part, of course, is how to construct the metric.

Some comments first:

Recall we showed before that any nhbd of 0 contains a balanced nhbd of 0. Likewise, all convex nhbds contain a balanced convex nhbd of 0.

If U is an open nhbd of 0, then $\exists U'$ balanced, $u \in U$, s.t., $U' + U' \subseteq U$, U' open.

If locally convex, we may assume U' is convex, at the expense
of making \(u' \) smaller.

Now assume \(\{ S_n \}_{n=1}^{\infty} \) is a local base. We showed before that there exists a balanced local base, \(\mathcal{U} \) in a locally convex TVS, a convex, balanced local base.

Let \(U_1 = S_1 \).

Let \(U_2 = S_2 \cap U_1 \),
\(U_3 = S_3 \cap U_2 \),
\(U_{n+1} = S_{n+1} \cap U_n \)
— where \(U' \) is the set given on the previous page.

Then each \(U_n \) is open, balanced (and convex if locally convex),
& since \(U_n \subseteq S_n \), \(S_3 \) is a local base, \(\mathcal{U} \cap U_3 \) is also a local base.

Furthermore \(U_{n+1} + U_{n+1} \subseteq U_n + U_n' \subseteq U_n \).

This proves claim (1) on p.18 of Rudin. I felt more needed to be said.

Now we describe the construction of the invariant metric. Recall that \(d(u,v) = d(0,u+v) \),
so first we need to describe the function \(f \).

\[d(v_i, v_j) = f(v_i - v_j) \]

Consider rational numbers of the form

\[\mathcal{N} = \sum_{n=1}^{\infty} c_n z^{-n} \]

where \(\mathcal{N} \) is arbitrary.

Such \(\mathcal{N} \) are between \(0 \leq \mathcal{N} < 1 \).

Let \(A(r) = N \) if \(r \geq 1 \)

\[A(r) = c_1 w_1 + c_2 w_2 + \cdots + c_n w_n \]

if \(\mathcal{N} \) has the above form.

Define \(f(x) = \inf \{ r : x \in A(r) \} \)

of that form.

I.e., if \(x \not\in \bigcup (w_1 + \cdots + w_n) \)

This means the metric \(d \leq 1 \),

but remember, we only really care about nearby points for defining the topology.

(We should note the minimum exists!)\(^1\)

(We should note it does for any subset of \(\mathbb{R}_{\geq 0} \).)

Note also for \(\mathbb{R}^n \), this describes the metric, at least for points less than distance \(f \) a point, \(\mathbb{E}^f \).
Proof of Thm 1. We need to show 3 properties to prove d is a metric:

Property 1) \[d(v,v) = f(0) = 0. \]

Property 2) \[d(v,w) = f(v-w) \quad \text{in Hausdorff...} \]
\[d(w,v) = f(w-v), \]
\[\text{i.e., } f(v) = f(-v) \quad \text{obvious because each } V_n \text{ is balanced.} \]

Property 3) \(\Delta \)-inequality: \[f(v+w) \leq f(v) + f(w) \]
[Of course, the hard one...]

We claim \[A(r) + A(s) \leq A(r + s) \]
for \(r, s \) of the form \(t \).

This implies \(A(r) \leq A(r) + A(t-s) = A(t) \).

If \(f(x) + f(y) \geq 1 \), \[\text{the } \Delta \text{-inequality is obvious. Otherwise, let } \epsilon > 0. \] Then \(\exists r, s \) of the form \(t \) such that \[f(x) < r \quad x \in A(r), \]
\[f(y) < s \quad y \in A(s) \implies x+y \in A(r+s), \]
\[r+s < f(x)+f(y) + \epsilon. \]

So \[f(x+y) \leq r+s < f(x)+f(y) + \epsilon. \] Take \(\epsilon = 0, \) get
\[f(x+y) \leq f(x) + f(y). \]
Now we prove the claim \(A(r) + A(s) < A(r+s) \), (p. 5/11).

Remember, we still need to prove the open balls are balanced, a local base, (a convex...).

We prove \(A(r) + A(s) \leq A(r+s) \) by induction on \(N \geq 1 \)

When \(N=1 \), \(r, s = \text{Cor} \, \frac{1}{2} \)

\[
A(0) = \frac{3}{0} \quad (r,s) = (0,0) \quad \frac{3}{0} + \frac{3}{0} = \frac{3}{0}
\]

\[
A(\frac{1}{2}) = \frac{1}{0} \quad (r,s) = \frac{1}{0} + \frac{1}{0} = \frac{1}{0}
\]

Assume for \(N-1 \). Let \(r+s < 1 \),

\[
\begin{align*}
\sqrt{\sum_{n=1}^{N-1} c_n(r)z^{-n} + c_n(r)z^{-N}} &= r' + c_n(r)z^{-N} \\
\sum_{n=1}^{N-1} c_n(s)z^{-n} + c_n(s)z^{-N} &= s' + c_n(s)z^{-N}
\end{align*}
\]

\[
A(r) = A(r') + c_n(r)u^n
\]

\[
A(s) = A(s') + c_n(s)u^n
\]

\[
A(r) + A(s) \leq A(r') + A(s') + c_n(r)u^n + c_n(s)u^n
\]

\[
\leq A(r+s') + c_n(r)u^n + c_n(s)u^n
\]
If \(c_w(r) = c_w(s) = 0 \), \(r > r', s > s' \), done.

