
10 Basic proofs involving real numbers 11

In this chapter we begin the systematic study of the real number system. This is the familiar
system of numbers you’ve worked with for most of your life, consisting of the real numbers,
the operations addition, multiplication, subtraction and division for combining numbers, and
the relationship “less than” for comparing numbers. In past courses you’ve learned to apply
universal principles about the real numbers. In this chapter (and some later ones) you’ll learn
how to prove universal principles about real numbers.

The usual approach for such a systematic study is to start with a small number of elementary
definitions and principles (called axioms), and use these to prove everything. The drawback
to this approach is that it requires that we start off doing many tedious proofs that are very
elementary in order to build up many basic facts. We will follow a modified axiomatic approach;
we’ll state a collection of general principles that we’ll use in our proofs. This collection of
principles is larger than the usual set of axioms, and helps us avoid spending too much time
proving very easy results.

The real number system consists of the set R of real numbers, together with two binary
operations, addition (+) and multiplication (× or ·). The set R has two special elements named
0 and 1.

The basic properties of the real numbers include (1) Algebraic properties, which are prop-
erties involving equations, and (2) Properties of inequalities. There is one additional property
of the set of real numbers, which we call the betweenness property which corresponds to the
intuitive idea that there are “no gaps” in the real number line.

10.1 Algebraic properties of the real numbers

The algebraic properties are themselves divided into various groups.

Closure properties of addition and multiplication

• R is closed under addition. The sum of two real numbers is a real number.

• R is closed under multiplication. The product of two real numbers is a real number

Equality axioms of arithmetic These are the familiar properties that govern the way that
arithmetic expressions can be reorganized.

• Commutative Property of Addition. For all real numbers x and y, x+ y = y + x.

• Associative Property of Addition. For all real numbers x, y and z, (x+y)+z = x+(y+z).

• Commutative Property of Multiplication. For all real numbers x and y, xy = yx.

• Associative Property of Multiplication. For all real numbers x, y and z, x(yz) = (xy)z.

11Version 4/3/15. Copyright c©2015 by Michael E. Saks
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• Distributive Property of Multiplication over Addition.For all real numbers x,y and z,
x(y + z) = xy + xz.

Axioms of 0 and 1

• Axiom of 0. There is a special element of R called 0, with the property that for every
x ∈ R, x+ 0 = x. The element 0 is called the additive identity elements of R.

• Axiom of 1. There is a special element of R called 1, with the property that for every
x ∈ R, x · 1 = x. The element 1 is called the multiplicative identity element of R.

Additive and multiplicative inverse axioms For a real number x, an additive inverse for
x is a number that when added to x gives 0, and a multiplicative inverse for x is a number that
when multiplied by x gives 1. We have two additional axioms:

• Additive inverse axiom Every real number x ∈ R has a unique additive inverse, which is
denoted −x. The additive inverse of x is equal to (−1)x.

• Multiplicative inverse axiom Every nonzero real number x ∈ R has a unique multiplicative
inverse which is denoted 1

x
.

Definitions of subtraction and division For real numbers x and y:

• Definition of subtraction x − y is defined to mean x + (−y), which is the sum of x and
the additive inverse of y.

• Definition of division x
y

is defined to mean x· 1
y
, which is the sum of x and the multiplicative

inverse of y.

Algebraic Manipulation Since elementary school, you’ve learned how to use the equality
axioms of arithmetic to transform an arithmetic expression into an equal arithmetic expression.
For example if a,b, c, d and m are real numbers then a combination of these properties shows:

((ma− b) +md)/c =
m

c
(a+ d)− b

c
.

When you use the equality properties and definitions of subtraction and division in this
way, it is usually not necessary to show each individual step. You can just justify the equation
by saying that it is true by “algebraic manipulation”.

10.2 Order properties of the real numbers

The most important way to compare two real numbers is by the “less than or equal to” rela-
tionship. One important type of universal principles for numbers, consists of principles that
say that under certain conditions one expression involving real numbers is less than, or less
than or equal to, another expression involving the same variables. Here’s a typical example of
such a principle:
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Theorem 10.1. For any two vectors (lists) a and b of real numbers,

(
∑
i=1

aibi)
2 ≤

n∑
i=1

a2i

n∑
i=1

b2i .

