
A polylogarithmic space deterministic streaming algorithm for approximating
distance to monotonicity ∗

Timothy Naumovitz† Michael Saks‡

October 8, 2014

Abstract
The distance to monotonicity of a sequence of n numbers
is the minimum number of entries whose deletion leaves an
increasing sequence. We give the first deterministic stream-
ing algorithm that approximates the distance to monotonic-
ity within a 1 + ε factor for any fixed ε > 0 and runs in
space polylogarithmic in the length of the sequence and the
range of the numbers. The best previous deterministic al-
gorithm achieving the same approximation factor required
space Ω(

√
n) [9]. Previous polylogarithmic space algorithms

were either randomized [10], or had approximation factor no
better than 2 [8].

We also present space lower bounds for this problem:

Any deterministic streaming algorithm that gets a 1 + ε ap-

proximation requires space Ω(1
ε

log2(n)) and any randomized

algorithm requires space Ω(1
ε

log2(n)
log log(n)

).

1 Introduction

In the Longest Increasing Subsequence (LIS) problem
the input is a function (array) f : [n] → [m] (where
[n] = {1, . . . , n}) and the problem is to determine
LIS(f), the size of the largest I ⊆ [n] such that the
restriction of f to I is an increasing function.

The distance to monotonicity of f , DM(f) is de-
fined to be n − LIS(f), which is the number of entries
of f that must be changed to make f an increasing
function. Clearly the algorithmic problems of comput-
ing DM(f) and LIS(f) are essentially equivalent as are
the problems of approximating these quantities within
a specified additive error. However, there is no such ob-
vious correspondence between the problems of approxi-
mating DM(f) and LIS(f) to within a constant multi-
plicative factor. In fact we see from this paper that there
is a significant difference in the difficulty of approximat-
ing these two problems, as least in some settings.

These problems, both the exact and approximate
versions, have attracted attention in several different
computational models, such as sampling, streaming,
and communication models. Following several recent
papers, we study this problem in the streaming model,

∗Supported in part by NSF under grants CCF-1218711 and
CCF-0832787.
†Department of Mathematics, Rutgers University.
‡Department of Mathematics, Rutgers University.

where we are allowed one sequential pass over the input
sequence, and our goal is to minimize the amount of
space used by the computation.
Previous Results. The exact computation of LIS(f)
and DM(f) can be done in O(n log(n)) time using a
clever implementation of dynamic programming [1; 2;
3], which is known to be optimal [4]. In the streaming
setting, it is known that exact computation of LIS and
DM require Ω(n) space even when randomization is
used [9].

The most space efficient multiplicative approxima-
tion for LIS(f) is the deterministic O(

√
n) space al-

gorithm [9] for computing a (1 + ε)-multiplicative ap-
proximation. This space is essentially optimal [8; 7] for
deterministic algorithms. Whether randomization helps
significantly for this problem remains a very interesting
open question.

In contrast, DM(f) has very space efficient ap-
proximations algorithms. A randomized multiplicative
(4+ε)-approximation using O(log2(n)) space was found
by [9]. This was improved upon by [10] with a (1 + ε)-
multiplicative approximation using O(1

ε log2(n)) space.
In the deterministic case, [8] gave a polylogarithmic
space algorithm giving a 2 + o(1) factor approximation,
but prior to the present paper the only deterministic al-
gorithm known that gave a (1+ε)-factor approximation
for arbitrary ε > 0 was an O(

√
n)-space multiplicative

approximation given by [9]. There have been no signif-
icant previous results with regard to lower bounds for
this problem in either the randomized or deterministic
case.
Our Contributions. We give the first determinis-
tic streaming algorithm for approximating DM(f) to
within an 1 + ε factor using space polylogarithmic in
n and m. More precisely, our algorithm uses space
O(1

ε2 log5(n) log(m)).
The improvement in the approximation factor from

2 + o(1) to 1 + ε is qualitatively significant because
a factor 2 approximation algorithm to DM(f) can’t
necessarily distinguish between the case that LIS(f) =
1 and LIS(f) = n/2, while a 1 + ε approximation can
approximate LIS(f) to within an additive εn term.

Our algorithm works by maintaining a small num-
ber of small sketches at different scales during the
streaming process. The main technical challenge in the
analysis is to show that the size of the sketches can be
controlled while maintaining the desired approximation
quality.

We also establish lower bounds for finding 1 + ε
multiplicative approximations to DM. Using standard
communication complexity techniques we establish an
Ω(1

ε log2(n)) space lower bound for deterministic algo-

rithms and an Ω(1
ε

log2(n)
log log(n)) space lower bound for ran-

domized algorithms. The reduction maps the streaming
problem to the one-way communication complexity of
the “Greater Than” function.

2 Preliminaries

For a positive integer r, [r] denotes the set {1, ...r}.
Throughout the paper, f denotes a fixed function from
[n] to [m], which we refer to as the input sequence. We
will also refer to an element of the domain of f as an
index, and an element of the range of f as a value.

• A subset J of [n] is f -monotone if for all j, j′ ∈ J ,
j < j′ implies f(j) < f(j′).

• The distance to monotonicity of f is n minus the
size of the largest f -monotone subset.

• For l, r ∈ [m] ∪ {0}, an (l, r)-monotone subset J is
an f -monotone subset satisfying f(j) ∈ (l, r] for all
j ∈ J .

• For I ⊆ [n], the (m+ 1)× (m+ 1) matrix DMI is
defined by DMI(l, r) is equal to |I| minus the size
of the largest (l, r)-monotone subset of I. Observe
that if l ≥ r, then DMI(l, r) = |I|.

Our streaming algorithm will try to approximate
DM[n](0,m) (i.e. the distance to monotonicity of the
entire sequence). To do this, it will maintain a small set
of small matrices that each provide some approximate
information about the matrices DMI for various choices
of I. This motivates the next definitions:

• A DM-sketch is a triple (L,R,D) where L,R ⊆
[m]∪{0} and D is a nonnegative matrix with rows
indexed by L and columns indexed by R. We
sometimes refer to the matrix D as a DM-sketch,
leaving L and R implicit.

• A DM sketch (L,R,D) is well behaved if for any
l, l′ ∈ L and r, r′ ∈ R with l ≤ l′ and r′ ≤ r, it
holds that D(l, r) ≤ D(l′, r′).

• A DM-sketch is said to be valid for interval I if
|I| ≥ D(l, r) ≥ DMI(l, r) for all l ∈ L and r ∈ R.

