(1) Do either (a) or (b): (a) Prove that \(\sum_{n=0}^{\infty} \frac{x^{3n}}{n!} \) converges for all real \(x \). Find a simple formula for the sum \(\sum_{n=0}^{\infty} \frac{x^{3n}}{n!} \). (b) Prove that \(\sum_{n=0}^{\infty} \frac{(-1)^n x^{6n}}{(2n)!} \) converges for all real \(x \). Find a simple formula for the sum \(\sum_{n=0}^{\infty} \frac{(-1)^n x^{6n}}{(2n)!} \).

(2) Let \(f(x) \) be a continuous function defined on the interval \([1, 9]\) such that \(f(1) = 4, f(2) = -2, f(3) = 2, f(4) = 3, f(5) = -2, f(6) = 1, f(7) = -3, f(8) = 3, f(9) = -4 \). Find the approximations \(T_4, M_4 \) and \(S_4 \) to \(\int_1^9 f(x) \, dx \). Recall that \(T \) stands for Trapezoidal, \(M \) stands for Midpoint and \(S \) stands for Simpson. Now assume that \(f(x) \) has a continuous second derivative and the additional property \(-30 < f''(x) < 20\) for all \(x \) in the interval \([1, 9]\). What estimates can we make for the errors associated with \(T_4 \) and \(M_4 \)?

(3) Determine whether \(\sum_{n=2}^{\infty} \frac{2^n}{3^n - 5} \) converges or diverges.

(4) A surface is formed by rotating the curve \(y = (x+2)^3 \), \(0 \leq x \leq 1 \) about the \(x \)-axis. Find the area of this surface. Hint: Evaluate the integral using an appropriate substitution.

(5) Determine whether \(\sum_{n=1}^{\infty} \tan(1/n) \) converges or diverges. Hint: One way to do this is to start with the evaluation of \(\lim_{n \to \infty} \frac{\tan(1/n)}{1/n} \). Is there another way?

(6) Find \(\sum_{n=1}^{\infty} \frac{1}{32^n + 1} \). Your answer must be a simple number.

(7) Find the interval of convergence of \(\sum_{n=1}^{\infty} \frac{(x-2)^n}{\sqrt{n}} \). In this particular example, there is one and only one value of \(x \) such that the given power series converges conditionally at \(x \). Find that value of \(x \).

(8) Determine whether \(\sum_{n=2}^{\infty} \frac{1}{n!(\ln n)^{3/2}} \) converges or diverges.

(9) Determine whether \(\sum_{n=1}^{\infty} \left(\frac{n}{2n+1} \right)^n \) converges or diverges. Try to do this problem in two different ways.

(10) Determine whether \(\sum_{n=1}^{\infty} \frac{(2n)!(2n)!}{n!(3n)!} \) converges or diverges.