In words this says that the square of the dot product of two vectors is at most the product
of the square of their lengths. This theorem is important enough that it is called the Cauchy-
Schwartz inequality after the mathematicians who discovered it. We’ll prove this inequality
(and others) below.

Before we begin proving inequalities, we need to lay the foundation by establishing the basic
rules (axioms) about inequalities that we’ll use.

The tripartition of the real numbers The set of three real numbers is partitioned into
two sets, the singleton set {0}, the set R+ positive real numbers and the set R− of negative real
numbers. A number is nonnegative if it is positive or 0 and is nonpositive if it is negative or 0.
Basic Properties of Positive and Negative numbers

• The sum of any list of positive numbers is positive.

• The sum of any list of negative numbers is negative.

• The product of two nonzero numbers is positive if both are positive or both are negative,
and is negative otherwise.

• The produce of a list of numbers is positive if the number of negative numbers in the list
is even, and is negative if the number of negative numbers in the list is odd.

•

• For all positive numbers x, −x is negative. (Recall that −x is the unique number such
that x+ (−x) = 0, and is equal to (−1)x.

Corollary 10.2. The square of any real number is positive.

Definition of < and ≤ We can use the notion of positive and negative to define:

• x < y means that y − x is positive.

• x ≤ y means that y − x is nonnegative.

• x > y means that x− y is positive.

• x ≥ y means that x− y is nonnegative.

The basic properties of positive and negative numbers can be used to show:

Proposition 10.3. For any real numbers x, y, z the following hold:

92



1. Exactly one of x < y, x = y and y < x holds.

2. If x < y and y < z then x < z.

Proof. Suppose w, x, y and z are arbitrary real numbers.
Proof of (1). Assume first that x = y. Then y − x = x− y = 0 and so neither y − x nor x− y
is positive and so x��<y and y��<x.

Now assume x 6= y. Then y − x 6= 0 and so is positive or negative. If it is positive, then by
definition y > x and also x− y = −(y − x) must be negative and so y��<x. Similarly, if y − x is
negative, then x��<y, and also x− y = −(y − x) is positive, so y < x.
Proof of 2. Assume x < y and y < z. Then y−x and z−y are positive so (z−y)+(y−x) = z−x
is positive. Therefore x < z.

Proposition 10.4. For any real numbers w1, . . . , wn and x1, . . . , xn, if for all j ∈ {1, . . . , n}
we have wj ≤ xj, then

∑n
j=1wj ≤

∑n
j=1 xj.

Exercise 10.1. Proof Proposition 10.4.

Proposition 10.5. Suppose that x, y, z, w are arbitrary real numbers.

1. If x ≤ y and z ≥ 0 then zx ≤ zy. Equality holds if and only if x = y or z = 0. If x ≤ y
and z > 0 then x/z ≤ y/z. Equality holds if and only if x = y.

2. If w ≤ x and y ≤ z and w ≥ 0 and y ≥ 0 then wy ≤ xz.

3. If x ≤ y and z ≤ 0 then zx ≥ zy. Equality holds if and only if x = y and z = 0.

Proof. Proof of 1. Assume x ≤ y and z ≥ 0. then y − x is positive or 0 and z is positive or 0.
If y − x is positive and z is positive, then so is (y − x)z = yz − xz and so yz > xz. Otherwise
y − x = 0 or z = 0 and so (y − x)z = 0 and so yz = xz.

The proofs of the remaining parts are left as an exercise.

Exercise 10.2. Prove the remaining parts of Proposition 10.3.

10.3 The completeness axiom

The axioms that we’ve presented so far for the real numbers fall into two groups: the algebraic
axioms, and inequality axioms. It turns out we’ll need one more axiom. The form of this axiom
is somewhat different from the others. Before stating the axiom, we’ll discuss why we need
another axiom.

