
4 Mathematical Scenarios5

In common usage, a scenario is the set up for a story: the main characters, important facts about
them and their relationships. Mathematical scenarios consist of some unspecified mathematical
objects (called the input objects) and some basic assumptions about the input objects (called
the assumption of the scenario). The assumptions are either definite assertions, or indefinite
assertions that depend on the input variables. Mathematical scenarios are the starting point for
nearly any investigation or discussion in mathematics. (Note, however, that the terminology
“mathematical scenario” is not standard.)

Here are some simple examples of mathematical scenarios:

Scenario 1.
Input objects: Real numbers x and y
Assumption: x2 + y2 ≥ 16 and x ≤ y.

Scenario 2.
Input object: A set S of integers
Assumption: There is no integer bigger than 1 that is a divisor of every member of S.

Scenario 3.
Input objects: A function f : R −→ R and a real number t.
Assumption: f(t) > t.

A mathematical scenario establishes a situation involving “characters” (certain objects)
and assumption (which may be a single assumption, or an “and” of two or more assumptions)
about the characters. The assumption is an assertion (definite or indefinite) whose only essential
variables are input variables.

If the input variables are assigned values, the assumption becomes either true or false. When
we use mathematical scenarios, we view the assumption as a requirement on the assignment of
the input variables; the assertion only applies to inputs that satisfy this requirement. A choice
of input values that makes the assumption true is said to satisfy the assumption or to satisfy
the scenario and is called a feasible instance of the scenario. A choice of input values that
makes the assumption false is said to violate the assumption or violates the assumption and is
an infeasbile instance of the scenario.

In Scenario 1, for example, x = 2 and y = 5 is a feasible instance while x = 2 and y = 3
is an infeasible instance. We can also represent the feasible instance by an ordered pair (2, 5),
where we assume that we’ve fixed the first coordinate to correspond to x and the second to y.

Equivalent scenarios Consider the following scenarios:

Scenario 4.
Input object: Integer n
Assumption: n is prime.

Scenario 5. Input object: Real number n
Assumption: n is a prime integer,
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Scenario 6. Input object: Prime integer n
Assumption: None

While they are expressed differently, all of these scenarios are essentially the same. They
differ in the initial object type that n is assigned, but when this type is combined with the
assumption, they set up the situation that n is a prime integer.

The set of feasible instances of a scenario Suppose we have a scenario with a single
input variable x from a set T and the assumption A(x).

{x ∈ T : H(x)},

which is read “The set of x in T satisfying H(x)”, is the set of all feasible instances of the
scenario.

If there is more than one input variable in the scenario, each feasible instance is a list of
values (of length equal to the number of variables).’

When we introduced sets earlier, we pointed out that there is a difficulty in describing sets
with a large number or infinitely many mambers. The above notation provides us with a very
useful way for describing a huge variety of sets. Here are a few examples.

• {k ∈ Z : k−1 is divisible by 3}. This set consists of infinitely may integers including −2,
1 and 4.

• {(x, y) ∈ R2 : x2 + y2 = 4}. This is the set of ordered pairs of real numbers. If we graph
this set in the x-y plane we get a circle of radius 2 centered at the origin.

• {x,A} ∈ Z × Pfin(Z) : x ∈ A}. This is the set of pairs (x,A) where x is an integer, A
is a finite subset of integers and x ∈ A. For example (7, {−3, 7, 10}) is in this set but
(0, {1, 2, 3, 4, 5}) is not.

Remark 4.1. (Understanding the definition of a set.) The notation for each of these sets,
especially the third, is a bit tricky to understand. One source of difficulty in the third example
is simply to understand the object type of the members of the set. In this case, each member is
an ordered pair whose first entry is an integers and whose second entry is a finite set of integers.
In general, when presented with a new set, the first question to ask is: what type of objects
are the members of the set. Having done this, the mathematician gains further understanding
by finding one or more examples of a member of the set, and one or more examples of objects
of the same type as the members of the set.

In each of these examples, the set represents the set of feasible solutions to the mathematical
scenario whose input object(s) are listed to the left of the colon, and whose assumption is given
to the right of the colon.

We have the following terminology for scenarios:

• A scenario is feasible if it has at least one instance, which means that the set of feasible
instances is nonempty.

33



• A scenario is uniquely feasible if it has exactly one feasible instance.

• A scenario is infeasible, contradictory or impossible if it has no feasiblle instances so that
the set of feasible instances is empty.

Example 4.1. Consider the following three scenarios with two input objects, both of which
are real numbers x and y.

Scenario A has one assumption x+ y = 3. This scenario is feasible since, for example, x = 1
2

and y = 5
2

is an instance. It is not uniquely feasible since it has other instances also.

Scenario B has the same requirement x + y = 3, and also the additional requirements that x
and y are integers, y > x and x > 0. This scenario is uniquely feasible since x = 1 and
y = 2 is the only instance.

