1. The proof that every planar graph is 5 colorable can be modified to the following (false) proof that every planar graph is 4 colorable.

As in the proof of the 5 color theorem, let G be a counterexample with the fewest number of vertices and consider a planar embedding of G. We may assume that G is maximal planar. Let v be a vertex of degree at most 5 in G and let c be a 4-coloring of $G - v$. If the neighbors of v are colored by c with less than 3 colors then c can be extended to a 4-coloring of G so c uses all four colors on $N(v)$. So $\deg(v) \geq 4$. If v has degree 4 then the neighbors of v induce a cycle C with vertices x_1, x_2, x_3, x_4 in order and x_i colored by color i. As in the proof of the 5CT there must be a path consisting of vertices colored 1 or 3 from x_1 to x_3 and a path consisting of vertices colored 2 or 4 from x_2 to x_4 and these paths lie in the outer face of C which means they must have a vertex in common, a contradiction. Suppose v has degree 5, so the neighbors of v induce a cycle C with vertices x_1, x_2, x_3, x_4, x_5 in order. Since all 4 colors appear on C, we may assume wlog that x_i is colored i for $1 \leq i \leq 4$ and x_5 is colored 2.

Then there is a color 1,3 path linking x_1 to x_3 outside of C which means there is no color 2,4 path linking x_2 to x_4. Similarly there is a color 1,4 path linking x_1 to x_4 outside of C, but then there is no color 2,3 path linking x_5 to x_3. So recolor the 2,4 component of x_2 by interchanging colors 2 and 4, and recolor the 2,3 component containing x_5. Then we have a new coloring in which x_2 is color 4 and x_5 is color 3 and color 2 does not appear on the cycle C. So we can extend the coloring to a coloring of G by coloring v by 2.

Find a concrete example of a plane graph for which the above “recipe” for finding a 4-coloring fails.

2. Diestel, 5.6

3. Diestel, 5.16

4. Diestel, 5.17. (Prove your answer).

5. Diestel, 5.22.

6. In problem 5.22, we saw that for any k there is a graph for which $\omega(G) = 2$ but $\chi(G) = k$ and hence the ratio $\chi(G)/\omega(G)$ can be arbitrarily large. In this problem we consider the question of how large the ratio $\chi(G)/\omega(G)$ can be as a function of the number of vertices of G. We prove: For all sufficiently large n there is a graph on n vertices with $\omega(G) \leq 2[\log_2 n]$ and $\chi(G) \geq \frac{n}{2[\log_2 n]}$. We will prove the existence of such a graph without actually describing a construction. Fix n and observe first that it suffices to show that there is an n vertex graph with no clique or independent set of size $2[\log_2 n]$

(a) Let $g(n)$ be the number of distinct graphs on the vertex set $V = \{1, \ldots, n\}$. Here we do NOT consider isomorphic graphs to be the same graph. Determine $g(n)$.

(b) Let W be a subset of V of size k and let $f(n, W)$ be the number of graphs on n vertices in which W is a clique or an independent set. Determine $f(n, W)$.
(c) For \(k \leq n \), let \(h(n,k) \) be the number of graphs in which at least one subset of size \(k \) is a clique or an independent set. Show that if \(k \geq 2\lfloor \log n \rfloor \) then \(h(n,k) < g(n) \).

(d) Prove the theorem.

7. A simplicial vertex of a graph \(G \) is a vertex \(v \) with the property that its neighborhood induces a complete graph in \(G \). A (total) ordering \(v_1, \ldots, v_n \) of \(V(G) \) is a simplicial ordering if for all \(i \), \(v_i \) is a simplicial vertex of the subgraph induced on \(v_1, \ldots, v_{i-1} \).

(a) Prove that a graph is chordal if and only if it has a simplicial ordering. (Hint: use Proposition 5.5.1).

(b) Suppose that \(v_1, \ldots, v_n \) is a simplicial ordering of \(G \). Show that (i) the greedy coloring algorithm with this ordering yields an optimal coloring of \(G \), (ii) the greedy coloring algorithm for the complementary graph \(\overline{G} \) with the simplicial ordering need not yield an optimal coloring of \(\overline{G} \), (iii) the greedy coloring algorithm with the reverse of the simplicial ordering yields an optimal coloring of \(G \), (iv) the greedy algorithm with the reverse of the simplicial ordering need not yield the optimal coloring of \(G \).

8. (a) Prove that for any graph \(G \), \(\chi(G)\chi(\overline{G}) \geq |V(G)| \).

(b) Prove that for any graph \(G \), \(\chi(G) + \chi(\overline{G}) \geq 2\sqrt{|V(G)|} \).

(c) Show that for each perfect square \(n \) there is a graph on \(n \) vertices for which the previous two bounds are tight.

(d) Prove that \(\chi(G) + \chi(\overline{G}) \leq |V(G)| + 1 \).