
A COMMUNICATION GAME RELATED TO THE SENSITIVITY

CONJECTURE

JUSTIN GILMER, MICHAL KOUCKÝ, AND MICHAEL SAKS

Abstract. One of the major outstanding foundational problems about boolean functions is the
sensitivity conjecture, which (in one of its many forms) asserts that the degree of a boolean function
(i.e. the minimum degree of a real polynomial that interpolates the function) is bounded above by
some fixed power of its sensitivity (which is the maximum vertex degree of the graph defined on
the inputs where two inputs are adjacent if they differ in exactly one coordinate and their function
values are different). We propose an attack on the sensitivity conjecture in terms of a novel two-

player communication game. A lower bound of the form nΩ(1) on the cost of this game would imply
the sensitivity conjecture.

To investigate the problem of bounding the cost of the game, three natural (stronger) variants of
the question are considered. For two of these variants, protocols are presented that show that the
hoped for lower bound does not hold. These protocols satisfy a certain monotonicity property, and
(in contrast to the situation for the two variants) we show that the cost of any monotone protocol
satisfies a strong lower bound.

There is an easy upper bound of
√
n on the cost of the game. We also improve slightly on this

upper bound.

1. Introduction

1.1. A Communication Game. The focus of this paper is a somewhat unusual cooperative two
player communication game. The game is parameterized by a positive integer n and is denoted Gn.
Alice receives a permutation σ = (σ1, . . . , σn) of [n] = {1, . . . , n} and a bit b ∈ {0, 1} and sends
Bob a message (which is restricted in a way that will be described momentarily). Bob receives the
message from Alice and outputs a subset J of [n] that must include σn, the last element of the
permutation. The cost to Alice and Bob is the size of the set |J |.

The message sent by Alice is constrained as follows: Alice constructs an array v consisting of n
cells which we will refer to as locations, where each location v` is initially empty, denoted by v` = ∗.
Alice gets the input as a data stream σ1, . . . , σn, b and is required to fill the cells of v in the order
specified by σ. After receiving σi for i < n, Alice fills location σi with 0 or 1; once written this can
not be changed. Upon receiving σn and b, Alice writes b in location σn. The message Alice sends
to Bob is the completed array in {0, 1}n.

A protocol Π is specified by Alice’s algorithm for filling in the array, and Bob’s function mapping
the received array to the set J . The cost of a protocol c(Π) is the maximum of the output size |J |
over all inputs σ1, . . . , σn, b.

For example, consider the following protocol. Let k = d
√
ne. Alice and Bob fix a partition of

the locations of v into k blocks each of size at most k. Alice fills v as follows: When σi arrives, if
σi is the last location of its block to arrive then fill the entry with 1 otherwise fill it with 0.

0A preliminary version of this paper appeared in the Proceedings of the 6th Innovations in Theoretical Computer
Science conference, 2015.

Supported by NSF grant CCF 083727.
Supported in part by (FP7/2007-2013)/ERC Consolidator grant LBCAD no. 616787 and the project 14-10003S

of GA ČR..
Supported by NSF grants CCF-083727, CCF-1218711 and by Simons Foundation award 332622.

1

Notice that if b = 1 then the final array v will have a single 1 in each block. If b = 0 then v will
have a unique all 0 block.

Bob chooses J as follows: if there is an all 0 block, then J is set to be that block, and otherwise
J is set to be the set of locations containing 1’s. It is clear that σn ∈ J and so this is a valid
protocol. In all cases the size of J will be at most k and so the cost of the protocol is d

√
ne. We

will refer to this protocol as the AND-OR protocol. In Section 2.1 we remark on this protocol’s
connection to the boolean function

AND-OR(x) =

√
n∧

i=1

√
n∨

j=1

xij .

Let us define C(n) to be the minimum cost of any protocol for Gn. We are interested in the
growth rate of C(n) as a function of n. In particular, we propose:

Question 1. Is there a δ > 0 such that C(n) = Ω(nδ)?

1.2. Connection to the Sensitivity Conjecture. Why consider such a strange game? The
motivation is that the game provides a possible approach to the well known sensitivity conjecture
from boolean function complexity.

Recall that the sensitivity of an n-variate boolean function f at an input x, denoted sx(f), is the
number of locations ` such that if we flip the bit of x in location ` then the value of the function
changes. (Alternatively, this is the number of neighbors of x in the hamming graph whose f value
is different from f(x).) The sensitivity of f , s(f), is the maximum of sx(f) over all boolean inputs
x.

The degree of a function f , deg(f), is the smallest degree of a (real) polynomial p in variables
x1, . . . , xn that agrees with f on the boolean cube.

Conjecture 2. (The Sensitivity Conjecture) There is a δ > 0 such that for any boolean function
f , s(f) ≥ Ω(deg(f)δ).

An easy argument (given in Section 2) connects the cost function C(n) of the game Gn to the
sensitivity conjecture:

Proposition 3. For any boolean function on n variables, s(f) ≥ C(deg(f)).

In particular, an affirmative answer to Question 1 would imply the sensitivity conjecture.
We note that Andy Drucker [5] independently formulated the above communication game, and

observed its connection to the sensitivity conjecture.

1.3. Background on the Sensitivity Conjecture. Sensitivity and degree belong to a large
class of complexity measures for boolean functions that seek to quantify, for each function f ,
the amount of knowledge about individual variables needed to evaluate f . Other such measures
include decision tree complexity and its randomized and quantum variants, certificate complexity,
and block sensitivity. The value of such a measure is at most the number of variables. There is
a long line of research aimed at bounding one such measure in terms of another. For measures a
and b let us write a ≤r b if there are constants C1, C2 such that for every total boolean function f ,
a(f) ≤ C1b(f)r + C2. For example, the decision tree complexity of f , D(f), is at least its degree
deg(f) and thus deg ≤1 D. It is also known [11] that D ≤3 deg. We say that a is polynomially
bounded by b if a ≤r b for some r > 0 and that a and b are polynomially equivalent if each is
polynomially bounded by the other.