• For i ∈ [n], the trivial sketch for i is the DM-sketch
with L = {f(i)−1}, R = {f(i)}, and D = [0]. Note
that the trivial sketch for i is trivially well behaved
and valid for i.

• The size of a DM sketch (L,R,D) is max(|L|, |R|).

Given a valid DM-sketch (L,R,D) for I, we want to
obtain an estimate for the (m+1)×(m+1) matrix DMI .
Observe that, for any I, ([0,m], [0,m], DMI) is a well
behaved and valid DM sketch for I. For l, r ∈ [m]∪{0}
and l′ ∈ L and r′ ∈ R with l ≤ l′ and r′ ≤ r, we have
DMI(l, r) ≤ DMI(l′, r′) ≤ D(l′, r′). This motivates the
following definitions:

• For l, r ∈ [m] ∪ {0}, the L-ceiling of l, denoted by
l̄L is the smallest element l′ ∈ L ∪ {m} such that
l ≤ l′. Similarly, the R-floor of r, denoted by rR is
the largest element r′ ∈ R ∪ {0} such that r ≥ r′.

• Given the DM-sketch (L,R,D) for I, the natural
estimator of DMI induced by D is the matrix D∗

given by:
D∗(l, r) = D(l̄L, rR)

Observe that ([m] ∪ {0}, [m] ∪ {0}, D∗) is a DM-
sketch.

• (L,R,D) is (1+δ)-accurate for interval I if for every
l, r ∈ [m] ∪ {0}, D∗(l, r) ≤ (1 + δ)DMI(l, r).

Proposition 2.1. Let D be a DM-sketch, I an inter-
val, and D∗ be the natural estimator of DMI induced by
D. If D is well behaved and valid for I, then so is D∗.

Proof. First, note that the well-behavedness of D∗

follows from the fact that if l ≤ l′, r′ ≤ r, then l̄L ≤ l̄′L

and r′R ≤ rR. Let l, r ∈ [m] ∪ {0}. The fact that
D∗(l, r) ≤ |I| follows from the validity of (L,R,D), so
it remains to show D∗(l, r) ≥ DMI(l, r). We know
that l̄L ≥ l and rR ≤ r by definition. As a result,
any (l̄L, rR)-monotone subset of I is an (l, r)-monotone
subset of I, so we have DMI(l, r) ≤ DMI(l̄L, rR). Since
D∗(l, r) = D(l̄L, rR) ≥ DMI(l̄L, rR) by the validity of
(L,R,D), we are done. �

3 A Polylogarithmic Space Streaming
Algorithm

As mentioned, at each step j, our streaming algorithm
will maintain a small number of small sketches for
various subintervals of [1, j]. Our algorithm involves the
repeated use of two main building blocks: an algorithm
merge and an algorithm shrink.

The algorithm merge takes as input an interval I
of even size split into its two halves I1 and I2 and DM-
sketches (L1, R1, D1) for I1 and (L2, R2, D2) for I2 and

outputs a DM-sketch (L,R,D) for I. It does this in the
following very simple way:

• L = L1 ∪ L2

• R = R1 ∪R2

• D is defined, for l ∈ L and r ∈ R by:

D(l, r) = min
l≤z≤r

D∗1(l, z) +D∗2(z, r),

where D∗1 is the natural estimator for DMI1(·, ·)
induced by D1 and D∗2 is the natural estimator for
DMI2(·, ·) induced by D2.

The algorithm shrink takes as input a DM-sketch
(L,R,D) and outputs a DM-sketch (L′, R′, D′) where
L′ ⊆ L, R′ ⊆ R and D′ is the restriction of D to L′×R′.
It takes a parameter γ > 0.

The goal of the algorithm shrink is to choose
(L′, R′, D′) as small as possible while ensuring that, for
any l, r ∈ [m]∪{0}, D′∗(l, r) is not too much bigger than
D∗(l, r). To find L′ ⊆ L and R′ ⊆ R, our algorithm
greedily omits values from L and R without destroying
the property

∀l, r ∈ [m]∪ {0}, D∗(l, r) ≤ D′∗(l, r) ≤ (1 + γ)2D∗(l, r).

The algorithm shrink first determines L′ and then
determines R′. Let l1 < · · · < l|L| be the values in
L. We construct a sequence x1 ≤ x̂1 ≤ x2 ≤ x̂2 ≤
x3, ..., x̂s−1 ≤ xs iteratively as follows. Let x1 = l1. For
k ≥ 1, having defined x1, x̂1, ..., x̂k−1, xk, if xk = l|L|,
stop. Otherwise, let x̂k = li where i is the largest index
less than |L| such that

∀r ∈ R,D(li, r) ≤ (1 + γ)D(xk, r)(3.1)

and let xk+1 = li+1. Set L′ =
{x1, x̂1, x2, x̂2, x3, ..., x̂s−1, xs}. Now let D′′ be the
submatrix of D induced by the rows of L′, giving us
an intermediate sketch (L′, R,D′′). Starting from D′′,
we perform an analogous construction for R′, defining
y1 to be the largest value of R, and working our way
downwards (so yt will be the smallest value of R). We
get R′ = {y1, ŷ1, y2, ŷ2, y3, ..., ŷt−1, yt}, and let D′ be
the submatrix of D′′ induced by the columns labeled
by R′. This yields another DM sketch (L′, R′, D′) for
I. The DM sketch (L′, R′, D′) will be the sketch that
shrink outputs.

Armed with the procedures merge and shrink, we
can now describe our deterministic streaming algorithm
dmapprox for approximating distance to monotonicity.
dmapprox requires a parameter γ > 0. (The choice
of γ will be ln(1 + ε)/(2 log(n)) where ε is the desired
approximation factor.)

We first describe a version of our algorithm that is
not in the streaming model, and then convert it into a
streaming algorithm, which will be called dmapprox.
Assume without loss of generality that n = 2d for an
integer d. Consider the rooted binary tree whose nodes
are subintervals of [n] with [n] at the root, and for
each interval I of length greater than 1, its left and
right children will be the first and second halves of I,
respectively. This will yield a full binary tree of depth
log(n), where the ith leaf (read from left to right) is the
singleton {i}.

Our algorithm assigns to every node I a DM sketch
for I as follows. To each leaf {i} we assign the trivial
sketch for i. For a non-leaf I with children I1 and I2,
we take the DM-sketches (L1, R1, D1) and (L2, R2, D2)
for I1 and I2 respectively, and apply merge followed
by shrink with parameter γ to these sketches to get
a DM-sketch (L′, R′, D′) for I. We assign these DM-
sketches inductively until we reach the root, yielding
a DM sketch (L,R,D) for [n]. The output of the
algorithm is D∗(0,m).