Are these axioms enough? We’d like our set of axioms to be able to be sufficient to prove
all true statements about the real number system. Here’s a statement:

Assertion 10.1. (Square root principle for R) For every x ∈ R, if x > 0 there is a positive
number z ∈ R such that z2 = x. In other words, every positive real number has a positive
square root.
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This is certainly a property that we expect of the real number system. However, no one
knows how to prove this assertion from the algebraic axioms and inequality axioms alone.

In fact, as we’ll see: It is impossible to prove the square root principle from the algebraic
axioms and the inequality axioms.

How can we know that it is impossible to prove the square root principle with
just the algebraic and inequality axioms? It’s one thing to say that we don’t know how
to prove the square root principle from the algebraic axioms and the inequality axioms. It’s
another thing to say that it’s not possible to do this. How can we know such a thing?

It turns out that this is something that can be proved. The proof would require us to
carefully discuss and develop ideas from the field of mathematical logic. Since mathematical
logic is not our main subject, we will not do that here. Instead, we’ll explain informally (without
proof) the main idea that is used to prove that it is impossible to prove the square root principle
form the algebraic and inequality axioms.

Recall that Q denotes the set of all rational numbers. (Recall that a number is said to be
rational if it can be written as the ratio of two integers. ) The set Q is a subset of R.

The algebraic axioms include the closure properties: that the sum of two real numbers is
a real number and the product of two real numbers is a real number. It is also true that the
sum of two rational numbers is rational, and the product of rational numbers is rational. Also,
the additive inverse of a rational number is rational and the multiplicative inverse of a rational
number is rational. When we replace R by Q, we get a new set of principles: the algebraic and
inequality axioms for the set Q. If you go through all of these new principles you can check the
following:
Observation 1. All of the algebraic and inequality axioms for Q are true.

Now suppose that we could prove the square root principle for R from the algebraic and
inequality axioms for R. Now instead of starting from the algebraic and inequality axioms for
the reals, we start from the algebraic and inequality axioms for Q. Then following the same
proof we’d be able to prove:

Assertion 10.2. (Square root principle for Q) For every x ∈ Q, if x > 0 there is a positive
number z ∈ Q such that z2 = x. In other words, every positive real number has a positive
square root.

But there’s a problem:
Observation 2. The square root principle for Q is not true!

We’ll see why this is the case in a moment. Since the square root principle for Q is not true,

it should not be possible to prove it. But we just said that if it’s possible to prove the square
root principle for R from the algebraic and inequality axioms, then a similar proof could be
used to prove the square root principle for Q. So we conclude that such a proof is not possible.

Why is the square root principle for Q not true? To show that the square root principle
for Q is not true, we have to show that there is a rational number that has no rational number
square root.
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For this proof we’ll need the following simple fact: The product of two odd numbers is odd.

Exercise 10.3. Prove that the product of any two odd numbers is odd.

Theorem 10.6. For any rational number r, r2 6= 2.

Proof. Let r be a rational number. By definition of rational number, there are integers we’ll
call a and b such that r = a/b. By cancelling common factors in a and b we can assume that
a and b have no common factor. Suppose for contradiction that r2 = 2. Then (a/b)2 = 2, so
a2 = 2b2. So a2 is even, and since the square of an odd number is odd, we must have that a is
divisible by 2. So there is an integer we’ll call k so that a = 2k. So (2k)2 = 2b2 and therefore
2k2 = b2. But then we must have b is even. But then a and b have a common factor of 2, which
is a contradiction. Therefore r2 6= 2 and since r was an arbitrary rational number, we conclude
that there is no rational number whose square is 2.

So Observations 1 and 2 together lead to the conclusion that the algebraic and inequality
axioms are not enough to prove the square root principle. So we need at least one more axiom.
It turns out that we’ll just need one axiom. This axiom is called the completeness axiom.
There are different ways to formulate the axiom. Here we’ll give a formulation that is a bit
more intuitive than the usual formulation.