The measures mentioned above, with the notable exception of sensitivity, are known to be poly-
nomially equivalent. For example, Nisan and Szegedy [13] proved bs(f) ≤2 deg(f), and also proved
a result in the other direction, which was improved in [2] to deg(f) ≤3 bs(f). For a survey of such
results, see [3] and [8]; some recent results include [1, 6].

2

The sensitivity conjecture, posed as a question by Nisan [12] asserts that s(f) is polynomially
equivalent to at least one (and therefore all) of the other measures mentioned. There are many
reformulations and related conjectures; see [8] for a survey.

The sensitivity conjecture perhaps more commonly appears as a question on the relationship
between sensitivity and block sensitivity. For example, Nisan and Szegedy [13] asked specifically
if bs(f) = O(s2(f)) for all functions, and as of this writing no counterexample has been given.
The best known bound relating sensitivity to another measure was given by Kenyon and Kutin [9].

They proved that bs(f) ≤ e
2πe

s(f)
√
s(f) for all boolean functions.

1.4. Outline of the Paper. In Section 2 we prove that a positive answer to Question 1 would
imply the sensitivity conjecture. We show that adversary arguments for proving that boolean
functions are evasive (that is have decision tree complexity D(f) = n) provide strategies for the
communication game. We also prove that it suffices to answer Question 1 for the restricted class
of order oblivious protocols.

In Section 3 we present three stronger variants of Question 1. We exhibit protocols that show
that two of these variants have negative answers. One might then expect that variants of one of
these protocols might lead to a negative answer to Question 1. However, we observe that these
protocols satisfy a property called monotonicity and in Section 4 we prove a b

√
nc lower bound on

the cost of any monotone protocol. Thus a protocol that gives a negative answer to Question 1
must look quite different from the two protocols that refuted the strengthenings. We also prove
a rather weak lower bound for a special class of protocols called assignment oblivious protocols.
Finally, in Section 5 we construct a protocol with cost .8

√
n, thus beating the AND-OR protocol by

a constant factor. Let r(k) = log(C(k)/ log(k)). After a preliminary version of our paper appeared,

Szegedy [14] showed that for any k, C(n) = O(nr(k)). Our example shows that there is a k for

which r(k) < 1/2 and so it follows that C(n) = O(n1/2−δ) for some δ > 0. Szegedy further showed
that C(30) ≤ 5 which gives the best currently known upper bound C(n) = O(n0.4732).

2. Connection between the Sensitivity Conjecture and the Game

In this section we prove Proposition 3, which connects the sensitivity conjecture with the two
player game described in the introduction.

We use e` to denote the assignment in {0, 1}n that is 1 in location ` and 0 elsewhere. Given
v,w ∈ {0, 1}n, v⊕w denotes their bitwise mod-2 sum.

Alice’s strategy maps the permutation-bit pair (σ, b) to a boolean array v and Bob’s strategy
maps the array v to a subset of [n]. We now show that for each strategy for Alice there is a canonical
best strategy for Bob. For a permutation σ, ΠA(σ) denotes the array Alice writes while receiving
σ1, · · · , σn−1 (so location σn is labeled ∗). Thus ΠA(σ) can be viewed as an edge in the hamming
graph Hn whose vertex set is {0, 1}n, with two vertices adjacent if they differ in one coordinate.
The edge set E(Π) of a protocol Π is the set of edges ΠA(σ) over all permutations σ. This defines
a subgraph of Hn. Given Alice’s output v, the possible values for σn are precisely those locations
` that satisfy (v,v ⊕ e`) is an edge in E(Π). Thus the best strategy for Bob is to output this set
of locations. It follows that c(Π) is equal to the maximum vertex degree of the graph E(Π).

Proposition 3 will therefore follow by showing the following: Given a boolean function with
degree n and sensitivity s, there is a strategy Π for Alice for the game Gn such that the graph
E(Π) has maximum degree at most s.

We need a few preliminaries. A subfunction of a boolean function f is a function g obtained
from f by fixing some of the variables of f to 0 or 1. For a subfunction g of f , s(f) ≥ s(g). We say
a function has full degree if deg(f) is equal to the number of variables of f . We start by recalling
some well known facts.

3

Lemma 4. For any boolean function f there exists a subfunction g on deg(f) variables that has
full degree.

Proof. If p is the (unique) multilinear real polynomial that agrees with f on the boolean cube, then
p contains a monomial

∏
`∈S

x` where |S| = deg(f). Let g be the function obtained by fixing the

variables in [n] \ S to 0. Then g is a function on deg(f) variables that has full degree. �

Lemma 5. Given a function f with full degree and a location `, there exists a bit b such that the
function obtained from f by fixing x` = b is also of full degree.

Proof. The polynomial (viewed as a function from {0, 1}n → {0, 1}) for f may be written in the form
p1(x1, x2, · · · ,��x` , · · · , xn) + x`p2(x1, x2, · · · ,��x` , · · · , xn). Here p1(x1, x2, · · · ,��x` , · · · , xn) indicates
that the variable x` is not an input to the polynomial. If p1 has a non zero coefficient on the
monomial

∏
k 6=`

xk, then we set x` = 0 and the resulting function will have full degree. For the other

case, note p2 must have a non zero coefficient on
∏
k 6=`

xk because f has full degree. Thus, setting

x` = 1 will work. �

The proof of this lemma is essentially the same as the standard argument that the decision tree
complexity of any function f is at least deg(f).

We are now ready to prove Proposition 3.