We now convert this bottom up procedure into a
streaming algorithm. We say that a node (interval)
I is completed if we have reached the end of I in our
stream, and we call a node (interval) complemented if
its parent’s other child is also completed. At any point
during the stream, we maintain a DM sketch for every
completed uncomplemented node I, creating a trivial
DM sketch for each leaf as it is streamed. At step i,
we look at the ith value in the stream, and we find the
largest interval in the binary tree for which i is the right
endpoint of that interval. Call this interval Ik, where
k is such that the size of this interval is 2k. Define
a sequence of intervals Ik, Ik−1, ..., I0, where Ij is the
right child of Ij+1. Note that i is the right endpoint of
each Ij , so each Ij becomes completed at step i. As a
result, our algorithm first creates the trivial sketch for
i (Note that I0 = {i}) and then performs a (possibly
empty) sequence of merges and shrinks as follows. For
0 ≤ j < k, given a DM sketch for Ij , the algorithm
applies merge to the sketch for Ij and the sketch stored
for its sibling, and then applies shrink with parameter
γ to the output of merge to get a DM sketch for Ij+1

(at which point it forgets the sketches for the children
of Ij+1). The algorithm repeats this process k times,
obtaining a sketch for Ik which it stores, as Ik is not yet
complemented at step i. Once we reach the end of the
stream, we will have our DM sketch for the root. We
will prove:

Theorem 3.1. (Main Theorem) Let ε > 0 and con-
sider the algorithm dmapprox with parameter γ =
ln(1+ε)/(2 log(n)). On input a sequence f of n integers,
dmapprox outputs an approximation to the distance to

monotonicity that is between DMf and (1 + ε)DMf .
The algorithm uses O(1

ε2 log5(n) log(m)) space and runs
in O(1

ε3n log6(n)) time.

When accounting for time, we assume that arithmetic
operations (additions and comparisons) can be done in
unit time.

4 Proof of the Main Theorem

In this section we state some basic properties about the
procedures merge and shrink, and use them to prove
the main theorem. Some of these properties of merge
and shrink are proved in this section, and others are
proved in the next section.

Lemma 4.1. (MERGE) Suppose merge is run on in-
put I,I1,I2, D1,D2 as described above and let (L,R,D)
be the output DM-sketch.

1. The size of D is at most the sum of the sizes of D1

and D2.

2. If Di is well-behaved for i ∈ {1, 2} then so is D.

3. If Di is valid for Ii for i ∈ {1, 2} then D is valid
for I.

4. If Di is (1 + δ)-accurate for i ∈ {1, 2} then D is
(1 + δ)-accurate.

5. The algorithm merge runs in space
O(log(m)|L||R|) and time O(|L||R|(|L|+ |R|)).

The proof of this lemma is routine and unsurprising.

Proof. We prove each item of the claim sequentially.
First, we need to show that the size of D is at most

the sum of the sizes of D1 and D2. The size of (L,R,D)
is given by

max(|L|, |R|) = max(|L1 ∪ L2|, |R1 ∪R2|)
≤ max(|L1|+ |L2|, |R1|+ |R2|)
≤ max(|L1|, |R1|) +max(|L2|, |R2|).

which is the sum of the sizes of (L1, R1, D1) and
(L2, R2, D2).

Next, to show that D is well-behaved, we need to
show that for l, l′ ∈ L and r, r′ ∈ R with l ≤ l′ and
r′ ≤ r, D(l, r) ≤ D(l′, r′). According to the definition
of D, let z be such that D(l′, r′) = D∗1(l′, z) +D∗2(z, r′).
Since D1 and D2 are well-behaved, D∗1 and D∗2 are well-
behaved by Proposition 2.1. This gives:

D∗1(l′, z) +D∗2(z, r′) ≥ D∗1(l, z) +D∗2(z, r)
≥ D(l, r).

where the last inequality follows from the definition of
D. This shows that D is well-behaved.

Next, to show that (L,R,D) is valid, we need to
show that for x ∈ L, y ∈ R,

(1) D(x, y) ≤ |I|

(2) D(x, y) ≥ DMI(x, y)

Let z be such that D(x, y) = D∗1(x, z) + D∗2(z, y). By
Proposition 2.1,

|I| = |I1|+ |I2| ≥ D∗1(x, z) +D∗2(z, y) = D(x, y)

establishing (1).
For (2), let z be such that D(x, y) = D∗1(x, z) +

D∗2(z, y). We have D∗1(x, z) = D1(x̄L1 , zR1
) and

D∗2(z, y) = D2(z̄L2 , y
R2

) (Note that zR1
≤ z ≤ z̄L2).

By the validity of (L1, R1, D1) and (L2, R2, D2),

D(x, y) = D1(x̄L1 , zR1
) +D2(z̄L2 , y

R2
)

≥ DMI1(x̄L1 , zR1
) +DMI2(z̄L2 , y

R2
)

≥ DMI(x, y)

the last inequality following from the definition of DM .
This shows that (L,R,D) is valid.

To prove the (1 + δ)-accuracy of D, let l, r ∈ I and
let J be an (l, r)-monotone subset of I of maximum size.
We need to show that D∗(l, r) ≤ (1 + δ)DMI(l, r). Let
h be the value associated to the largest index of J ∩ I1.
We see that DMI1(l, h) + DMI2(h, r) = DMI(l, r), so
for the (L,R,D) sketch for I,

D∗(l, r) = minl≤k≤r(D∗1(l, k) +D∗2(k, r))
≤ D∗1(l, h) +D∗2(h, r)
≤ (1 + δ)(DMI1(l, h) +DMI2(h, r))
≤ (1 + δ)DMI(l, r).

by the (1+δ)-accuracy of (L1, R1, D1) and (L2, R2, D2).
This shows that (L,R,D) is (1 + δ)-accurate.

We now analyze the amount of time that merge
takes. Getting L and R from (L1, R1, D1) and
(L2, R2, D2) is trivial, and getting D(x, y) for each pair
(x, y) ∈ L×R requires taking a minimum over at most
|L| + |R| choices of z (values of z outside of L ∪ R will
not be helpful). Since the D∗1 and D∗2 values here can be
computed in constant time (by looking at appropriate
values in D1 and D2), each of these |L| + |R| choices
takes time O(1). This yields the desired time bound of
O(|L||R|(|L|+ |R|)).

