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Preface 

1. Historical perspective 

The subject of symmetric functions arose initially in connection with the represen-
tation theory of the symmetric group, however it has since found wide applicability. 
In the last twenty years or so, there have far-reaching new developments in the sub-
ject, as well as a general broadening of the areas of applicability, especially within 
combinatorics, classical analysis and mathematical physics. 

The subject has a particularly distinguished history going back to the work of 
C. G. Jacobi [Ja] in the mid-nineteenth century, and to the papers of F. G. Frobe-
nius [F], I. Schur [S], H. Weyl [W], M.A. MacMahon [M], and A. Young [Y] in 
the early twentieth century. These papers singled out a certain family of symmet-
ric polynomials, now called Schur functions, which played a significant role in the 
representation theory of the symmetric group Bn as well as the complex general 
linear group GLn(IC). This dual role of the Schur functions is often referred to as 
"Schur-Weyl duality". 

The next stage in the development of the subject was the fundamental work of 
P. Hall [H] and D. E. Littlewood [L] who independently discovered a one-parameter 
generalization of the Schur polynomials. Subsequent work by J. A. Green [G] 
and I. G. Macdonald [Ml] showed that these polynomials, now called the Hall-
Littlewood polynomials, play a crucial role in the representation theory of G Ln 
over finite and p-adic fields. 

In the late 1960's, Henry Jack [Jl, J2] discovered a totally different one-
parameter generalization of Schur functions. These polynomials, now called Jack 
polynomials, include as a special case the zonal polynomials, which are related to 
the group GLn(F) with F =~,and had been previously studied by A. T. James 
[J] in connection with multivariate statistics. 

In the 1980's, I. G. Macdonald unified these developments by introducing a two-
parameter family of symmetric polynomials, now called Macdonald polynomials. 
The Hall-Littlewood polynomials are a special case of Macdonald polynomials, and 
arise by specializing one of the parameters to 0. The Jack polynomials too arise as a 
limiting case when both parameters approach 1- the Jack parameter is the limiting 
direction of approach. These polynomials were also independently discovered by K. 
Kadell, [Kad] in connection with his investigation of the Selberg integral. 

As explained above, the Macdonald symmetric polynomials are closely related 
to the group G Ln and hence to root systems of type A. In subsequent work Macdon-
ald constructed analogous polynomials associated to arbitrary root system. These 
polynomials arise as the 'discrete spectrum' of a class of q-difference operators. 

ix 
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Since the operators are self-adjoint with respect to a certain scalar product, Mac-
donald polynomials are multivariate orthogonal polynomials. From this point of 
view, they generalize various classical orthogonal polynomials. 

These root system polynomials are connected with earlier work of Macdonald 
on spherical functions for p-adic groups, which in the present context are obtained 
by specializing various parameters to 0. On the other hand taking a suitable limit 
as the parameters approach 1 one obtains the multivariate Jacobi polynomials that 
had been previously studied by G. Heckman and E. Opdam [HO], and which in 
turn generalize the characters and spherical functions of the corresponding compact 
Lie groups. Thus Macdonald's results can be seen as a manifestation of Barish-
Chandra's "Lefschetz principle". This principle, which was one of the guiding 
philosophies of Barish-Chandra's work, asserts that representation theoretic results 
for an algebraic group over a field should have analogues for the same group over 
other fields. In a certain sense Macdonald polynomials "see" the representation 
theory of the group G (F) for "every field F". 

2. Macdonald Conjectures 

Many of the basic properties of Macdonald polynomials were initially formulated 
as conjectures by Macdonald. These include the constant term formula, the norm 
formula, the duality/symmetry property. A great deal of research in recent years 
has been focused on proving these conjectures. 