Scenario C has the assumption x+ y = 3 and x2 + y2 ≥ 5. This scenario is infeasible-there is
no way to choose real numbers x and y to satisfy both conditions.

Mathematical scenarios play a central role in thinking and communicating about mathe-
matics: Many mathematical problems begin by describing some scenario, and then ask you to
find a feasible solutions, or describe all feasible solutions. As we are about to see, any existential
or universal assertion concerns a mathematical scenario, and as we’ll see later, the notion of a
mathematical scenario underlies mathematical proofs.

Scenarios and Existential assertions An existential assertion has the form: “There exists
an object x of type T satisfying P (x)”. This principle is associated with the scenario whose
input object is of type T and is represented by x, and whose assumption is P (x). The existential
principle simply makes the claim that this associated scenario is feasible.

Scenarios and unique existential assertions A unique existential assertion has the form:
“There exists a unique object x of type T satisfying P (x)”. This principle is associated with
the scenario whose input object is of type T and is represented by x, and whose assumption
is P (x). The unique existential principle simply makes the claim that this associated scenario
has exactly one feasiable solutions.

Scenarios and universal assertions A universal assertion has the form: “For any object
x of type T that satisfies A(x), we must have C(x).’ We can associate the principle to the
mathematical scenario with input object x and assumption A(x), which we refer to as the
hypothesis of the universal assertion. The principle says that any feasible instance of the
hypothesis must satisfy C(x).

Let’s analyze some previously stated universal assertions from this point of view. For
Universal Principle 2.5 we have:

Input. Positive integers a and b
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Assumption. a is a positive integer, b is a positive integer and b is prime.

Conclusion. b is a divisor of ab − a.

For Universal Principle 2.7, we have:

Input. The sets A, B and C

Assumption. A 6= B.

Conclusion. A ∪ C 6= B ∪ C or A ∩ C 6= B ∩ C.

The following terminology is helpful in formulating what it means for a universal assertion
to be true.

1. A test case of a universal assertion is a feasible instance of the associated mathematical
scenario.

2. A successful test case of a universal assertion is a test cqse that makes conclusion true.

3. A counterexample or unsuccessful test case for a universal assertion is an instance for
which the conclusion is false.

For Universal Principle 2.5, we have:

• The choice a = 8 and b = 3 is a test case since it satisfies the assumption. It is also a
successful test case because it also satisfies the conclusion, since 3 is a divisor of 83− 8 =
504.

• Setting a = 5 and b = 4 is not a test case because it does not satisfy the assumption that b
is prime. Since it is not a test case, it is neither a successful test case or a counterexample.

In general notice that:

• Every test case is either a successful test case or a counterexample but not both.

• An assignment of the input variables that makes the assumpton false is not a test case,
and so can not be either a successful test case or a counterexmample.

Using this terminology we can say:

A universal principle is a universal assertion for which every test case is successful,
or equivalently, the assertion has no counterexamples.

Here’s another example. Consider the following two assertions:

Assertion D. Every prime number is odd.
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Assertion E. There is no largest prime number.

For assertion D:

• The choice k = 11 is a test case (since 11 is prime) and is a successful test case (since 11
is odd).

• The choice k = 15 is not a test case since 15 is not prime.

• The choice k = 2 is a test case (since 2 is prime), and is a counterexample since 2 is not
odd.

Since Assertion D has a counterexample, it is not a universal principle.
Assertion E does not look like a universal assertion but it turns out that it is a universal

assertion in disguise. To formulate this as a universal assertion, observe that Assertion B has
the following meaning: If you give me any prime number, I can give you a larger one. In other
words, in the scenario where n is a prime number we want to conclude that there is a prime
number m that is larger than n. So Assertion E is equivalent to:

Assertion E′. For every prime number n there is a larger prime number.

Here are some successful test cases:

• Choose n = 3. Then n is prime and 7 is a larger prime number. (Notice we have many
other choices besides 7.)

• Choose n = 17. Then 37 is a larger prime number.

How about n = 12553. For one ting it’s not clear whether 12553 is a test case, which in
this case requires that it be prime. If it is a test case, then to be successful we’d need a larger
prime number.

As usual with a universal assertion, even if we check a few successful test cases, we can’t
be sure that the assertion is true. Later we’ll see that this universal assertion is indeed true
(and so is a universal proposition). In fact it is one of the most famous (and oldest) universal
propositions known.

Vacuously true universal assertions. For a universal assertion of the form “for all x that
satisfy A(x), we have C(x)” we saw that this assertion is true provided that every test case is
successful. What if there are no test cases at all? Can this happen?

It certainly can happen. For example, consider the universal assertion: For any real number
x, if x2 < −1 then x ≥ 1000. Notice that there are no real numbers that satisfy the assumption,
and therefore there are no test cases.

Now, in this case is the universal assertion true or false. Such a universal assertion is
considered to be true since there are no counterexamples, and a universal assertion with no
counterexamples is, by definition, true.
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