Finally, the amount of space that this algorithm
uses is just the amount of space required to store L,
R, and D. Since each element uses log(m) bits, this
yields the desired space bound of O(log(m)|L||R|). This
completes the proof of Lemma 4.1. �

Lemma 4.2. (SHRINK) On input an a sketch (L,R,D)
that is valid for I and (1 + δ)-accurate, shrink with
parameter γ outputs a sketch (L′, R′, D′) that is well
behaved and valid for I and is (1 + γ)2(1 + δ)-accurate.
This algorithm runs in space O(log(m)|L||R|) and time
O(|L||R|).

Proof. First, we see that shrink produces a matrix D′

which is a submatrix of D for the same interval I, and as
a result, the well behavedness and validity of (L′, R′, D′)
follows trivially from the definitions.

Next, we need to show that for l, r ∈ [m] ∪ {0},
D′∗(l, r) ≤ (1 + γ)2(1 + δ)DMI(l, r). We do this by
showing that D′′∗(l, r) ≤ (1+γ)D∗(l, r), and D′∗(l, r) ≤
(1 + γ)D′′∗(l, r). The two arguments are analogous, so
we show the proof for the first case only. If l̄L

′
= m

(with m /∈ L′), then since the largest value of L is in L′,
l̄L = m also, and D′′∗(l, r) = D∗(l, r) ≤ (1+δ)DMI(l, r)
by hypothesis. Otherwise, l̄L

′
= xk or l̄L

′
= x̂k for some

k. If l̄L
′

= xk, then for xk = li+1 as in the description
of shrink, l > li, so l̄L = li+1 = xk. This means
that again, D′′∗(l, r) = D∗(l, r) ≤ (1 + δ)DMI(l, r) by
hypothesis.

If instead, l̄L
′

= x̂k,

D′′∗(l, r) = D′′(x̂k, rR)
= D(x̂k, rR)
≤ (1 + γ)D(xk, rR)

≤ (1 + γ)D(l̄L, rR)
= (1 + γ)D∗(l, r)
≤ (1 + γ)(1 + δ)DMI(l, r)

where the third line follows from the definition of
shrink, and the fourth line follows from the well
behavedness of D, as xk ≤ l ≤ l̄L. This shows that
(L′, R,D′′) is (1 + γ)(1 + δ)-accurate. As mentioned
earlier, an analogous argument with the shrinking of
R shows that (L′, R′, D′) is within a (1 + γ) factor of
(L′, R,D′′), so (L′, R′, D′) is (1 + γ)2(1 + δ)-accurate.

To analyze the amount of time this algorithm takes,
we see that our algorithm involves constructing the
sequence x1, x̂1, x2, x̂2, x3, ..., x̂s−1, xs. Recall that the
elements of L are enumerated as l1 < l2 < · · · < l|L|.
To determine, xk+1 = li′ from xk = li, we need to
compute the difference between rows lj and li of D
starting with j = i + 1 and continuing until we reach
j = i′ for which some entry of the difference vector
exceeds (1 + γ) times the corresponding entry of row li
(or lj reaches l|L|). When this happens we set xk+1 = li′

and x̂k = li′−1. If xk+1 = l|L| we stop otherwise we
continue to determine xk+2 in the same way. Notice
that throughout the algorithm, we consider each row
only once as lj so we compute the difference of at most

|L| pairs of rows. Each such difference is computed in
O(|R|) arithmetic operations so the overall running time
is O(|L||R|).

Looking at the amount of space used, we see that
since (L′, R′, D′) is not larger than (L,R,D) and none
of the intermediate computations require any significant
amount of space, we will need at most the space required
to store the (L,R,D) sketch, which will be at most
O(log(m)|L||R|) for theD matrix, as it consists of |L||R|
elements, each using at most log(m) bits. Note that
if (L,R,D) has size O(log1+γ(n)), then this becomes
space O(1

γ2 log2(n) log(m)). �

We will also crucially need to control the size of
the sketch that is output by shrink. Without an
additional hypothesis on the input sketch (L,R,D) we
can’t bound the size of the sketch (L′, R′, D′) (better
than the trivial bound given by the size of (L,R,D)).
To obtain the desired bound we will impose a technical
condition called coherence on (L,R,D). We defer the
definition of coherence until Section 5, but the reader
can understand the structure of the argument in this
section without knowing this definition. In section 5,
we’ll prove two Lemmas:

Lemma 4.3. If (L,R,D) is coherent, then the output
(L′, R′, D′) of shrink with parameter γ is coherent and
satisfies max(|L′|, |R′|) ≤ 2 log1+γ n+ 3.

In order to carry out the appropriate induction
argument we’ll need:

Lemma 4.4. For i ∈ [n], the trivial sketch for i is
coherent. Furthermore in merge if (L1, R1, D1) and
(L2, R2, D2) are both coherent then so is (L,R,D).

Using these pieces, we can now prove Theorem 3.1.

Proof. First, we aim to show that dmapprox approx-
imates DMf to within a 1 + ε factor. To do this,
it suffices to show that the DM sketch for [n] com-
puted by dmapprox is valid and 1 + ε-accurate. Let
γ = ln(1 + ε)/(2 log(n)). If we run dmapprox on f , we
have a binary tree of depth log(n), with a DM sketch
for each node. Using Lemmas 4.1 and 4.2, for a node
I with children I1 and I2, if the DM sketches for I1
and I2 are (1 + δ)-accurate, then the DM sketch for I is
(1+γ)2(1+δ)-accurate. Furthermore, it is trivial to see
that the trivial sketch for i is 1-accurate. By a simple
induction on the depth of the tree, our final DM sketch
(L,R,D) for [n] is (1 + γ)2 log(n)-accurate. In addition,
since the trivial sketch is valid and merge and shrink
preserve validity, the DM sketch for [n] is valid. We see
that (1 + γ)2 log(n) ≤ (e2γ)log(n) = 1 + ε.

Next, we need to show that, at any point
during the stream, the algorithm dmapprox uses
O(1

ε2 log5(n) log(m)) space. First, we note that the triv-
ial sketch is coherent by Lemma 4.4, and since merge
and shrink preserve coherence by Lemmas 4.4 and 4.3,
every sketch computed by dmapprox is coherent by in-
duction. Now, it is clear that the trivial sketch has size
1, and by Lemma 4.3, for any interval I, the DM sketch
for I has size O(log1+γ(n)). As a result, the intermedi-
ate sketches resulting from applications of merge will
also have size O(log1+γ(n)). Note also that for each of
these sketches, the constant out in front is uniformly
bounded by a small, fixed constant. As a result, it re-
mains to show that the number of sketches stored by
dmapprox at any given time is sufficiently small.