Proof. Given f , let g be a subfunction on deg(f) variables with full degree. We construct a protocol
Π that satisfies E(Π) ⊆ E(g), where E(g) denotes the set of sensitive edges for the function g, i.e.
the edges of Hn whose endpoints are mapped to different values by g, which implies c(Π) ≤ s(g) ≤
s(f), and thus proves the proposition. As Alice receives σ1, σ2, · · · , σn, she fills in v so that the
restriction of f to each partial sucessive partial assignment remains a full degree function, which
is possible by Lemma 5. After Alice fills location σn−1, the function g restricted to v is a non-
constant function of one variable, and so the edge ΠA(σ) is a sensitive edge for g. This implies that
E(Π) ⊆ E(g).

�

The proof shows that a degree n Boolean function having sensitivity s can be converted into a
strategy for Alice for the game Gn of cost at most s. We don’t know whether this connection goes
the other way, i.e., we can’t rule out the possibility that the answer to Question 1 is negative (there
is a very low cost protocol for Gn) but the sensitivity conjecture is still true.

2.1. Connection to Decision Tree Complexity. An n-variate boolean function is evasive if
its decision tree complexity is n. A common method for proving evasiveness is via an adversary
argument. View the problem of evaluating the function by a decision tree as a game between the
querier who wishes to evaluate the function and who decides which variable to read next, and the
adversary who decides the value of the variable. A function is evasive if there is a strategy for the
adversary that forces the querier to ask all n quesitons. For example, to prove that

AND-OR(x) =

√
n∧

i=1

√
n∨

j=1

xij

is evasive, the adversary can use the strategy: answer 0 to every variable unless the variable is the
last variable in its

∨
-block, in which case answer 1. This adversary is exactly Alice’s part of the

AND-OR protocol described in the introduction. For more examples of adversary arguments see
[10].

4

Every evasive function f by definition admits an adversary argument, and this corresponds to
a protocol Π for Alice. In fact a function f is evasive if and only if there exists a protocol Π for
which E(Π) ⊆ E(f) (recall E(f) is the set of sensitive edges of the function f), and thus the cost
(size of the set chosen by Bob) is at most the sensitivity of f . This work explores whether we can
use the structure of an arbitrary adversary (or protocol) to exhibit a lower bound on sensitivity.

2.2. Order Oblivious Protocols. In the game Gn, at each step i < n, the value written by Alice
at location σi may depend on her knowledge up to that step, which includes both the sequence
σ1, · · · , σi and the partial assignment already made to v at locations σ1, . . . , σi−1. A natural way to
restrict Alice’s strategy is to require that the bit she writes in location σi depends only on σi and
the current partial assignment to v but not on the order in which σ1, . . . , σi−1 arrived. A protocol
satisfying this restriction is said to be order oblivious. The following easy proposition shows that
it suffices to answer Question 1 for order oblivious protocols.

Proposition 6. Given any protocol Π there exists an order oblivious protocol Π′ such that E(Π′) ⊆
E(Π). In particular, c(Π′) ≤ c(Π).

Proof. First some notation. Given a permutation σ let σ≤k denote the prefix of the first k elements
of σ. We let ΠA(σ≤k) denote the partial assignment written on v after Alice has been streamed
σ1, · · · , σk.

Given Π we define an order oblivious protocol Π′ of cost at most that of Π. We define Π′ in
steps, (where in step i Alice receives σi and writes a bit in that location). Given k ≥ 0 we assume
that Π′ has been defined up through step k and has the property that for every permutation σ,
there is a permutation τ of σ1, · · · , σk so that ΠA(τ) = Π′A(σ≤k).

Suppose σk+1 arrives and the current state of the array is v := Π′(σ≤k). From v Alice can deduce
the set {σ1, . . . , σk} (the set of locations not labeled *). Alice then considers all permutations τ of
σ1, · · · , σk such that ΠA(τ) = Π′A(σ≤k) and picks the lexicographically smallest permutation (call
it τ∗) in that set and writes on location σk+1 according to what Π does after τ∗. Note that the bit
written on location σk+1 does not depend on the relative order of σ1, σ2, · · · , σk.

By construction, Π′ is order oblivious. Also for any permutation σ there is a permutation τ for
which ΠA(τ) = Π′A(σ). This implies that E(Π′) ⊆ E(Π). �

3. Stronger Variants of
Question 1

We now present three natural variants of Question 1, and refute two of them by exhibiting and
analyzing some specific protocols.

The cost function c(Π) of a protocol is the worst case cost over all choices of σ1, . . . , σn, b.
Alternatively, we can consider the average size (with respet to random σ and b) of the set Bob

outputs. We call this the expected cost of Π and denote it by c̃(Π). Let C̃(n) denote the minimum
expected cost of a protocol for Gn.

Question 7. Is there a δ > 0 such that C̃(n) = Ω(nδ)?

An affirmative answer to this question would give an affirmative answer to Question 1.
It is well known that the natural probabilistic version of the sensitivity conjecture, where sen-

sitivity is replaced by average sensitivity (wiith respect to the uniform distribution over {0, 1}n)
is trivially false (for example, for the OR function). However, there is apparently no connection
between average sensitivity and average protocol cost. For example, the protocol induced by the
decision tree adversary for OR has Alice write a 0 at each step. Note that E(Π) is exactly the set
of sensitive edges for the OR function. However, the average cost c̃(Π) is n/2 whereas the average
sensitivity of the OR function is o(1).

5

We also remark that an analog of Proposition 6 holds for the cost function c̃(Π), and therefore
it suffices to answer the question for order oblivious protocols. (The proof of the analog is similar
to the proof of Proposition 6, except when modifying the protocol τ∗ is not selected to be the
lexicographically smallest permutation in the indicated set, but rather the permutation in the
indicated set that minimizes the expected cost conditioned on the first k steps.)