We need the following definitions. Suppose that A and B are sets of real numbers and z is
a real number. We write A ≤ z if for every x ∈ A we have x ≤ z. Also we write A ≤ B if for
all x ∈ A and y ∈ B we have x ≤ y.

The Completeness Axiom. Suppose that A and B are subset of R satisfying
A ≤ B. Then there is a real number z satisfying A ≤ z and z ≤ B. We say that z
lies between A and B.

Exercise 10.4. If A is the empty set what does A ≤ z imply about z, and what
does A ≥ z imply about z?

As mentioned, there are other ways to formulate the completeness axiom; we may see some
of these later. We’ll refer to the above as the betweenness version of the completeness axiom.

Let’s see how the completeness axiom is used to prove the square root principle. However,
for simplicity, we won’t prove the full square root principle.

Proof. Suppose x is an arbitrary positive real number. We’ll prove that there is positive real
number z such that z2 = x.

Let A = {y ∈ (0,∞) : y2 < 2} and let B = {y ∈ (0,∞) : y2 > 2}.
Claim: A ≤ B.

To prove the claim let v ∈ A be arbitrary and w ∈ B be arbitrary. Then v2 < x < w2, so
w2−v2 > 0. Therefore (w−v)(w+v) > 0, By definition of A and B, w and v are both positive
so w + v > 0. Therefore we can multiply both sides of the previous inequality by 1/(w + v) to
get w − v > 0, and so w > v, to prove the claim.
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Since A ≤ B, the Completeness Axiom tells us that there is a number we’ll call z such that
A ≤ z ≤ B. We want to show that z2 = x, which will complete the proof.

We first want to show that z > 0. We know that z ≥ A and A contains only positive
numbers, so we’d like to say that z > 0. But if A happens to be empty then z ≥ A is vacuously
true, and we can’t conclude that z > 0. So we need to show that A is nonempty. This is easy:
if x ≥ 1 then 1/2 ∈ A. If x < 1 then x2 < x, so x ∈ A. In either case A is nonempty, so z > 0.

Now suppose for contradiction that z2 6= x. Then we have either z2 < x or z2 > x. We’ll
show that z2 < x is not possible, and leave as an exercise to show that z2 > x is impossible.

Case 1. Assume z2 < x. Then since z > 0 we have that z ∈ A. We’ll now show that there
is a number δ > 0 such that z + δ ∈ A, which is a contradiction to z ≥ A. Define the function
g(y) = x− (z + y)2. Then z + y ∈ A if and only if g(y) > 0, so we must find a number δ > 0
such that g(δ) > 0. Observe that g(y) = (x− z2)− 2zy − y2. If y ∈ (0, 1) then

g(y) > x− z2 − 2zy − y = (x− z2)− y(2z + 1).

Now choose δ = (x − z2)/(2z + 1 + x). We note that δ is positive, since it is the ratio of
positive numbers. Also δ < 1 since x− z2 < x+ 2z + 1 (since z > 0). Therefore,

g(δ) > (x− z2)− δ(2z + 1)

= (x− z2)− x− z2

2z + 1 + x
(2z + 1)

= (x− z2)(1− 2z + 1

2z + 1 + x
),

which is positive since x > z2 and 1− (2z + 1)/(2z + 1 + x) is positive.
So we have found a positive δ such that g(δ) > 0 and therefore z + δ ∈ A, contradicting

that A ≤ z. Therefore z 6∈ A.
Case 2. Assume z2 > x.

Exercise 10.5. Show that case 2 leads to a contradiction.

Since cases 1 and 2 are impossible we conclude that z2 − x.

10.4 Summations and Products

Suppose I is any finite set, and (ai : i ∈ I) is an indexed collection of real numbers.

•
∑

i∈I ai, which is read “the sum of ai over all i in I” is the number obtained by adding
together each of the ai for i a member of I.

•
∏

i∈I ai, which is read “the product of ai over all i in I” is the number obtained by
multiplying together each of the ai for i a member of I.

In the special case that I is a consecutive subset of integers, so that for some integers m
and n, I = {i ∈ Z : m ≤ i ≤ n} we define the notation:
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n∑
i=m

ai =
∑
i∈I

ai

n∏
i=m

ai =
∏
i∈I

ai.