According to our algorithm description, we main-
tain DM sketches only for nodes which are both com-
pleted and uncomplemented. Since, for any given level
of the tree, the sketches for the nodes of this level are
obtained sequentially from left to right, at most one
node from any level can be both completed and uncom-
plemented at any point during the stream. As a result,
our algorithm stores O(log(n)) sketches at any point
in time. This means that the total amount of space
needed to store these sketches is O(1

γ2 log3(n) log(m)) =
O(1

ε2 log5(n) log(m)). Since none of the intermediate
computations require more space than this, the desired
result is achieved.

Lastly, we need to show that dmapprox runs in
time O(1

ε3n log6(n)). We start with n intervals of
size 1 and we finish with 1 interval of size n, so
our procedure performs n − 1 applications of merge
and shrink, each of which take O(1

γ3 log3(n)) time.
Since our entire procedure consists of constructing our
DM-sketches for the leaves (each of which takes O(1)
time), performing these applications of merge and
shrink, and outputting a value from our final D matrix,
the entire procedure runs in time O(1

γ3n log3(n)) =
O(1

ε3n log6(n)). �

5 Sequence Matrices

In this section, we give the definition of the term
coherence that appears in Lemmas 4.3 and 4.4, and we
prove the lemmas.

At a high level, the goal of this section is to
show that our shrink procedure yields a sketch which
is sufficiently small. In order to do so, it will be
necessary to keep track of not only the lengths of the
increasing sequences represented by our D matrices, but
also the sequences themselves. We have the following
definitions:

• A sequence matrix S of an interval I is a matrix

with rows and columns indexed by values of f ,
whose entries are f -monotone subsets of I.

• A sequence matrix is said to represent a DM sketch
(L,R,D) if the rows of S are indexed by L, the
columns of S are indexed by R, and for each l ∈ L
and r ∈ R the entry S(l, r) is an (l, r)-monotone
subset of size |I| −D(l, r).

Looking at shrink, we see that an element is added to
L′ each time condition (3.1) in the shrinking procedure
is violated. We would like to show that each violation of
this condition can be associated to a set of witnesses to
the violation (which we call irrelevant elements below)
of sufficient size. To illustrate the idea, consider l1, l2 ∈
L, r ∈ R such that D(l2, r) > (1+γ)D(l1, r) (a violation
of condition (3.1)). If we set k = D(l2, r)−D(l1, r), then
if S represents (L,R,D), S(l1, r) has k more elements
than S(l2, r), so it is clear that S(l1, r) contains at
least k elements which do not appear in S(l2, r). We
need for our argument that none of these elements
appear in any entry of S in any row at or above
l2, but unfortunately this is not true for an arbitrary
sequence matrix representative of (L,R,D). However,
it will be possible for us to guarantee that this condition
(which we call coherence) is satisfied by the sequence
matrices that we consider. This motivates the following
definitions.

• Given a sequence matrix S, an index i is said to
be left irrelevant (henceforth we will refer to this
simply as irrelevant) to l ∈ [m] ∪ {0} if for all
l′ ∈ L, r ∈ R such that l′ ≥ l, S(l′, r) does not
contain i. Analogously, an index i is said to be right
irrelevant to r ∈ [m] ∪ {0} if for all r′ ∈ R, l ∈ L
such that r′ ≤ r, S(l, r′) does not contain i.

• A DM sketch (L,R,D) is said to be left-coherent for
I if there exists a representative sequence matrix
S for this sketch such that for any two values
l1, l2 ∈ L, r ∈ R, S(l1, r) contains at least D(l2, r)−
D(l1, r) indices which are left irrelevant (irrelevant)
to l2. Analogously, a DM sketch is said to be
right-coherent for I if there exists a representative
sequence matrix S for this sketch such that for
any two values r1, r2 ∈ R, l ∈ L, S(l, r2) contains
at least D(l, r1) − D(l, r2) indices which are right
irrelevant to r1. Call (L,R,D) coherent if it is both
left-coherent and right-coherent.

• For S a sequence matrix which represents a DM
sketch (L,R,D), the sequence estimator induced
by S is the (m + 1) × (m + 1) sequence matrix S∗

given by:

S∗(l, r) = S(l̄L, rR)

For the purposes of our analysis, we will build up these
sequence matrices in the same way we build up our
distance matrices. For i ∈ [n], the trivial sequence
matrix for i is the 1 × 1 matrix [{f(i)}]. Note that
the trivial sequence matrix for i represents the trivial
sketch for i.

Let (L1, R1, D1) and (L2, R2, D2) be valid DM
sketches for consecutive intervals I1 and I2 respectively,
and let (L,R,D) be the output sketch obtained by ap-
plying merge to these two sketches. Given sequence
matrices S1 and S2 which represent (L1, R1, D1) and
(L2, R2, D2) respectively, we construct a sequence ma-
trix S which represents (L,R,D) as follows. Recall that
the matrix D constructed in our algorithm had entries
D(l, r), where D(l, r) = minl≤z≤r(D∗1(l, z) + D∗2(z, r)).
Let z0 be the smallest z value achieving this minimum.
Now let S(l, r) = S∗1 (l, z0) ∪ S∗2 (z0, r). It is clear that
this union is an (l, r)-monotone subset of I. Further-
more, its size by the representativity of S1 and S2 is

(|I1| −D∗1(l, z0)) + (|I2| −D∗2(z0, r))
= |I| − (D∗1(l, z0) +D∗2(z0, r))
= |I| −D(l, r)

This shows that S is representative of (L,R,D). Call S
the merged sequence matrix of S1 and S2.

We now state and prove a proposition which will
help us prove Lemma 4.4.

Proposition 5.1. Let I be an interval split into two
halves I1 and I2, and let S1, S2 be sequence matrices
which represent I1, I2 respectively. Let S be the merged
sequence matrix of S1 and S2. For l ∈ L and any index
i ∈ I1, if i is irrelevant to l in S1, then i is irrelevant
to l in S. Similarly, for r ∈ R and any index i ∈ I2, if
i is right irrelevant to r in S2, then i is right irrelevant
to r in S.