There is another natural variant of Question 1 based on average case. When we run a fixed
protocol Π on a random permutation σ and bit b, we can view the array v produced by Alice as a
random variable. Let h̃(Π) be the conditional entropy of σn given v; intuitively this measures the
average number of bits of uncertainty that Bob has about σn after seeing v. It is easy to show that
this is bounded above by log(c(Π)). Let H̃(n) be the minimum of h̃(Π) over all protocols Π for Gn.

The analog of Question 1 is whether there is a positive constant δ such that H̃(n) = Ω(δ log(n)).
An affirmative answer to this would have implied an affirmative answer to Question 1, but the
answer to this new question turns out to be negative.

Theorem 8. There is an order oblivious protocol Π for Gn such that h̃(Π) = 3 + dlog log(n)e.

Remark: It might seem that this could be proved by giving a protocol Π that is not order
oblivious and converting it into an order oblivious protocol as described earlier.. However, while
we know that this can be done without increasing worst case cost or average cost, it is possible
that h̃ may inrease. Therefore, we construct the desired order oblivious protocol directly.

Proof. Let k = dlog(n)e and associate each location ` ∈ [n] to its binary expansion, viewed as a
vector b(`) ∈ Fk2. Note that 0 /∈ [n], and thus each vector b(`) is nonzero. For an array v ∈ {0, 1}n
we define Γ(v) to be

∑n
i=1 b(`), i.e. the vector in Fk2 obtained by summing the vectors corresponding

to the 1 entries of v. Say that an array v ∈ {0, 1, ∗}n is admissible if there is a way of filling in the
*’s (a completion) so that for the resulting array w we have Γ(w) = 0k, where 0k is the all 0 vector
in Fk2. For an admissible array v, let v̂ be the unique completion of v such that (1) Γ(v̂) = 0k, (2)
The number r of 0’s in v̂ is minimum, (3) the ordered sequence `1 < · · · < `r of locations of the
0’s in v̂ is lexicographically minimum subject to conditions (1) and (2), i.e., for each j ∈ [r], `j is
minimum possible given `1, . . . , `j−1.

We now describe the protocol. Let t > k be an integer (which we’ll choose to be dlog2(n)e).
Alice says 0 for the first n− t steps. The resulting array u has n− t 0’s and t ∗’s. Since u can be
completed to the all 0 array, u is admissible. Furthermore, among the ∗ positions there must be a
set of at most k vectors that sum to 0k, so û has at most k 1’s. Alice fills in the remaining positions
to agree with û. This strategy is order oblivious: a simple induction shows that for each array w
reached under the above strategy, w is admissible and ŵ = û, so Alice’s strategy is equivalent to
filling position σk (for k ≥ n − t) according to ŵ where w is the array after k − 1 steps. This is
clearly an order oblivious strategy

Let v denote the array in {0, 1}n received by Bob. We now obtain an upper bound on the
conditional entropy of σn given v. Let u = u(σ) be the array obtained after the first n − t steps
and let T (σ) be the set of positions of *’s in u. Let S(σ) be the subset of T (σ) consisting of those
positions set to 0 in û. Let L be the random variable that is 1 if σn ∈ S(σ) and 0 otherwise. Since
S(σ) depends only on the set T (σ) and not on the order of the last t locations, the probability that
L = 1 is |S(σ)|/|T (σ)| ≤ log(n)/ log2(n) = 1/ log(n). We have:

6

H(σn|v) ≤ H(σn, L|v)

= H(L|v) +H(σn|v, L)

≤ 1 +H(σn|v, L)

= 1 +H(σn|v, L = 1) Pr[L = 1]

+H(σn|v, L = 0) Pr[L = 0]

≤ 1 +H(σn)
1

log(n)
+H(σn|v, L = 0)

We bound the final expression. H(σ) = log(n) so the second term is 1. For the third term, we
condition further on the value of the final bit b:

H(σn|v, L = 0) ≤ H(b) +
1

2
(H(σn|v, L = 0, b = 1) +H(σn|v, L = 0, b = 0))

Of course, H(b) = 1. Given L = 0, we have σn ∈ T (σ) − S(σ). If b = 1, then σn is one of at
most t positions set to 1, and so the conditional entropy of σn is at most log(t) = 2dlog log(n)e.
If b = 0 then Γ(v) = σn (since σn is the unique location that if set to 1 would make the vectors
corresponding to the locations of 1’s sum to 0k). The conditional entropy in this case is 0.

Summing up all of the conditional entropy contributions gives 3 + dlog log(n)e.
�

For our last variant, suppose Alice can communicate to Bob with a w-ary alphabet instead of
a binary alphabet. Thus, Alice is streamed a permutation σ, and when σi arrives she may write
any of the symbols {1, . . . , w} on location σi in v. At the last step b ∈ {1, . . . , w} arrives and Alice
must write it in location σn. Bob sees v and has to output a set J that contains σn. The cost of
the protocol is the maximum size of J over all σ and b.

We will show that Question 1 is false in this setting. To state our result we need some definitions.
Fix r > 1 and positive integer k0. For n ≥ k0 define for each integer j ≥ 0 the function tj defined on
integers n ≥ k0. The function t0 is given by t0(n) = n for all n. For j ≥ 1, tj is defined inductively
tj(n) = max(k0, dlogr(tj−1(n))e). Observe that for j ≥ 2 we have tj(n) = tj−1(t1(n)) = t1(tj−1(n)).
Thus tj depends on parameters r and k0 and is a minor variant of the base r iterated log function.

Theorem 9. For each j ≥ 0 there is a protocol Πj using the alphabet {1, . . . , 2j + 1} that has cost

at most tj(n), where the parameters needed to define tj are r = 21/4 and some sufficiently large k0.