For the Jacobi limit these conjectures were proved by E. Opdam [Opl] by 
the technique of shift operators. Subsequently, I. Cherednik [Cl], [C2] proved the 
Macdonald conjectures for all reduced root systems. Cherednik's approach involved 
his theory of double affine Heeke algebras which is one of the major developments 
in this area. In the non-reduced BCn-case, Macdonald polynomials are known as 
Koornwinder polynomials [Kl], and they can be viewed as the multivariate ana-
logue of the celebrated Askey-Wilson polynomials. In this case the Macdonald 
conjectures were proved by S. Sahi in [83] following earlier work of J.F. van Diejen 
[vD]. Macdonald's latest book [M3] gives an exposition of all these results. 

Another set of conjectures was formulated by Macdonald in the type A set-
ting, see [M2]. These conjectures are known as the "integrality" and "positivity" 
conjectures, and are concerned with the expansion of these polynomials in terms of 
other bases of symmetric functions, e.g. the monomial basis. Macdonald made sep-
arate conjectures for Jack polynomials and for symmetric Macdonald polynomials. 
It has recently been discovered that in the case of Jack polynomials, Jack himself 
had conjectured some of these properties in an unpublished manuscript [J3] shortly 
before his death. In the case of Jack polynomials, both conjectures were proved 
by F. Knop and S. Sahi in [KnS2]. The "integrality" conjecture for Macdonald 
polynomials was established in six different papers which appeared roughly at the 
same time. 

The positivity conjecture for Macdonald polynomials proved to be much harder. 
Garsia and Haiman [ G H] generalized this to a conjecture for the dimension of a 
certain doubly-graded Sn-modules, which came to be known as the n! conjecture. 
In [Hl] M. Haiman established a spectacular connection between Macdonald poly-
nomials and the geometry of the Hilbert scheme of points in the plane, following 
a suggestion of C. Procesi. This enabled Haiman to prove the n! conjecture, as 
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3. VARIANTS OF MACDONALD POLYNOMIALS xi 

well as the related (n + 1)n-l conjecture on the dimension of the space of diagonal 
harmonics [H2]. 

3. Variants of Macdonald polynomials 

As explained above, Macdonald polynomials generalize characters of compact group 
and, like these characters, they are symmetric (i.e. invariant with respect to the 
Weyl group action). It was therefore somewhat surprising when the study of these 
symmetric polynomials gave rise to a natural family of non-symmetric polynomials. 

These polynomials were first introduced in the Jacobi setting by E. Opdam 
[Op2], who credits the definition to G. Heckman. In turn, Heckman was moti-
vated by the work of Cherednik who had expressed the Macdonald operators as 
symmetric polynomials in certain commuting first order operators. These Chered-
nik operators are trigonometric analogs of operators first considered by C. Dunkl 
[Du]. The nonsymmetric Macdonald polynomials are defined to be the simultane-
ous eigenfunctions of these Cherednik operators. 

The discovery of the non-symmetric polynomials led to substantial simplifica-
tions in the theory of Macdonald polynomials. This was crucial in the proof of the 
integrality and positivity conjectures for Jack polynomials in [KnS2]. Generalizing 
the ideas in that paper to arbitrary root system, Cherednik [C3] formalized the 
theory of intertwiners and used them to give alternate proofs of some of the Mac-
donald conjectures. Although the non-symmetric polynomials are very useful and 
natural in the Macdonald theory, they remain somewhat mysterious. For certain 
special values of the parameters they have been identified with Demazure char-
acters of basic representations of affine Kac-Moody Lie algebras by Y. Sanderson 
[San] for type A, and by B. Ion [I] for arbitrary root systems. However for general 
parameters their representation-theoretic meaning is still obscure. 

Another class of polynomials which turned out to be closely connected to Mac-
donald polynomials are the so-called interpolation polynomials. These polynomials 
were first defined by S. Sahi [S4], in connection with joint work with B. Kostant 
on the Capelli identity. They are symmetric inhomogeneous polynomials, depend-
ing on several parameters, and defined by fairly simple vanishing properties. In 
the special case when the parameters form an arithmetic progression, F. Knop and 
S. Sahi proved in [KnS1] that the top degree terms of the interpolation polynomial 
is the usual Jack polynomial. A similar result also holds for Macdonald polynomials 
[S1, Kn1]. 