Proof. We prove the first statement, the proof of the
second part of the proposition is analogous. Let l′ ∈ L
such that l′ ≥ l, and let r ∈ R. We aim to show that
S(l′, r) does not contain i. We have that

S(l′, r) = S∗1 (l′, z0) ∪ S∗2 (z0, r)

= S1(l̄′L1 , z0R1
) ∪ S2(z̄0

L2 , rR2
)

Since i is irrelevant to l in S1, S1(l̄′L1 , z0R1
) does not

contain i. Furthermore, S2(z̄0
L2 , rR2

) does not contain
i, as i lies in I1, and S2(z̄0

L2 , rR2
) ⊆ I2. This shows

that S(l′, r) does not contain i, proving the claim. �

Using this tool, we now prove Lemma 4.4.

Proof. First, it is clear that the trivial sequence matrix
for i exhibits the coherence of the trivial sketch for i, as
L and R both contain 1 element, making the condition
for coherence trivially satisfied.

It remains to show that the resultant sketch
(L,R,D) from the algorithm merge is coherent, given
that the input sketches are coherent. We prove that
(L,R,D) is left-coherent, the proof that it is right-
coherent is analogous and left to the reader. Let I1, I2, I
be as defined in Lemma 4.1, and let (L1, R1, D1) and
(L2, R2, D2) be coherent DM sketches for I1 and I2 re-
spectively. Let S1 and S2 be the representative sequence
matrices for these sketches given by the left-coherent
condition, and let S be the merged sequence matrix
of S1 and S2. Let l1 < l2 be values in L, and let
r ∈ R (Note that the statement is trivial if l1 = l2,
so we only consider l1 6= l2). Our goal will be to find
D(l2, r) −D(l1, r) elements in S(l1, r) which are irrele-
vant to l2. Let z0 be the minimum value such that

D(l1, r) = D∗1(l1, z0) +D∗2(z0, r)

We break the argument into two cases:
Case 1: z0 ≥ l2

In this case, we have that

D(l2, r) = min
l2≤z≤r

(D∗1(l2, z) +D∗2(z, r))

≤ D∗1(l2, z0) +D∗2(z0, r)

so defining k = D∗1(l2, z0)−D∗1(l1, z0), we have

D(l2, r)−D(l1, r) ≤ D∗1(l2, z0)−D∗1(l1, z0) = k

Since (L1, R1, D1) is left-coherent, S∗1 (l1, z0) contains at
least k indices which are irrelevant to l2. These indices
are in S(l1, r) by definition of the merged sequence
matrix, and they are irrelevant to l2 in S by proposition
5.1. As such, we find k indices in S(l1, r) which are
irrelevant to l2 proving the claim in this case.

Case 2: z0 < l2
In this case, we have that

D(l2, r) = min
l2≤z≤r

(D∗1(l2, z) +D∗2(z, r))

≤ D∗1(l2, l2) +D∗2(l2, r)

D(l2, r)−D(l1, r) ≤ D∗1(l2, l2)−D∗1(l1, z0)
+D∗2(l2, r)−D∗2(z0, r)

Let k1, k2 be such that

D∗1(l2, l2)−D∗1(l1, z0) = k1

D∗2(l2, r)−D∗2(z0, r) = k2

By definition of D∗, we have that D∗1(l2, l2) = |I1| =
D∗1(l2, z0), so k1 = D∗1(l2, z0)−D∗1(l1, z0). Again, since
(L1, R1, D1) is left-coherent, S∗1 (l1, z0) contains at least
k1 indices which are irrelevant to l2. These indices are
in S(l1, r) by definition of the merged sequence matrix,
and they are irrelevant to l2 in S by proposition 5.1.

Furthermore, since (L2, R2, D2) is left-coherent,
S∗2 (z0, r) contains at least k2 indices which are irrelevant
to l2. These indices are in S(l1, r) by definition of the
merged sequence matrix, and they are irrelevant to l2 in
S by proposition 5.1. Lastly, note that S∗1 (l1, z0) ⊆ I1
and S∗2 (z0, r) ⊆ I2, so these two sets of indices are dis-
joint. As such, we find k1 + k2 indices in S(l1, r) which
are irrelevant to l2 proving the claim in this case as well.

This exhausts all cases, proving the lemma. �

We now prove Lemma 4.3.

Proof. First, the reader should note that if (L,R,D)
is a coherent sketch (with sequence matrix S) and
(L′, R′, D′) is any shrinking of (L,R,D) (i.e. L′ ⊆ L,
R′ ⊆ R, and D′ is the associated submatrix of D
induced by L′ and R′), then it is clear that (L′, R′, D′)
is also coherent, as we can just take S′ to be the
appropriate submatrix of S. As a result, we have that
shrink preserves coherence.

Consider the sequence x1, x2, x3, ..., xs = l|L| (with-
out the x̂’s) described in the shrink procedure. For
each i, let ri be an element r ∈ R that maximizes
D(xi+1, r)−D(xi, r) and let ki = D(xi+1, ri)−D(xi, ri).
Let S be a coherent sequence matrix representative of
(L,R,D). By the definition of left-coherent, for each i
between 1 and s − 1 there are ki elements of S(xi, ri)
that are irrelevant to xi+1 (and thus also irrelevant to
xi+2, . . . , xs). Thus these sets of irrelevant elements are
disjoint and so k1 + . . .+ ks−1 ≤ n.

We now prove by induction on j between 1 and s−1
that k1 + . . . + kj ≥ (1 + γ)j−1. For the basis, k1 ≥ 1,
and for the induction step suppose j > 1. There are
k1 + · · · + kj−1 indices that are irrelevant to xj so all
entries of row xj are at least this sum which is at least
(1 + γ)j−2 by induction. Since kj is at least γ times the
smallest entry of row xj by condition (3.1) in shrink, we
have k1 + · · ·+kj ≥ (1+γ)(k1 + · · ·+kj−1) ≥ (1+γ)j−1.

On the other hand, k1+· · ·+ks−1 ≤ n which implies
s ≤ log1+γ(n) + 2 so |L′| ≤ 2 log1+γ(n) + 3. Similarly
|R′| is bounded above by the same quantity. �

6 Algorithm for unknown input length

In streaming algorithms, the question of what values
are known to the algorithm is frequently asked. The
reader should note that, in our previous algorithm, m
was not needed, however the algorithm did require a
priori knowledge of the value of n. A closer look at

the algorithm shows that, apart from the value of γ,
knowledge of n was not needed (note that the way we
progress through the binary tree allows us to build to
it as we go, continuing the procedure in the same way
regardless of the size of n).