For example, for a ternary alphabet the cost of the protocol is O(log(n)) and for a 5-ary alphabet
the cost is O(log log(n)). To prove this, we’ll need a few elementary standard facts about error
correcting codes. We include proofs to make the presentation self-contained.

Proposition 10. For each n ≥ 2 there is a coloring χn of the subsets of [n] by the set [n2] such
that any two sets that have symmetric difference at most 2 get different colors.

Proof. Construct the graph whose vertices are subsets of [n] with two vertices joined by an edge if
their symmetric difference has size 1 or 2. The degree of any vertex is n(n+ 1)/2 < n2, and so the
graph has a proper coloring with color set [n2]. �

If Σ is a finite alphabet and s ∈ Σk, a deletion error is the removal of some symbol from the
string (shrinking the length by 1). We need the following (which is much weaker than what is
possible, but is all we need.)

7

Proposition 11. There is a k0 such that for all integers k ≥ k0 there is a code Ck of size at least
2k/2 over {0, 1}k that can correct d4 log2(k)e deletion errors.

We note that the k0 that is needed for Theorem 9 will be the k0 provided by this Proposition.

Proof. We can choose Ck to be a maximal independent set in the graph on {0, 1}k in which two
strings x and y are joined if there is a string z that can be obtained from each of them by at most
d4 log2(k)e deletions. If ∆ is the maximum degree of the graph then any maximal independent set

has size at least 2k/(∆ + 1) and ∆ is at most
(

k
d4 log2(k)e

)2
2d4 log(k)e (since given x each neighbor y

of x can be constructed by selecting the subset of d4 log2(k)e positions to delete from x, the subset
of d4 log(k)e positions to delete from y and the values of the bits deleted from y). For sufficiently

large k this is at most 2k/2 − 1. �

Proof of Theorem 9. Fix k0 according to Proposition 11 and let r = 21/4. Note that logr(n) =
4 log2(n). Define the functions tj as above.

For n ≤ k0 our protocol will just have Alice write the same symbol every time and Bob output
[n]. So assume n > k0.

We prove the theorem by induction on j. For the induction we need to strengthen the theorem
to say that the constructed protocol Πj works in j + 1 phases numbered 0 to j where during phase
0, Alice sees t0(n)− t1(n) permutation values and writes only 2j+ 1 and during phase i ∈ [1, j− 1]
Alice processes the next ti(n) − ti+1(n) permutation values and writes only symbols 2(j − i) + 1
and 2(j − i) + 2. During phase j, Alice processes tj(n)− 1 permutation values and writes symbols
1 and 2.

The protocol Π0 is trivial: the alphabet is {1} and t0(n) = n and t1(n) = 1. Alice writes only
1’s. and Bob outputs the set [n].

Now suppose j > 1 and that Πj−1 has been defined. Phase 0 of Πj is prescribed. Let t = t1(n)
and let S = {s1 < . . . < st} be the unfilled positions after phase 0. Alice identifies the set S with
the set [t] by the correspondence sj ↔ j and views the remaining t symbols of σ as a permutation
σ′ of [t]. The remaining j− 1 phases of the Πj correspond to the protocol Πj−1 run on σ′, so Phase
i of Πj corresponds to Phase i− 1 of Πj−1 run on σ′. For i ≥ 2, Phase i of Πj is exactly the same
as Phase i − 1 of Πj−1. However, Phase 1 of Πj is different from Phase 0 of Πj−1. In Phase 0 of
Πj−1 the only symbol written is 2j − 1 but in Phase 1 of Πj both symbols 2j − 1 and 2j are used.
Since t ≥ k0, we can construct Ct as in Proposition 11 and by changing the alphabet, we can view
Ct as a subset of {2j − 1, 2j}t. By the choice of t = dlogb ne ≥ 4 log2 n, we have n2 ≤ 2t/2 so we
can fix a 1-1 map g from [n2] to Ct. Alice computes g(χn(S)) where χn comes from proposition 10.
This is a string y ∈ {2j − 1, 2j}t and during phase 1, Alice write yi on location si. This completes
the specification of Πj .

We now turn to Bob’s strategy for choosing the set J to output. Let Ai be the set {2i+1, 2i+2}.
During phase i, Alice only writes symbols from Aj−i so the number of symbols from Aj−i written
by Alice is di(n) = ti(n) − ti−1(n) if i < j and is dj(n) = tj(n) − 1 if i = j. The final symbol b
comes from some Aj−i; let i∗ be the index such that b ∈ Aj−i∗ .

When receiving Alice’s output array Bob can count the number of symbols from each Aj−i. For
all but one i this will be di(n), and will be 1 + di(n) if and only i = i∗.

If i∗ 6= 0 then Bob knows the set of positions that Alice wrote 2j + 1 to during phase 0, and
therefore knows the set S of t1(n) positions that remained unfilled at the end of phase 0. Since
b < 2j + 1, by identifying symbols 2j and 2j − 1, Bob can interpret the array restricted to S
as the output of Πj on a set of size t1(n). By induction he can determine a set of size at most
tj−1(t(n)) = tj(n) that contains σn.

This leaves the case i∗ = 1 Then Bob sees n− t1(n)+1 positions that contain 2j+1 one of which
is σn. Let S′ be the set of positions that don’t have 2j + 1 written on them. Then Bob knows S′.

8

We argue that Bob can recover the set S of positions not written during Phase 0. From this, Bob
will know σn, since S − S′ = {σn}.