Many results for Jack and Macdonald polynomials, both symmetric and non-
symmetric, continue to hold for the interpolation polynomials. Indeed some of 
the results are easier to prove in the inhomogeneous setting because of the strong 
uniqueness result for these polynomials. Results for the homogeneous polynomials 
can then be deduced by considering the top homogeneous terms. Considerable 
work on these polynomials was done by A. Okounkov who obtained combinatorial 
and integral formulas for these polynomials, and also defined their analogs in the 
BCn setting. It turns out that special values of interpolation polynomials are 
the coefficients in the series expansion of the Jack polynomial about the point 
x = (1, ... , 1) [001]. Analogous results are true for symmetric and non-symmetric 
Macdonald polynomials, and in the BCn setting one obtains a multivariable analog 
of the hypergeometric series representing the Askey-Wilson polynomials [01, 02, 
S2, Kn2]. 
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4. Other directions 

There are several areas of mathematics where Macdonald polynomials make a nat-
ural appearance. To give a complete and historically accurate description of these 
areas would require a much longer article, and considerably more expertise than 
we possess. We shall be content here with a brief mention of some of the themes 
and some of the key names in those areas. Hopefully this will help the interested 
reader to track down further results and interconnections. 

Macdonald polynomials appear in the context of the exactly solvable quantum 
Calogero-Sutherland model [Su] and its generalizations by Olshanetsky-Perelomov 
[OP], Ruijsenaars [Ru] and others. This field is closely related to the study of an 
ideal gas by Haldane [Ha] and Shastry [Sh]. Considerable work in this area has 
been carried out by T. Baker and P. Forrester [BF]. 

Another circle of ideas involving Macdonald polynomials centers around the 
theory of vertex operator algebras, W-algebras, and conformal blocks. We refer the 
reader to papers by Frenkel and Reshetikhin [FR]. 

The theory of symmetric functions and representations of the symmetric group 
plays a big role in algebraic combinatorics. We refer the reader to papers by Las-
coux, Leclerc and Thibon on the subject [LLT, LT]. 

Jack and Macdonald polynomials are also intimately connected with the study 
of random phenomena on the symmetric group, such as random partitions and 
random permutations. We refer the reader to various papers by Vershik-Kerov and 
Okounkov-Olshanski [KOO]. 

The subject of harmonic analysis on the affine Heeke algebra has been advanced 
considerably by the work of E. Opdam [Op2]. We also refer the reader to papers 
by I. Cherednik and J. Stokman in this area. 

5. About these proceedings 

The first part of these proceedings consists of material of historical significance, 
including some previously unpublished texts. We include here biographical notes 
on Jack by B. Sleeman and on Hall, Littlewood and Macdonald by A. Morris. We 
also include reprints of the original papers of Littlewood and Jack, and notes on 
Hall's (unpublished) results by I. Macdonald. Finally we print, in its entirety, a 
recently discovered manuscript of Jack together with comments by I. Macdonald. 

The second part of these proceedings consists of original contributions to the 
subject in the form of refereed research papers. For the reader's convenience we 
briefly describe the mathematical background for some of these papers. As before, 
the purpose is to give the interested reader an opportunity to follow up on some of 
the ideas mentioned in the papers. We lack the space and the expertise to provide 
a complete and historically accurate exposition of the various subjects. 

In 1974 T.H. Koornwinder wrote a series of papers [K2] dedicated to the or-
thogonal symmetric polynomials of type A 2 and BC2 • He constructed several shift 
operators and derived explicit series representations for these polynomials in two 
variables. These results were generalized by E. Opdam. In [KN] A.M. Kirillov and 
M. Noumi obtained explicit parameter preserving lowering and raising operators for 
Macdonald polynomials of the type An, thereby generalizing the previous results 
for Jack polynomials due to L. Lapointe and L. Vinet. 