The summation
∑n

i=m ai is sometimes written as:

am + am+1 + · · ·+ an.

We refer to this as dot-dot-dot notation for sums. One problem with dot-dot-dot notation
is that it might not be clear what the pattern of terms is. If you write:

5 + 8 + · · ·+ 32,

the reader may not know what you mean, while if you write
∑10

j=1(3j+2), the meaning is clear.
So you should use dot-dot-dot notation only when you are confident that your meaning will be
clear to the reader. The dot-dot-dot notation is sometimes easier to understand when working
with simple sums (we’ll see some examples below), but it is confusing for more complicated
sums, such as when we have a double summation such as:

n∑
i=1

i∑
j=1

ij2.

In dot-dot-dot notation this would be:

(1(12)) + (2(12) + 2(22)) + · · ·+ (n(12) + n(22) + · · ·+ n(n2)).

which may be confusing or ambiguous to the reader.
The distributive law extends to products of sums as follows:

Proposition 10.7. Suppose (xi : i ∈ I) and (yi : i ∈ J) are two finite indexed collections of
real numbes. Then

(
∑
i∈I

xi)(
∑
j∈J

yj) =
∑
i∈I

xi(
∑
j∈J

yj) =
∑
j∈J

yj(
∑
i∈I

xi) =
∑

(i,j)∈I×J

xiyj.

We frequenty use the notation [n] to denote te set {1, . . . , n}. Thus
∑n

i=1 xi =
∑

i∈[n] xi.

Corollary 10.8. For any list x1, . . . , xn of numbers:

(
n∑

i=1

xi)
2 =

n∑
i=1

x2i + 2
∑

1≤i<j≤n

xixj.
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Modifying the index of summation In the sum
∑n

i=1 xi, the index i is a dummy variable.
We are free to change it to another letter:

∑n
j=1 xj. Here we are making a substitution of j for

i as the index of summation. We can also make a shifted substition such as j = i + 3. In that
case the sum becomes

∑n+3
j=4 xj−3. Notice that this sum is still equal to x1 + · · ·+ xn.

This technique can be useful in combining and simplifying sums.

Example 10.1. Simplify
∑n

i=1(xi − xi+1).
Solution

∑n
i=1(xi − xi+1) =

∑n
i=1 xi −

∑n
i=1 xi+1. Shift the second summation by making the

substitution j = i+1. Then the second sum becomes
∑n+1

j=2 xj. Now replace j by i and combine
with the first sum to get:

n∑
i=1

xi −
n+1∑
i=2

xi.

Split the first sum into x1 +
∑n

i=2 xi and split the second sum into
∑n

i=2 xi +xn+1. The two
sums cancel each other leaving x1 − xn+1.

The previous example is a situation where dot-dot-dot notation may be easier to understand.
If we write out the sum as:

(x1 − x2) + (x2 − x3) + · · ·+ (xn − xn+1),

then we see that −x2 is cancelled by x2, −x3 is cancelled by −x3, etc. leaving only x1 − xn+1.
This kind of sum is called a telesoping sum (because it collapses like a collapsible telescope).

The argument by telescoping may seem easier then the argument in the proof. Still it is
important to learn the techniques used in the proof (changing index of summation, and breaking
off terms of the summation), because these techniques are more reliable then telescoping when
manipulating more complicated sums.

Proposition 10.9. For any real numbers x and y and positive integer n we have:

xn − yn = (x− y)
n−1∑
i=0

xiyn−1−i.

Proof. Suppose that x and y are arbitrary real numbers and n is an arbitrary positive integer.
Consider the right hand side R of the desired equation:

R = (x− y)
n−1∑
i=0

xiyn−1−i

=
n−1∑
i=0

xi+1yn−1−i − xiyn−i

=
n−1∑
i=0

xi+1yn−1−i −
n−1∑
i=0

xiyn−i.
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Change the index of summation in the first sum by making the substitution j = i + 1 and
change the index of summation in the second sum by simply replacing j by i. As a result we
get:

R =
n−1∑
j=1

xjyn−j −
n−1∑
j=0

xjyn−j

= xn +
n−1∑
j=1

xjyn−j −
n−1∑
j=1

xjyn−j − yn

= xn − yn,

as required to complete the proof.