For those positions si ∈ S that Alice wrote during phase 1, Alice wrote yi in position si where
y = g(χn(S)). The number of symbols written during phase 1 is t1(n) − t2(n) = t − d4 log2(t)e
(unless j = 1 in which case t− 1 symbols were written in phase 1). Thus the string z seen by Bob
(using symbols from {2j−1, 2j}) is obtained from y with at most d4 log2(t)e symbols deleted. Since
Ct is robust against d4 log2(t)e deletions, Bob can recover y from z. He then knows g−1(y) = χn(S).
The choice of χn implies that S is uniquely determined from S′ and χn(S), so Bob recovers S and
therefore σn. �

4. Lower Bounds for Restricted Protocols

In the previous section, two stronger variants of Question 1 turned out to have negative answers,
which may suggest that Question 1 also has a negative answer. In this section however, we prove a
lower bound which implies that any counterexample to Question 1 will need to look quite different
from the two protocols provided in the last section.

An order oblivious protocol can be specified by a sequence of maps A1, · · · , An where each Ai
maps partial assignments on the set [n] to a single bit. When location σi arrives, the bit Alice writes
is Aσi(v). For partial assignments α and β, we say that β is an extension of α, denoted as β ≥ α,
if β is obtained from α by fixing additional variables. An order oblivious protocol is monotone if
each of the maps A1, · · · , An are monotone with respect to the extension partial order. That is,
if β ≥ α are partial assignments, then Ai(β) ≥ Ai(α) for each i. As a remark, when running the
protocol there may be assignments that are never written on v, however defining each Ai to have
domain all partial assignments is still valid and simplifies notation.

Both the AND-OR protocol described in the introduction and the protocol constructed in The-
orem 8 are examples of monotone protocols. Monotonicity generalizes to protocols on w-ary al-
phabets, and the w-ary protocol of Theorem 9 is monotone (if we order the alphabet symbols in
reverse 2j + 1 < 2j < · · · < 1). Our main result in this section is that monotone protocols on
binary alphabets have cost at least b

√
nc. In particular, Question 1 is true for such protocols. For

the rest of the paper, all protocols will be on binary alphabets.

Theorem 12. All monotone protocols have cost at least b
√
nc.

Proof. Let Π be a monotone protocol. We show that E(Π) has a vertex of degree at least b
√
nc.

For a permutation σ denote by bumpk(σ) the permutation obtained from σ by “bumping” the
element k to the end of σ and maintaining the same relative order for the rest of σ. For example,
bump1(321654) = 326541.

We let w(σ) denote the array ΠA(σ) with the entries sorted in σ order. In other words, w(σ) is
the array defined by w(σ)i = ΠA(σ)σi .

Claim 13. Let σ be any permutation and let τ be obtained from σ by performing some sequence of
bumps on σ. Suppose that τ and m < n satisfy the following:

• The elements τ1, τ2, · · · , τm were never bumped.
• Alice originally wrote a 0 on the locations τ1, · · · , τm, that is ΠA(σ)τi = 0 for all i ≤ m.

Then ΠA(τ)τi = 0 for all i ≤ m, i.e., w(τ) begins with m 0’s.

Proof. The claim follows easily by induction on i. Suppose we have already shown that w(τ) begins
with (i−1) 0’s. Let v(σ, k) denote the partial assignment written on v just before Alice receives the
index k (here the reader should take care to distinguish this from the partial assignment just before
Alice receives σk). Consider the partial assignment v(τ, τi). It follows from the first assumption
and the inductive hypothesis that v(σ, τi) is an extension of v(τ, τi). Thus, since Alice originally

9

wrote a 0 on location τi, by monotonicity she continues to write a 0 on that location when being
streamed τ (that is ΠA(τ)τi = 0). �

Let σ be the permutation such that w(σ) is lexicographically minimum.

Claim 14. w(σ) consists of a block of 0’s, followed by a block of 1’s, followed by a single *.

Proof. The result is trivial if their are no 1’s. Let j be the location of the first 1, and let k be the
last position in the block of 1’s beginning at j. We claim k = n − 1. Suppose k < n − 1. Then
there is a 0 in position k+ 1. Let τ be obtained from σ by bumping σj , . . . , σk. By Claim 13, w(τ)
begins with j 0’s, contradicting the lexicographic minimality of σ. �

Let n−t be the number of initial 0’s in w(σ) so the number of 1’s ist−1. Let T = {σn−t+1, . . . , σn}
and let x be the vector that is 1 in those positions and 0 elsewhere. For k between 1 and n, let
τ (k) = bumpk(σ), so τ (σn) = σ.

The vectors of the form ΠA(φ) and w(φ) have a single *. For b ∈ {0, 1} we write ΠA(φ, b) and
w(φ, b) for the vectors obtained by replacing the * by b.

Claim 15. The vertices ΠA(τ (k), 1) for k ∈ T are all equal to x. Therefore x belongs to an edge in
direction k for each k ∈ T and so has degree at least t in E(Π).

Proof. Let k ∈ T . Clearly w(τ (k), 1) has the first n−t bits 0, and so by the choice of σ the remaining

bits are 1. This implies ΠA(τ (k) has 1’s in the positions indexed by the last t elements of τ (k) which
is the set T . �

To conclude the proof of the theorem we will find an assignment y that has degree at least
(n− t)/(t+ 1) in the graph E(Π).

Claim 16. For k among the first n− t elements of σ, w(τ (k)) has the first n− t− 1 bits equal to
0, and has at most one 0 among the next t bits (and last bit *).