Using Heckman-Opdam's [HO] theory of multivariate hypergeometric func-
tions, 0. Chalykh, K. Styrkas and A. Veselov [VSC] proved that the quantum 
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5. ABOUT THESE PROCEEDINGS xiii 

Calogero-Sutherland model is algebraically integrable for integer values of the pa-
rameters. Generalization of this result to Macdonald operators is due to P. Etingof 
and K. Styrkas [ES]. A. Sergeev discovered the relation of the super Jack polyno-
mials introduced in [KOO] with the deformed quantum Calogero-Moser systems 
and Lie superalgebras [Ser]. Further generalizations including the difference case 
and super Macdonald polynomials have been investigated by A. Sergeev and A. 
Veselov (to appear in this volume) who have shown that these polynomials are the 
joint eigenfunctions of certain difference operators on algebraic varieties. 

P. Etingof and A.A. Kirillov, Jr. have shown in [EKl], [EK2] how Macdonald 
polynomials for the root system of type An could be interpreted in terms of the 
representation theory of quantum groups. Namely, Macdonald polynomials arise as 
traces of certain natural intertwining operators, which generalizes the description 
of Schur functions as traces of irreducible SLn-modules. This leads, in particular, 
to elegant proofs of various Macdonald polynomials identities, such as inner prod-
uct and symmetry identities. It also, in the affine case, leads to natural elliptic 
extensions of Macdonald theory. 

Asymptotic properties of Macdonald polynomials were investigated by G. 01-
shanski, in collaboration with S. Kerov and A. Okounkov. In particular, the analog 
of the Vershik-Kerov asymptotics for the characters of the symmetric and unitary 
groups for the case of Jack polynomials were obtained in [KOO] and [002], respec-
tively. Remarkably, the same type of asymptotics continues to hold, with minimal 
and very natural modifications. Recently, J .F. van Diejen suggested a general ap-
proach to deriving asymptotics of a class of multivariate orthogonal polynomials as 
the degree tends to infinity and applied it to Jack polynomials. 

Another connection between interpolation and Macdonald polynomials arose 
recently in the work ofT. Miwa and his collaborators. In [F JMMl] and [F JMM2] 
they showed, that certain ideals in the algebra of symmetric functions which are 
of interests in the representation theory of affine Lie algebras have a linear basis of 
Macdonald polynomials. 

V.B. Kuznetsov, V.V. Mangazeev and E.K. Sklyanin have recently completed 
the long-standing task of factorizing Jack polynomials [KS, KMS] by advancing 
the theories of separation of variables and Backlund transformations for quantum 
integrable systems. 

The French group based mainly in Marne-la-Vallee have over the years made 
considerable contributions to algebraic combinatorics in general and to Macdonald 
polynomials [LLT], [LT] in particular. 

Elementary proofs of Macdonald conjectures are by now available for the clas-
sical root systems, see [M2] for the An-case and [R] for the general BCn-case. In 
recent work (math.QA/0309252) E. Rains constructed a family of elliptic biorthog-
onal functions generalizing the Koornwinder polynomials. 

R. Gustafson has discovered a method of evaluating many important hyper-
geometric integrals [Gus] which are intimately connected to Jack and Macdonald 
polynomials. 

In the joint work with M. Lassalle [LS], M. Schlosser recently presented an 
explicit analytic formula for Macdonald polynomials. This was obtained from a re-
cursion for Macdonald polynomials being derived from inverting the Pieri formula. 
M. Lassalle gave an elementary proof of the expansion formula for Macdonald poly-
nomials in terms of 'modified complete' symmetric functions. 
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E. Langmann generalized the method used by Sutherland in [Su] to derive new 
explicit formulas for the Jack polynomials. The method is based on the relation 
of the Jack polynomials to the eigenfunctions of the quantum Calogero-Sutherland 
system. The results were further generalized to construct a solution of the elliptic 
Calogero-Moser system. 