Seeking this, we look at the role of γ in our
approximation, and we see that one property it had
was that

∏log(n)
i=1 (1 + γ)2 ≤ 1 + ε. We replace γ with

a quantity that depends on the current level of the
binary tree, call it a(i) (Here level is counted from the
bottom up, i.e. the leaves are at level 1, the parents
of the leaves are at level 2, etc). If n is not known
beforehand then in principle it could be arbitrarily
large, meaning that if we replace γ with a(i), we require∏∞
i=1(1 + a(i))2 ≤ 1 + ε. Taking a(i) = c

i1+β for any
fixed β > 0 we can choose c = c(β) so that this product
is at most 1 + ε. This will yield the desired accuracy of
approximation, so it remains to determine the amount
of space that this modified algorithm would require.

This modification will result in DM sketches of
size O(log1+a(i)(n)) after i merges. We see that
a(i) ≤ c

log1+β(n)
, since we have log(n) levels in our

tree, so this yields DM sketches of size at most
O(1

ε log2+β(n)). As a result, our D matrices have at
most O(1

ε2 log4+2β(n)) entries, resulting in an algorithm
that runs in space O(1

ε2 log5+2β(n) log(m)), for any
β > 0.

7 Lower bounds for approximating distance to
monotonicity

In this section we use standard communication com-
plexity arguments to prove lower bounds for the space
complexity of approximating distance to monotonicity
for both randomized and deterministic algorithms. We
apply a reduction from an appropriate one-way commu-
nication problem, a common technique which has been
used frequently to establish streaming lower bounds
[11].

Let A(n, ε) be the problem of approximating the
distance to monotonicity of n integers taking on values
in [m] (where m = poly(n)) to within a factor of
(1 + ε). Now consider the one-way communication
problem where Alice is given a list of k r-bit integers
x1, x2, ..., xk, Bob is given an index i between 1 and k,
as well as an r-bit integer y, and the goal is to compute
GT (xi, y), where GT is the “greater than” function
(GT (x, y) = 1 iff x > y). Denoting this problem
by B(k, r), we show that for appropriate choices of
parameters, B(k, r) can be reduced to A(n, ε).

Theorem 7.1. Let k = b 1
2 log1+ε(

εn
2d1/εe) −

1
2c, r =

dlog(n)e, and assume there exists a protocol to solve

A(n, ε) using S(n,m, ε) bits of space. Then there is a
protocol for B(k, r) using O(S(n,m, ε)) bits.

In order to prove this theorem, we will need the follow-
ing proposition.

Proposition 7.1. Let ε > 0, n ∈ N, k =
b 1

2 log1+ε(
εn

2d1/εe) −
1
2c. There exists a sequence of pos-

itive integers a1, a2, ..., ak satisfying the following prop-
erties:

1. ∀j < k, aj ≥ ε
k∑

i=j+1

ai

2.
k∑
i=1

ai ≤
n

2

Proof. We construct such a sequence a1, a2, ..., ak as fol-
lows. Let ak = d 1

εe. For j < k, set aj = d(1 + ε)aj+1e.
To establish property 1, we see inductively

aj ≥ (1 + ε)aj+1

= εaj+1 + aj+1

≥ εaj+1 + ε

k∑
i=j+2

ai

= ε

k∑
i=j+1

ai

For property 2, we first note trivially that for any real
number x ≥ 1

ε , we have (1 + ε)x ≥ x + 1 ≥ dxe. As a
result, for any j < k, aj = d(1 + ε)aj+1e ≤ (1 + ε)2aj+1.
This yields the following:

k∑
i=1

ai ≤ a1 +
k∑
i=2

ai

≤ a1 +
1
ε
a1

=
1 + ε

ε
a1

≤ 1 + ε

ε
(1 + ε)2kd1/εe

≤ n

2

�

Using this, we prove Theorem 7.1.

Proof. Assume that we have a streaming protocol P for
A(n, ε) using S(n,m, ε) bits, and consider an instance
of B(k, r) where Alice receives x1, x2, ..., xk as input,
and Bob receives i, y as input. Consider the sequence

of integers T (x1, x2, ..., xk, i, y) defined as follows. Let
a1, a2, ..., ak be a sequence of integers satisfying Propo-
sition 7.1, and for any j let g(xj , l) = n2(l − 1) + nxj .
T (x1, x2, ..., xk, i, y) will consist of k + 1 blocks, where
for j ≤ k, the jth block consists of aj consecutive in-
tegers ending at g(xj , j), and the (k + 1)th block will
consist of n−

∑k
j=1 aj consecutive integers beginning at

g(y, i) + 1.
Under this construction, if xi ≤ y, then the first i

blocks along with the last block form an increasing sub-
sequence of length greater than n/2, and any increasing
subsequence containing any element from blocks i + 1
through k cannot contain any element from the last
block, so it will have length at most n/2. As a re-
sult, the increasing subsequence of the first i blocks and
the last block are a longest increasing subsequence, so
the distance to monotonicity of T (x1, x2, ..., xk, i, y) is∑k
j=i+1 aj . On the other hand, if xi > y, then the same

is true for the first i−1 blocks along with the last block,
so the distance to monotonicity of T (x1, x2, ..., xk, i, y)
is

∑k
j=i aj in this case. By condition 1 of Propo-

sition 7.1, these values differ by a factor of at least
(1 + ε), so P must be able to separate these two cases.
As a result, Alice can construct the first k blocks of
T (x1, x2, ..., xk, i, y) using her input and run P on this
part of the sequence. She can then communicate the
current bits stored by P to Bob, at which point Bob
can construct the last block of T (x1, x2, ..., xk, i, y) us-
ing his input and run the remainder of P to get its result.
At this point, Bob can use the result of P to determine
whether or not xi > y, and output the result. This is a
protocol for B(k, r) using O(S(n,m, ε)) bits, so B(k, r)
requires O(S(n,m, ε)) bits. �

As a result of this reduction, any deterministic (resp.
randomized) lower bound for B(k, r) will translate to
a deterministic (resp. randomized) lower bound for
A(n, ε).

Lemma 7.1. Given B(k, r) as defined above,

1. Any deterministic protocol for B(k, r) requires
Ω(kr) bits.

2. Any randomized protocol for B(k, r) requires
Ω(kr

log(r)) bits.

Before proving this lemma, we note that it along with
Theorem 7.1 immediately implies the following two
results.

Theorem 7.2. Any deterministic streaming algorithm
which approximates the distance to monotonicity of a
sequence of n nonnegative integers to within a factor of
1 + ε requires space Ω(1

ε log2(n)).