Exercise 10.6. Give an alternate proof using dot-dot-dot notation and telescoping sums.

10.5 Inequalities involving the average of a list of numbers

The average or arithmetic mean of a list of numbers a1, . . . , an, denoted AM(a1, . . . , an) is given
by:

AM(a1, . . . , an) =
1

n

∑
ai.

We have the following basic inequalities:

Proposition 10.10. For any list of numbers a1, . . . , an we have:

AM(a1, . . . , an) ≥ min(a1, . . . , an),

and
AM(a1, . . . , an) ≤ max(a1, . . . , an).

Proof. Suppose a1, . . . , an is a list of numbers. For the first inequality, let m = min(a1, . . . , an).
We have that for all i ∈ {1, . . . , n}, ai ≥ m. Summing this inequality over i, we have

∑n
i=1 ai ≥

mn and dividing by n we have 1
n

∑n
i=1 ai ≥ m.

The proof of the second part is left as an exercise.

Exercise 10.7. Prove the second part of Proposition 10.10.

Here’s a more interesting inequality:

Proposition 10.11. For any list of numbers a1, . . . , an of real numbers, the square of the
average is less than or equal to the average of the squares, that is:

AM(a1, . . . , an)2 ≤ AM(a21, . . . , a
2
n).

Furthermore the inequality is strict unless all of the ai are the same.
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Proof. (of Proposition 10.11.) Suppose that a1, . . . , an is a list of real numbers. It is enough to
show that the difference AM(a21, . . . , a

2
n)− AM(a1, . . . , an)2 is nonnegative.

AM(a21, . . . , a
2
n)− AM(a1, . . . , an)2 =

1

n

n∑
i=1

a2i −
1

n2
(

n∑
i=1

ai)(
n∑

i=1

ai)

=
1

n2

(
n

n∑
i=1

a2i − (
n∑

i=1

n∑
j=1

aiaj))

)
.

We will prove that this is nonnegative by relating it to the sum:

S =
n∑

i=1

n∑
j=1

(ai − aj)2.

We have:

S =
n∑

i=1

n∑
j=1

a2i − 2aiaj + a2j

=
n∑

i=1

n∑
j=1

a2i +
n∑

i=1

n∑
j=1

a2j − 2
n∑

i=1

n∑
j=1

aiaj.

Now in the first sum, the summand (that is, the term being summed) does not depend on
j, so the inner sum on j just multiplies the summand by n to get

∑n
i=1 na

2
i . In the second

sum, the summand of the outer sum, which is
∑n

j=1 a
2
j does not depend on i so the outer sum

multiplies the result by n. Then by changing the index of summation to i we get that the first
and second sum are the same, and together equal 2n

∑n
i=1 a

2
i . So altogether we get:

S = 2n
n∑

i=1

a2i − 2
n∑

i=1

n∑
j=1

aiaJ .

Notice that this is 2n2 times the expression we obtained forAM(a21, . . . , a
2
n)−AM(a1, . . . , an)2

and so:

AM(a21, . . . , a
2
n)− AM(a1, . . . , an)2 =

1

2n2
S.

Since S is a sum of squares of real numbers, S ≥ 0 and so the desired inequality is
proved. Furthermore, if the ai are not all the same then S > 0 and so AM(a21, . . . , a

2
n) >

AM(a1, . . . , an)2.

Theorem 10.12. Suppose that a1, . . . , an and b1, . . . , bn are positive real numbers and that
a1 ≤ · · · ≤ an and b1 ≤ · · · ≤ bn. Then AM(a1b1, . . . , anbn) ≥ AM(a1, . . . , an)AM(b1, . . . , bn).
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Exercise 10.8. Prove Theorem 10.12. (Hint: Notice that in the case that bi = ai for all i this
theorem reduces to Proposition 10.11. Generalize the proof of Proposition 10.11.)