Proof. Claim 13 immediately implies that the first n−t−1 bits of w(τ (k)) are 0. Now take all of the

locations that are labeled 1 in ΠA(τ (k)) and bump them to the end and let this new permutation
be ρ. Claim 13 implies that all 0’s remain 0. By the lexicographic minimality of w(σ), w(ρ) has

at most n − t 0’s which implies that there was at most a single 0 in τ (k) in positions n − t + 1 or
higher. �

Now classify each of the first n− t elements of σ into sets Sn−t, . . . , Sn. Element k ∈ Sn if w(τ (k))

has t 1’s. Otherwise k ∈ Sj where j is the location of the unique 0 of w(τ (k)) in locations n− t to
n− 1. Choose j∗ so that |Sj∗ | is maximum and let m = |Sj∗|, which is at least (n− t)/(t+ 1). For

k ∈ Sj∗ , let yki) = ΠA(τ (k), 0). Let u = σj∗+1 and let y be the vector that is 1 on the positions of
T − {u} and 0 elsewhere.

Claim 17. The assignments y(k) for k ∈ Sj∗ are all equal to y, and thus y has degree at least m in
E(Π).

Proof. By the definition of the bump operation the sequence of elements appearing in positions
n− t, . . . , n− 1 in τ (k) is σn−t+1, . . . , σn and the element in position j∗ of τ (k) is σj∗+1 = u. Thus

y(k) is 1 on the elements of T − {u} and 0 elsewhere. �

We thus have a point x of degree at least t and a point y of degree at least (n− t)/t+ 1 in E(Π).
This implies that cost of Π is at least max(t, (n− t)/(t+1)) >

√
n−1 and is thus at least b

√
nc. �

As demonstrated by the AND-OR protocol, Theorem 12 is tight up to a constant factor. We
remark that the monotone protocols we consider here seem to have no general connection to the

10

class of monotone boolean functions, and our result for monotone protocols seems to be unrelated
to the easy and well known fact that the sensitivity conjecture is true for monotone functions.

We conclude this section with a lower bound for a second class of protocols. Although the lower
bound is only logarithmic, proving a logarithmic lower bound for all protocols with a large enough
constant would improve on the best known bounds relating degree and sensitivity.

We need a few definitions. Recall that an edge e ∈ Hn may be written as an array in {0, 1, ∗}n
for which e` = ∗ on exactly one location `. We call this location ` the free location of that edge. We
say two edges e, e′ collide if e` = e′` for all ` that is not a free location of either edge. Equivalently,
two edges collide if they share at least one vertex (each edge collides with itself). Both of the lower
bounds in this section will follow by finding an edge e ∈ E(Π) that collides with m other edges in
E(Π). This implies at least one of the vertices in e has degree at least m/2 in the graph E(Π),
which in turn lower bounds the cost of the protocol.

For a permutation σ, we write ` <σ k to denote that the element ` comes before the element k
in σ. Let Sk(σ) = {` : ` <σ k}. For example, if σ = 321654 then S1(σ) = {2, 3}. We say a protocol
is assignment oblivious if the bit written by Alice in location k only depends on the set Sk(σ) (and
not on the assignment of bits to that set). Such protocols can be described by a collection of n
hypergraphs H1, H2, · · · , Hn, where each H` is a hypergraph with vertex set [n] \ {`}. When k
arrives, Alice writes a 1 if and only if the set Sk(σ) is in Hk.

Theorem 18. Every assignment oblivious protocol Π has c(Π) ≥ log2(n)/2.

Proof. Let Π be an assignment oblivious protocol.
Given a permutation σ = σ1σ2 · · ·σn and k ∈ [n] we define swapk(σ) to be the permutation ob-

tained by swapping the positions of the elements k and σn within σ and keeping every other element
in the same place. For example, swap3(654321) = 654123. The lemma will follow by constructing a
permutation σ such that that ΠA(σ) and ΠA(swapk(σ)) collide for each k ∈ {σn−1, · · · , σn−dlog2(n)e}

We build up such a σ in a greedy manner. We start with setting σn−1 = 1. With σn−1 fixed, the
bit Alice writes in location 1 is completely determined by σn (and does not depend on the values
we later choose for σ1, · · · , σn−2). This holds by the assignment oblivious property and because
S1(σ) = {` : ` 6= 1, σn}. Let R1 be the locations ` for which setting σn = ` results in Alice writing
a 1 in location 1. At least one of |R1|, |Rc1| are bigger than d(n− 1)/2e, let T1 be that set. Now we
fix σn−2 to be any element in T1.

Having fixed σn−1 and σn−2, the bit Alice writes on location σn−2 also only depends on the value
of σn. Now let R2 be the subset of indices j in T1 such that setting σn = j would cause Alice to
write a 1 in location σn−2. At least one of |R2|, |Rc2| are bigger than d(|T1| − 1)/2e, let T2 ⊆ T1 be
that set. This process is iteratively repeated. At step i we set σn−i to be an arbitrary element of
Ti−1. With σn−1, · · · , σn−i now fixed, the value written in location σn−i depends only on the value
of σn. The set Ri is defined to be all such values of σn that result in Alice writing a 1 in location
σn−i and Ti ⊆ Ti−1 is defined to be the larger of |Ri| and |Rci |. We proceed until the set Ti has
only one element in it, in this case we assign σn to be that element. This process will take at least
dlog2(n)e steps. We then assign the remaining elements to σ1, · · · , σn−i−1 in an arbitrary order.

We now claim that ΠA(σ) and ΠA(swapk(σ)) collide for k = σn, σn−1, · · · , σn−dlog2(n)e.

Claim 19. Let i < dlog2(n)e, and let k = σn−i. Then ΠA(σ)` = ΠA(swapk(σ))` for all ` 6= k, σn.

Proof. Let σ′ = swapk(σ). If ` <σ k then S`(σ) = S`(σ
′) and so Alice writes the same bit to

location ` under both permutations.
Suppose that ` >σ k. Let j be such that σn−j = `. Note that σn−1 = σ′n−1, · · · , σn−j = σ′n−j .