V.P. Spiridonov generalized Warnaars elliptic extension of a Macdonald multi-
parameter summation formula to Riemann surfaces of arbitrary genus. 

6. The Workshop 

The Workshop on "Jack, Hall-Littlewood and Macdonald polynomials" was held at 
ICMS, Edinburgh, during September 23-26, 2003. The meeting was organised by 
V.B. Kuznetsov (Leeds), A.O. Morris (Aberystwyth), B.D. Sleeman (Leeds) and 
A.P. Veselov (Loughborough) and supported by EPSRC and LMS. The Scientific 
Advisory Committee was A. Okounkov (Princeton) and J.-Y. Thibon (Marne-la-
Vallee). 16 one-hour-long lectures were given by: J.F. van Diejen (Talca, Chile), 
P.I. Etingof (MIT), R. Gustafson (Texas A&M), F. Knop (Rutgers), T.H. Koorn-
winder (Amsterdam), A. Lascoux (Marne-la-Vallee), I.G. Macdonald (UK), T. Miwa 
(Kyoto), E. Opdam (Amsterdam), E. Rains (Davis), S. Sahi (Rutgers), M. Schlosser 
(Vienna), A.N. Sergeev (Balakovo), E.K. Sklyanin (York), V. Spiridonov (Dubna) 
and J.-Y. Thibon (Marne-la-Vallee). The meeting was attended by 35-40 partici-
pants. 

Vadim B. Kuznetsov 
Siddhartha Sahi 

This volume, meant to be a celebration of the work of the pioneers of the theory 
of symmetric functions, has unfortunately also turned into a memorial for Vadim 
Kuznetsov, whose untimely death in December 2005 shocked and saddened all who 
knew him. Vadim invested a great deal of time and effort into the conference and 
its proceedings, and I would like to think that he would have been pleased with 
the results. I also want to add a special note of thanks to Alun Morris and Brian 
Sleeman for their invaluable help, without which this volume would have been 
greatly delayed. 
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2C. Asymptotics of denominators in binomial formula. 
We fix an arbitrary partition J.L and let n go to infinity. As in Theorem 1.4, we 

assume that the parameters a, b may depend on n. We write them as an, bn and 
assume that the limits (1. 7) exist. 

PROPOSITION 2.4. The denominator (2.8) in (2.7) has the following asymp-
totics 

(2.9) 

where 

H(J.L; 0) = II ((J.Li-j)-O(J.Lj-i)+1), 
(i,j)EJ.t 

H'(J.L; 0) = II ((J.Li-j)-O(J.Lj-i)+O)' 
(i,j)EJ.t 

and a= limanfn as in (1.7). 

PROOF. Recall that C(n, J.Li 0; an, bn) is the product of two terms, IJ.t(J.L; 0; an+ 
On) and aJ.t(1, ... , 1; 0, an, bn), where an = (an + bn + 1)/2. We claim that, as 
n---+ oo, the following two asymptotic relations hold 

(2.10) 

(2.11) 

where 
(j = lim an = a+ b . 

n--+oo n 2 
Clearly, (2.10) and (2.11) imply (2.9). 
The first relation immediately follows from (2.6), let us check the second rela-

tion. 
The following is the general formula, due to Opdam, for the value of a multi-

variate Jacobi polynomial, indexed by a weight J.L, at the unit element, see [HS], 
Part I, Theorem 3.6.6, 

II r ( (J.L + p, aY) + ka + !ka;2) r ( (p, aY) + !ka;2) 
a>O r ( (J.L + p, aV) + !ka/2) r ( (p, aV) + ka + !ka/2) ' 

where av stands for the root dual to a, and ka;2 = 0 if the root a/2 does not exist. 
In our case, the polynomial in question is just aJ.t( ·; 0, an, bn), and the unit 

element is identified with the point (1, ... , 1). Next, we have 

and there are 4 types of the positive roots a 

€i- €j, €i + €j (1 ~ i < j ~ n), 
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