Exercise 10.9. Proof the Cauchy-Schwartz inequality, Theorem 10.1. Hint: Show that the
right hand side minus the left hand side is nonnegative by relating this difference to the sum
T =

∑n
i=1

∑n
j=1(aibi − ajbj)2.

There are two other “averages” of a list of numbers that arise frequently in mathematics.

• The geometric mean of the list (a1, . . . , an) of positive numbers is defined to beGM(a1, . . . , an) =
(
∏n

i=1 ai)
1/n.

• The harmonic mean of the list (a1, . . . , an) of positive numbers is defined to beHM(a1, . . . , an) =
1

1
n
(a1+···+an)

.

We have the following theorem:

Theorem 10.13. For any list a1, . . . , an of positive numbers,

AM(a1, . . . , an ≥ GM(a1, . . . , an) Arithmetic-Geometric mean inequality

and

GM(a1, . . . , an) ≥ HM(a1, . . . , an) Geometric-Harmonic mean inequality

The easiest proofs of these results use calculus; but we’re not ready to look at proofs
using calculus yet. In a later section, we’ll show how to prove the arithmetic-geometric mean
inequality using the principle of mathematical induction.

Exercise 10.10. Prove that the geometric-harmonic mean inequality follows from the arithmetic-
geometric mean inequality. That is, give a proof of the geometric-harmonic mean inequality
where you are are allowed to assume that the arithmetic-geometric mean inequality is true.

Exercise 10.11. For any real numbers x and y and any even positive integer k, prove that∑k
i=0 x

iyk−i ≥ 0. (Hint: Show that this sum can be rewritten as a sum of squares.)

10.6 Increasing Functions

Suppose that f : R −→ R is a function and I = [a, b] is an interval. We say that:

• f is increasing on I if for all x, y ∈ I with x < y we have f(x) < f(y).

• f is decreasing on I if for all x, y ∈ I with x < y we have f(x) > f(y).

• f is nondecreasing on I if for all x, y ∈ I with x < y we have f(x) ≤ f(y).
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• f is nonincreasing on I if for all x, y ∈ I with x < y we have f(x) ≤ f(y).

In calculus you may have learned to use the derivative to determine whether a function has
one of these properties on a particular interval. Here we will investigate how to prove that a
function is increasing without the aid of calculus.

Example 10.2. Let f : R −→ R denote the function given by f(x) = x2. Prove that: (1) f is
increasing on the interval [0,∞), and (2) f is decreasing on the interval (−∞, 0].

Proof. We’ll prove (1) and leave (2) as an exercise. Suppose that x, y ∈ [0,∞) with x < y. We
must show that x2 < y2 which is the same as showing y2−x2 > 0. Since y2−x2 = (y−x)(y+x)
and y − x > 0 and y + x > 0 (since y > x ≥ 0) we have that y2 − x2 > 0 (since the product of
positive numbers is positive.

Theorem 10.14. Let k be positive integer.

1. If k is even then the function given by f(x) = xk is an increasing function on the set
[0,∞) and is a decreasing function on the set (−∞, 0].

2. If k is odd then the function given by f(x) = xk is increasing on all of R.

Exercise 10.12. Prove Theorem 10.14.

Proposition 10.15. Let f be a function whose domain includes the interval [a, b] such that
f(x) > 0 for all x ∈ [a, b]. Let g be the function defined on domain [a, b] by g(x) = 1/f(x). If
f is increasing on [a, b] then g is decreasing on [a, b].

Exercise 10.13. Prove Proposition 10.15

Exercise 10.14. Prove that the function defined on the interval [0,∞) by f(x) =
√
x is

increasing.

Exercise 10.15. Suppose f and g are functions whose domains are subsets of the real numbers
and whose targets are the set of real numbers. Suppose I and J are intervals such that f(I) ⊆ J
and f is increasing on I and g is increasing on J . Prove that g ◦ f is increasing on I.
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