Theorem 7.3. Any randomized streaming algorithm
which approximates the distance to monotonicity of a
sequence of n nonnegative integers to within a factor of
1 + ε requires space Ω(1

ε
log2(n)

log log(n)).

We now prove Lemma 7.1

Proof. Starting with the first claim, it is a well known
fact that the deterministic one-way communication
complexity of a function D(x, y) is just log(w), where w
is the number of distinct rows in the communication ma-
trix for D. Since any two rows of the matrix for B(k, r)
corresponding to distinct k-tuples (x1, x2, ..., xk) are dis-
tinct, it remains to count the number of such possible
k-tuples. Each xi can take on any of 2r values, giving
us 2kr such k-tuples. The claim follows.

Before addressing the second claim, we first note
that B(1, r) is just the “Greater Than” function, GT (r).
It has been shown that a lower bound for the one-
way communication complexity of GT (r) is Ω(r) [6].
It seems plausible that this would translate to a Ω(kr)
lower bound for the one-way communication complex-
ity of B(k, r), however we are unable to adapt this ar-
gument. [5] gives a simpler argument achieving a lower
bound of Ω(r

log(r)) for the one-way communication com-
plexity of GT (r), which we are able to adapt to achieve
a lower bound of Ω(kr

log(r)) for B(k, r). Applying this
technique, we show that running a randomized protocol
for B(k, r) O(log(r)) times will yield a randomized one
way protocol capable of computing the indexing func-
tion where Alice is given a kr bit string x1, x2, ..., xkr,
Bob is given an index i ∈ [kr], and the goal is to output
xi, a problem that is known to require Ω(kr) bits [5].

Let P be a randomized protocol for B(k, r) achiev-
ing the optimal complexity. Fix inputs x1, x2, ..., xk, i, y
for Alice and Bob. If Alice and Bob run P on this input,
they will err with probability at most 1/3. If instead Al-
ice and Bob run P c log(r) times for some constant c and
Bob outputs the majority result, this protocol will err
with probability at most r−Ω(1). Note that the message
sent by this protocol does not depend on Bob’s input,
meaning Bob can compute the output for several dif-
ferent choices of his input without any additional com-
munication (though it will increase the probability of
error). This means that for the set {y1, y2, ..., yr}, Bob
can use Alice’s message to compute GT (xi, yj) for each
j. Furthermore, since this set has only r elements, the
probability that all of these computations are correct is
at least 1− r−Ω(1). Choosing the yj ’s accordingly, Bob
can essentially run a binary search to determine xi ex-
actly with high probability. To see this, we first note
that, given a fixed xi, running a binary search to deter-
mine xi will use a fixed sequence y1, y2, ..., yr, assuming
each output of GT (xi, yj) is correct. Therefore, for any

j, if GT (xi, yt) gave the correct output for each t < j,
then Bob’s choice of yj will be determined by xi (i.e.
by the previous values of GT (xi, yt)). Since the value
of xi uniquely determines the sequence y1, y2, ..., yr that
will yield a correct binary search for xi, we can use a
union bound to bound the probability that GT (xi, yj)
outputs the correct value for all indices j. Since for any
fixed j, the probability that the output for GT (xi, yj) is
incorrect is at most r−Ω(1), the probability that at least
one of these is incorrect is at most r1−Ω(1) = r−Ω(1).
This shows that the probability that all of these out-
puts are correct (i.e. the probability that Bob correctly
computes xi) is at least 1− r−Ω(1).

As a result, this is a randomized protocol P ′ for
the problem where Alice is given x1, x2, ..., xk, Bob
is given i, and the goal is to compute every bit of
xi. This protocol can be used as a protocol for the
indexing problem mentioned earlier as follows. For an
instance of this aforementioned problem, Alice is given
x′1, x

′
2, ..., x

′
kr, Bob is given an index i ∈ [kr], and the

goal is to output x′i. Alice can view her input as k strings
of length r and run P ′. Bob can run P ′ using b i−1

n + 1c,
which will give him the value of x′i (in addition to
several other values x′j) with probability at least 2/3.
This shows that c log(r) iterations of P can be used to
simulate a computation known to require Ω(kr) bits [5].
The result follows. �

References

[1] D. Aldous and P. Diaconis, Longest increasing
subsequences: from patience sorting to the Baik-
Deift-Johannson theorem, Bulletin of the American
Mathematical Society, 36 (1999), pp. 413–432.

[2] M. Fredman, On computing the length of the
longest increasing subsequences, Discrete Mathe-
matics, 11 (1975), pp. 29–35.

[3] C. Schensted, Longest increasing and decreasing
subsequences, Canadian Journal of Mathematics,
13 (1961), pp. 179–191.

[4] P. Ramanan, Tight Ω(n lg n) lower bound for find-
ing a longest increasing subsequence, International
Journal of Computer Mathematics, 65(3 & 4)
(1997), pp. 161–164.

[5] I. Kremer and N. Nisan and D. Ron, On Random-
ized One-Round Communication Complexity, Com-
putational Complexity, 8 (1995), pp. 596–605.

[6] P. B. Milterson and N. Nisan and S. Safra and
A. Wigderson, On data structures and asymmetric
communication complexity, J. Comp. System Sci.,
57(1) (1998), pp. 37–49.

[7] A. Gál and P. Gopalan, Lower bounds on stream-
ing algorithms for approximating the length of the
longest increasing subsequence, Proceedings of the
48th Symposium on Foundations of Computer Sci-
ence (FOCS)), 2007, pp. 294–304.

[8] F. Ergun and H. Jowhari, On distance to mono-
tonicity and longest increasing subsequence of a
data stream, in Proceedings of the 19th Symposium
on Discrete Algorithms (SODA), 2008, pp. 730–
736.

[9] P. Gopalan and T. S. Jayram and R. Krauthgamer
and R. Kumar, Estimating the sortedness of a data
stream, in Proceedings of the 18th Symposium on
Discrete Algorithms (SODA), 2007, pp. 318–327.

[10] M. Saks and C. Seshadhri, Space efficient streaming
algorithms for the distance to monotonicity and
asymmetric edit distance, in Proceedings of the
24th Symposium on Discrete Algorithms (SODA),
2013, pp. 1698–1709.

[11] X. Sun and D. P. Woodruff, The communication
and streaming complexity of computing the longest
common and increasing subsequences, in Proceed-
ings of the 18th Symposium on Discrete Algorithms
(SODA), 2007, pp. 336–345.