If \(c_w(r) = 0, c_w(s) = 1 \), \(r' = r \)

\[
A(r) + A(s) \leq A(r + s') + \ell_w
\]

\[
= A(r + s) \quad \text{(No carrying of the last bit)}
\]

Likewise, \(c_w(r) = 1, c_w(s) = 0 \), \(r > r', s > s' \), in the addition.

Finally, if \(c_w(r) = c_w(s) = 1 \)

\[
A(r) + A(s) \leq A(r + s') + (\ell_w + \ell_w)
\]

\[
= A(r + s) \quad \text{(Induction)}
\]

\[
\leq A(r' + s' + 2^{1-w}) = A(r + s).
\]

Finally, why a local base? Open balls

\[
B_\delta(c) = \bigcup_{r \leq \delta} A(r)
\]

So \(B_\delta(c) \subseteq \ell_w \) for \(\delta < 2^{-w} \).
Convexity is a little more subtle.

\[\{ U_n \} \text{ all convex} \Rightarrow A(r) \text{ are all convex} \]

\[a \tau + A(r) + (1-\tau) A(r) \]

\[= \sum C_n(r) \left(\tau U_n + (1-\tau) U_n \right) \]

\[\leq \sum C_n(r) U_n = A(r), \]

Why is \(\bigcup A(r) \) convex?

We showed \(A(r) \leq A(t) \) for \(r, t \in [a, b] \), so this union is an increasing union of convex sets, hence convex (any 2 points lie in this after a finite amount of time).

New topic: Bounded Linear Operators.

Means: maps bounded sets into bounded sets.

(Not the same as "bounded function," since obviously we know most linear maps are not bounded.)
Thm. If \(\mathcal{L} : V \rightarrow W \) is a linear mapping of TVS's, then

\[
\forall c \in V \Rightarrow \exists L(b) \Rightarrow \text{the set } \{L(b_n)\}_{n=1}^{\infty} \text{ is bounded in } W \text{ for any sequence } v_n \rightarrow 0 \text{ in } V.
\] (c)

Moreover, if \(V \) is metrizable, then these 3 properties are equivalent, in particular also to the property

\[
\forall v \in V \rightarrow 0 \Rightarrow L(v_n) \rightarrow 0.
\] (d)

Proof. Assume (a), & let \(E \) be a bounded subset of \(V \).
We must show \(\mathcal{L}(E) \) is bounded.

Let \(U \) be a nbhd of 0 in \(W \).

\[
\forall c \in V \Rightarrow \exists \text{ open set } S \text{ containing } 0 \text{ in } V, \text{ s.t.,} \;

-2(b(S)) \subseteq U,
\]

\[
E \text{ bdd } \Rightarrow \text{ for large } t, \quad E \leq t \quad S
\]

Therefore \(\mathcal{L}(E) \leq L(t(S)) = L(S) \leq tU \text{ for large } t \quad (a) \Rightarrow (b)
\]

\(\mathcal{L}(E) \) is bounded, \(\Rightarrow \) (a) \(\Rightarrow \) (b) \(\checkmark \)
Assume (b), (c) follows if we can show convergent sequences are bad.

Indeed, let \(U \) be an open nbhd of \(0 \).
\(U \) contains a balanced open nbhd \(U' \) of \(0 \).
For large \(n \), \(v_n \in U' \) (def'n of convergence to 0).

As \(U \cap U' = U' \),
the finitely many points \(v_1, \ldots, v_n \) not in \(U' \) are contained in \(RU \) for some \(R > 1 \). \(U' \) is balanced, so \(U \) is balanced, \(RU \).

For all \(t \geq k \),
\(\exists v_n \in RU, tU \subseteq RU \), so by def of balanced,
\(\exists v_n \) is odd. So (b) \(\Rightarrow \) (c).

To prove the rest, now assume \(V \) is metrizable, we need to show (c) \(\Rightarrow \) (d) \(\& \) (c) \(\Rightarrow \) (a).

First we prove (d) \(\Rightarrow \) (a). Assume (a) is false, i.e., \(A \subseteq W \) s.t. \(A \cap U \) is not open.
V is metrizable, so has a countable local base, none of whose members are subsets of $X^*(a)$.

Let $\{ S_1, S_2, \ldots \}$ be this local base.

Let $V_n \in S_n$ be an element not contained in $X^*(a)$.

Then $V_n \rightarrow c$ (by def'n) but $X(a)$ never gets inside U, so (d) is false.

Finally, we come to proving (c) \Rightarrow (d)

$V_n \rightarrow c$ implies for each $k \geq 1$, $\exists N = N_k$ such that $d(V_n, c) \leq \frac{1}{k}$ for all $n \geq N_k$.

Let $c_n = k$ if $N_k \leq n < N_{k+1}$

Then $d(c_n, c) = \frac{1}{k}$ and $c_n \rightarrow c$.

So $\{c_n\}_{n \geq k}$ is bdd in V.

& by assumption of (c), $\{d(c_n, c)\} = \{c_n - c\}$ is bdd in W.

Let U be any nhbd of c in W & U' a balanced sub-nhd. $U' \subseteq U$ containing c.

Then for large k:

$\{c_n - c\} \leq t U$.
For \(n \) large, \(C_n \geq t \),

\[
c_{n \cdot c_l(v_n)} \in c \cdot U'
\]

\[
\lambda(v_n) \in \frac{t}{c} U' \subseteq U' \quad \text{since } U'
\]

is balanced.

U (arbitrary, so so \(\lambda(v_n) \in U \) for \(n \) large.

That means \(\lambda(v_n) \to \infty \).

\(\square \).