Recall that holding σn−1, · · · , σn−j fixed, the bit Alice writes at location ` depends only on the
value of σn, and furthermore that bit is the same as for all settings of σn ∈ Tj . Since both σn and
σ′n = k are in the set Tj , it follows that ΠA(σ)` = ΠA(σ′)`. �

11

By the above claim, σ collides with swapk(σ) for at least dlog2(n)e values of k. Furthermore, at
least one of the vertices in ΠA(σ) has degree more than dlog2(n)/2e. This concludes the proof.

�

5. A Protocol with Lower Cost than the AND-OR Protocol

The AND-OR protocol has cost d
√
ne which matches our lower bound for monotone protocols

(within 1). In this section we show that non-monotone protocols can give at least a small advantage:

Theorem 20. For some ε > 0 and all sufficiently large n there is a protocol Π win c(Π) ≤ (1−ε)
√
n.

Proof. The construction is a variant of the AND-OR protocol.

An (n,m) proper code is an indexed family {xS ∈ {0, 1}n|S ∈
(
[n]
m

)
} of vectors such that the

support of xS is a subset of S. We need the following fact: For n sufficiently large and n ≥ k2 ≥ .8n
there is an (n, k2)-proper code in which any two codewords are at hamming distance at least 2k+1.
(The routine proof of this is given below.) Choose the least k such that k2 ≥ .8n and construct
such an (n, k2)-proper code.

Protocol Π is as follows: Alice writes 0 in the first n−k2 locations. Let S be the set of remaining
k2 locations. View S as split into k blocks where the each successive block consists of the smallest
k unassigned indices in S. For the last k2 elements of the permutation, when index j arrives Alice
writes xS,j unless j is the final element of its block to arrive, in which case Alice writes 1− xS,j .

The word received by Bob differs from xS in at most k places (one for each block) and so by
the distance property of the code, Bob can deduce the set S. If there is a block of S such that the
received vector agrees with xS on the entire block then Bob outputs that block (since that block
must include σn); otherwise Bob outputs the set of positions (one per block) in which the received
vector disagrees with xS (which again must include σn).

Finally we prove the existence of the desired (n, k2)-proper code using a standard random con-

struction. for each S ∈
([n]
k2

)
define xS to be a random vector supported on S. Call a pair of sets

S, T ∈
([n]
k2

)
bad if xS and xT differ in at most 2k+1 positions. The number of coordinates on which

xS and xT differ is at least the number of coordinates in S on which they differ. Holding xT fixed
we see that this probability that S, T is bad is at most the probability of fewer than 2k + 1 heads

in k2 coin tosses, which is 2−k
2(1−o(1)). Taking a union bound over all pairs of k-sets we get that

the probability that there is a bad pair is at most
(
n
.2n

)2
2−.8n(1−o(1)) = o(1), and so with positive

probability there are no bad pairs, and so the desired code exists. �

As mentioned in the introduction, after a prelimiary version of this paper appeared, Mario
Szegedy [14] gave a protocol of cost O(n.4732).

6. Acknowledgements

We thank Ran Raz for helpful discussions. The first author was supported by NSF grant CCF
083727. The second author was supported in part by (FP7/2007-2013)/ERC Consolidator grant
LBCAD no. 616787, a grant from Neuron Fund for Support of Science, and the project 14-10003S
of GA ČR. The third author was supported by NSF grants CCF-083727 and CCF-1218711, and
the Simons Foundation under award 332622.

References

[1] A. Ambainis, K. Balodis, T. Lee, M. Santha, and J. Smotrovs Separations to query complexity based on pointer
functions ECCC, TR15-098, 2015.

[2] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. De Wolf. Quantum lower bounds by polynomials. Journal of
the ACM (JACM), 48(4):778–797, 2001.

12

[3] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci.,
288(1):21–43, 2002.

[4] F. R. Chung, Z. Füredi, R. L. Graham, and P. Seymour. On induced subgraphs of the cube. Journal of Combi-
natorial Theory, Series A, 49(1):180–187, 1988.

[5] A. Drucker Person Communication, 2015.
[6] J. Gilmer, M. Saks, and S. Srinivasan Composition limits and separating examples for some boolean function

complexity measures Combinatorica, to appear. (Preliminary version in Proc. 28th IEEE Conference on Compu-
tational Complexity, 2013, 185–196; see also arXiv:1306.0630.)

[7] C. Gotsman and N. Linial. The equivalence of two problems on the cube. Journal of Combinatorial Theory, Series
A, 61(1):142–146, 1992.

[8] P. Hatami, R. Kulkarni, and D. Pankratov. Variations on the Sensitivity Conjecture. Number 4 in Graduate
Surveys. Theory of Computing Library, 2011.

[9] C. Kenyon and S. Kutin. Sensitivity, block sensitivity, and `-block sensitivity of boolean functions. Information
and Computation, 189(1):43–53, 2004.

[10] L. Lovasz and N. E. Young. Lecture notes on evasiveness of graph properties. arXiv preprint cs/0205031, 2002.
[11] G. Midrijanis. Exact quantum query complexity for total boolean functions. arXiv preprint quant-ph/0403168,

2004.
[12] N. Nisan CREW PRAMS and decision trees Proceedings of the twenty-first annual ACM symposium on Theory

of computing, 327-335, 1989.
[13] N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials. Computational Complexity,

4:301–313, 1994.
[14] M. Szegedy An O(n0.4732) upper bound on the complexity of the GKS communication game ECCC, TR15-102,

2015.

Department of Mathematics, Rutgers University, Piscataway, NJ, USA.
E-mail address: jmgilmer@math.rutgers.edu

Computer Science Institute, Charles University, Prague, Czech Republic.
E-mail address: koucky@iuuk.mff.cuni.cz

Department of Mathematics, Rutgers University, Piscataway, NJ, USA.
E-mail address: saks@math.rutgers.edu

13

